EKF SLAM

CMPT 419/983

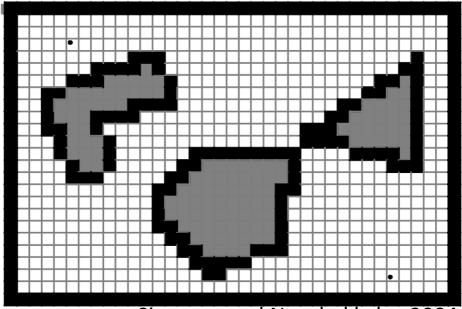
Mo Chen

SFU Computing Science

25/11/2019

Localization: Problem Setup

- Assume a map is given: $m = \{m_1, m_2, \dots, m_N\}$
 - Location based: each m_i represents a specific location and whether it's occupied
 - Feature based: each m_i contains the location of the ith land mark
- Robot maintains and updates its belief about where it is with respect to the map
 - Position belief is updated based on sensor data
 - Position belief is a probability distribution



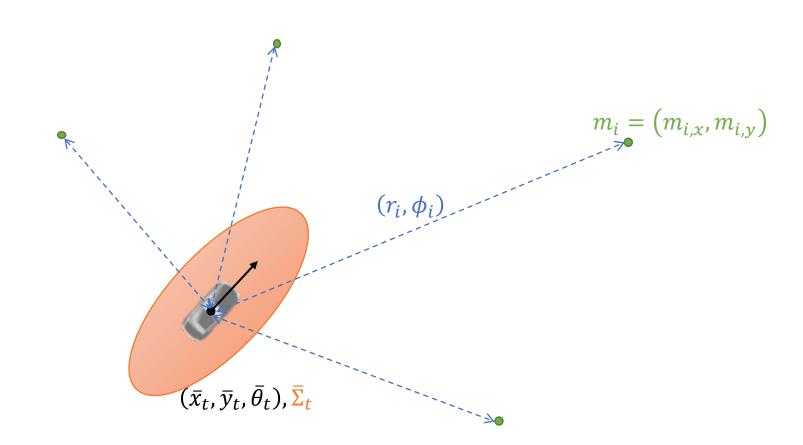
Siegwart and Nourbakhshs, 2004

Localization

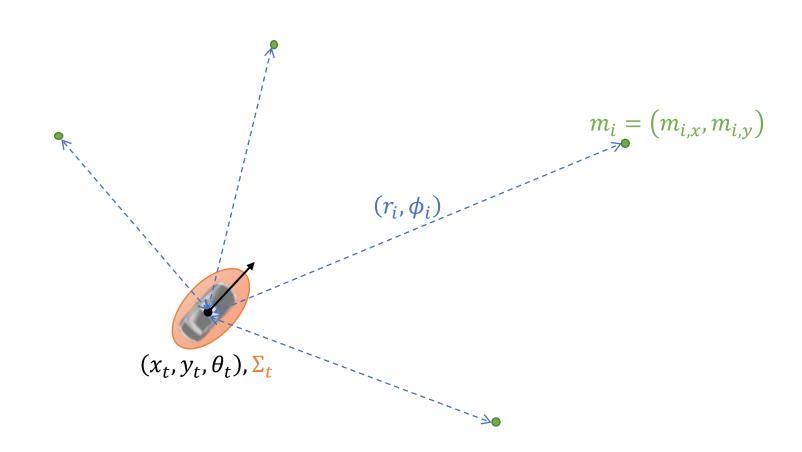
 $m_i = \left(m_{i,x}, m_{i,y}\right)$

$$(x_{t-1}, y_{t-1}, \theta_{t-1}), \Sigma_t$$

Localization



Localization

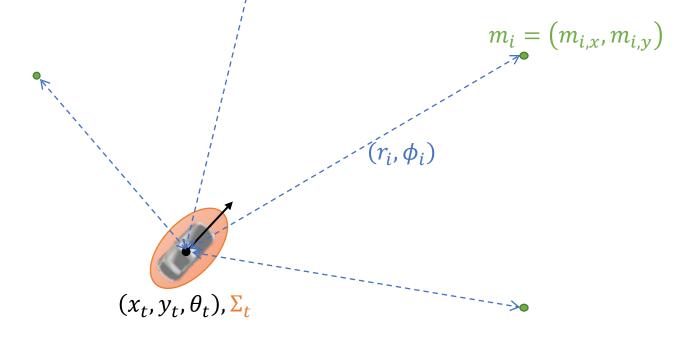


Simultaneous Localization and Mapping (SLAM)

ullet Land marks m are unknown, and must be estimated at the same time as

internal state estimation

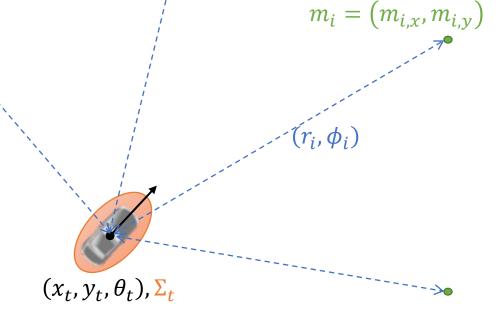
- Define combined state vector
 - $y \coloneqq \begin{bmatrix} x \\ m \end{bmatrix}$
- Calculate $p(y_t|z_{1:t}, u_{1:t-1})$
 - Previously, $p(x_t|z_{1:t}, u_{1:t-1}, m)$



• Strategy: define dynamics for y_t , and apply EKF

Simple Car with Range Sensors

- Internal state dynamics (Forward Euler)
 - $x_{1,t} = x_{1,t-1} + \Delta t \cdot v \cos x_{3,t-1}$
 - $x_{2,t} = x_{2,t-1} + \Delta t \cdot v \sin x_{3,t-1}$
 - $x_{3,t} = x_{3,t-1} + \Delta t \cdot u_{t-1}$



- Environment dynamics
 - State: $m_i = (m_{i,x}, m_{i,y}), i = 1, ..., N$ (note that in general we may not know how many land marks are present)
 - $m_t = I_{2N \times 2N} m_{t-1}$ (identity dynamics, since land marks don't move)
- Car measures (with noise) range and bearing of each land mark

Simple Car Dynamics

- Put dynamics in the form $y_t = g(y_{t-1}, u_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, R_t)$:
 - y_t and $g(y_{t-1}, u_{t-1})$ have 3 + 2N components
 - First three components of $g(y_{t-1}, u_{t-1})$: Forward Euler from ODE model of car
 - Remaining components of $g(y_{t-1}, u_{t-1})$: identity
 - R_t has zero entries except for top left 3×3 block

• Jacobian
$$G_t = \frac{\partial g}{\partial y_{t-1}}(y_{t-1}, u_{t-1}) = \begin{bmatrix} \frac{\partial g_1}{\partial y_{1,t-1}} & \cdots & \frac{\partial g_1}{\partial y_{3+2N,t-1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{3+2N}}{\partial y_{1,t-1}} & \cdots & \frac{\partial g_{3+2N}}{\partial y_{3+2N,t-1}} \end{bmatrix}$$

• Almost identity matrix... except for $y_{3,t-1}$ dependence in $y_{1,t}$ and $y_{2,t}$

EKF SLAM: Prediction Step

- Extended Kalman filter algorithm:
 - $y_t = g(y_{t-1}, u_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, R_t)$
 - $z_t = h(y_t) + \delta_t, \delta_t \sim N(0, Q_t)$
 - Linearization: $G_t = \nabla g(\mu_{t-1}, u_{t-1}), H_t = \nabla h(\bar{\mu}_t)$

Input: μ_{t-1} , Σ_{t-1} , u_{t-1} , z_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\mu}_t = g(\mu_{t-1}, \mu_{t-1})$$

 $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^{\mathsf{T}} + R_t$

Perform measurement update:

$$K_t = \overline{\Sigma}_t H_t^{\mathsf{T}} (H_t \overline{\Sigma}_t H_t^{\mathsf{T}} + Q_t)^{-1}$$

$$\mu_t = \overline{\mu}_t + K_t (z_t - h(\overline{\mu}_t))$$

$$\Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$$

Return μ_t , Σ_t

EKF SLAM prediction step details:

- $G_t \in \mathbb{R}^{(3+2N)\times(3+2N)}$; plug in μ_{t-1}
 - μ now refers to mean of y, which includes estimates of land mark positions
- $\Sigma_t \in \mathbb{R}^{(3+2N)\times(3+2N)}$;
 - Initialize upper left 3×3 block with zeros if initial internal state is known exactly
 - Initialize lower right $2N \times 2N$ block with $\infty \times I_{2N \times 2N}$ if there is no knowledge about land marks
 - Σ_t now refers to covariance of y
- $R_t \in \mathbb{R}^{(3+2N)\times(3+2N)}$;
 - Zeros except for upper left 3×3 block

Simple Car with Range Sensors

Measurements

•
$$z_t = \{z_t^1, z_t^2, \dots\} = \{(r_t^1, \phi_t^1), (r_t^2, \phi_t^2), \dots\}$$

- Measurement model
 - Assume ith measurement at time t corresponds to jth land mark

•
$$\begin{bmatrix} r_t^i \\ \phi_t^i \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{j,x} - x_{1,t})^2 + (m_{j,y} - x_{2,t})^2} \\ \tan 2(m_{j,y} - x_{2,t}, m_{j,x} - x_{1,t}) - x_{3,t} \end{bmatrix} + \delta_t, \ \delta_t \sim N(0, Q_t)$$

Function in most programming languages and returns any possible angle

Data Association

- Define correspondence variable $c_t^i \in \{1, ..., N+1\}$
 - $c_t^i = j \le N$ means ith measurement at time t corresponds to jth land mark
 - $c_t^i = N + 1$ means measurement does not correspond to any land mark
- ullet This class: assume c_t^i are known
- ullet More advanced (and practical): estimate c_t^i using maximum likelihood

Measurement from a single land mark:

•
$$z_t^i = \begin{bmatrix} r_t^i \\ \phi_t^i \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{j,x} - y_{1,t})^2 + (m_{j,y} - y_{2,t})^2} \\ \tan 2(m_{j,y} - y_{2,t}, m_{j,x} - y_{1,t}) - y_{3,t} \end{bmatrix} + \delta_t = h^i(y_t), \ \delta_t \sim N(0, Q_t)$$

• Jacobian: Mostly zeros. Let $r_t^i = \sqrt{\left(m_{j,x} - y_{1,t}\right)^2 + \left(m_{j,y} - y_{2,t}\right)^2}$ (remember to plug in estimates)

$$\frac{\partial h^{i}}{\partial y_{t}} = \begin{bmatrix} \frac{\partial h_{1}^{i}}{\partial y_{1,t}} & \cdots & \frac{\partial h_{1}^{i}}{\partial y_{3+2N,t}} \\ \frac{\partial h_{2}^{i}}{\partial y_{1,t}} & \cdots & \frac{\partial h_{2}^{i}}{\partial y_{3+2N,t}} \end{bmatrix} \in \mathbb{R}^{2 \times (3+2N)}$$

$$\begin{bmatrix} \frac{-(m_{j,x} - y_{1,t})}{r_{t}^{i}} & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & 0 & 0 & \cdots & 0 & \frac{m_{j,x} - y_{1,t}}{r_{t}^{i}} & \frac{m_{j,y} - y_{2,t}}{r_{t}^{i}} & 0 & \cdots & 0 \end{bmatrix}$$

Algebra... First Row

$$\frac{\partial}{\partial y_{1,t}} \sqrt{\left(m_{j,x} - y_{1,t}\right)^2 + \left(m_{j,y} - y_{2,t}\right)^2}
= \frac{1}{2\sqrt{\left(m_{j,x} - y_{1,t}\right)^2 + \left(m_{j,y} - y_{2,t}\right)^2}} \times 2\left(m_{j,x} - y_{1,t}\right) \times (-1)
= \frac{-\left(m_{j,x} - y_{1,t}\right)}{\sqrt{\left(m_{j,x} - y_{1,t}\right)^2 + \left(m_{j,y} - y_{2,t}\right)^2}}$$

Measurement from a single land mark:

•
$$z_t^i = \begin{bmatrix} r_t^i \\ \phi_t^i \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{j,x} - y_{1,t})^2 + (m_{j,y} - y_{2,t})^2} \\ \tan 2(m_{j,y} - y_{2,t}, m_{j,x} - y_{1,t}) - y_{3,t} \end{bmatrix} + \delta_t = h^i(y_t), \ \delta_t \sim N(0, Q_t)$$

• Jacobian: Mostly zeros. Let $r_t^i = \sqrt{\left(m_{j,x} - y_{1,t}\right)^2 + \left(m_{j,y} - y_{2,t}\right)^2}$ (remember to plug in estimates)

Measurement from a single land mark:

•
$$z_t^i = \begin{bmatrix} r_t^i \\ \phi_t^i \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{j,x} - y_{1,t})^2 + (m_{j,y} - y_{2,t})^2} \\ \tan 2(m_{j,y} - y_{2,t}, m_{j,x} - y_{1,t}) - y_{3,t} \end{bmatrix} + \delta_t = h^i(y_t), \ \delta_t \sim N(0, Q_t)$$

• Jacobian: Mostly zeros. Let $r_t^i = \sqrt{\left(m_{j,x} - y_{1,t}\right)^2 + \left(m_{j,y} - y_{2,t}\right)^2}$ (remember to plug in estimates)

$$\frac{\partial h^{i}}{\partial y_{t}} = \begin{bmatrix} \frac{\partial h_{1}^{i}}{\partial y_{1,t}} & \cdots & \frac{\partial h_{1}^{i}}{\partial y_{3+2N,t}} \\ \frac{\partial h_{2}^{i}}{\partial y_{1,t}} & \cdots & \frac{\partial h_{2}^{i}}{\partial y_{3+2N,t}} \end{bmatrix} \in \mathbb{R}^{2 \times (3+2N)}$$

$$= \begin{bmatrix} \frac{-(m_{j,x} - y_{1,t})}{r_{t}^{i}} & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & 0 & 0 & \cdots & 0 & \frac{m_{j,x} - y_{1,t}}{r_{t}^{i}} & \frac{m_{j,y} - y_{2,t}}{r_{t}^{i}} & 0 & \cdots & 0 \\ \frac{m_{j,y} - y_{2,t}}{(r_{t}^{i})^{2}} & \frac{-(m_{j,x} - y_{1,t})}{(r_{t}^{i})^{2}} & -1 & 0 & \cdots & 0 & \frac{-(m_{j,y} - y_{2,t})}{(r_{t}^{i})^{2}} & \frac{m_{j,x} - y_{1,t}}{(r_{t}^{i})^{2}} & 0 & \cdots & 0 \end{bmatrix}$$

Algebra... Second Row

$$\operatorname{atan2}(m_{j,y} - y_{2,t}, m_{j,x} - y_{1,t}) = \operatorname{arctan}\left(\frac{m_{j,y} - y_{2,t}}{m_{j,x} - y_{1,t}}\right)$$

$$\frac{\partial}{\partial y_{1,t}} \arctan\left(\frac{m_{j,y} - y_{2,t}}{m_{j,x} - y_{1,t}}\right)$$

$$= \frac{1}{1 + \left(\frac{m_{j,y} - y_{2,t}}{m_{j,x} - y_{1,t}}\right)^2} \times \frac{-(m_{j,y} - y_{2,t})}{(m_{j,x} - y_{1,t})^2} \times (-1)$$

$$= \frac{m_{j,y} - y_{2,t}}{(m_{j,x} - y_{1,t})^2 + (m_{j,y} - y_{2,t})^2}$$

Measurement from a single land mark:

•
$$z_t^i = \begin{bmatrix} r_t^i \\ \phi_t^i \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{j,x} - y_{1,t})^2 + (m_{j,y} - y_{2,t})^2} \\ \tan 2(m_{j,y} - y_{2,t}, m_{j,x} - y_{1,t}) - y_{3,t} \end{bmatrix} + \delta_t = h^i(y_t), \ \delta_t \sim N(0, Q_t)$$

• Jacobian: Mostly zeros. Let $r_t^i = \sqrt{\left(m_{j,x} - y_{1,t}\right)^2 + \left(m_{j,y} - y_{2,t}\right)^2}$ (remember to plug in estimates)

$$\frac{\partial h^{i}}{\partial y_{t}} = \begin{bmatrix} \frac{\partial h_{1}^{i}}{\partial y_{1,t}} & \cdots & \frac{\partial h_{1}^{i}}{\partial y_{3+2N,t}} \\ \frac{\partial h_{2}^{i}}{\partial y_{1,t}} & \cdots & \frac{\partial h_{2}^{i}}{\partial y_{3+2N,t}} \end{bmatrix} \in \mathbb{R}^{2 \times (3+2N)}$$

$$= \begin{bmatrix} \frac{-(m_{j,x} - y_{1,t})}{r_{t}^{i}} & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & 0 & 0 & \cdots & 0 & \frac{m_{j,x} - y_{1,t}}{r_{t}^{i}} & \frac{m_{j,y} - y_{2,t}}{r_{t}^{i}} & 0 & \cdots & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{m_{j,y} - y_{2,t}}{r_{t}^{i}} & \frac{-(m_{j,x} - y_{1,t})}{r_{t}^{i}} & 0 & 0 & \cdots & 0 & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & \frac{m_{j,x} - y_{1,t}}{r_{t}^{i}} & 0 & \cdots & 0 \end{bmatrix}$$

Measurement from a single land mark:

•
$$z_t^i = \begin{bmatrix} r_t^i \\ \phi_t^i \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{j,x} - y_{1,t})^2 + (m_{j,y} - y_{2,t})^2} \\ \tan 2(m_{j,y} - y_{2,t}, m_{j,x} - y_{1,t}) - y_{3,t} \end{bmatrix} + \delta_t = h^i(y_t), \ \delta_t \sim N(0, Q_t)$$

• Jacobian: Mostly zeros. Let $r_t^i = \sqrt{\left(m_{j,x} - y_{1,t}\right)^2 + \left(m_{j,y} - y_{2,t}\right)^2}$ (remember to plug in estimates)

$$\begin{split} &\frac{\partial h^{i}}{\partial y_{t}} = \begin{bmatrix} \frac{\partial h_{1}^{i}}{\partial y_{1,t}} & \cdots & \frac{\partial h_{1}^{i}}{\partial y_{3+2N,t}} \\ \frac{\partial h_{2}^{i}}{\partial y_{1,t}} & \cdots & \frac{\partial h_{2}^{i}}{\partial y_{3+2N,t}} \end{bmatrix} \in \mathbb{R}^{2 \times (3+2N)} \\ &= \begin{bmatrix} \frac{-(m_{j,x} - y_{1,t})}{r_{t}^{i}} & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & 0 & 0 & \cdots & 0 & \frac{m_{j,x} - y_{1,t}}{r_{t}^{i}} & \frac{m_{j,y} - y_{2,t}}{r_{t}^{i}} & 0 & \cdots & 0 \end{bmatrix} \\ &= \begin{bmatrix} \frac{-(m_{j,x} - y_{1,t})}{r_{t}^{i}} & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & 0 & \cdots & 0 & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & \frac{m_{j,x} - y_{1,t}}{r_{t}^{i}} & 0 & \cdots & 0 \end{bmatrix} \end{split}$$

Alternate Form For Measurement Model Jacobian

$$\bullet \frac{\partial h^{i}}{\partial y_{t}} = \begin{bmatrix} \frac{-(m_{j,x} - y_{1,t})}{r_{t}^{i}} & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & 0 & 0 & \cdots & 0 & \frac{m_{j,x} - y_{1,t}}{r_{t}^{i}} & \frac{m_{j,y} - y_{2,t}}{r_{t}^{i}} & 0 & \cdots & 0 \\ \frac{m_{j,y} - y_{2,t}}{(r_{t}^{i})_{\cdot}^{2}} & \frac{-(m_{j,x} - y_{1,t})}{(r_{t}^{i})^{2}} & -1 & 0 & \cdots & 0 & \frac{-(m_{j,y} - y_{2,t})}{(r_{t}^{i})^{2}} & \frac{m_{j,x} - y_{1,t}}{(r_{t}^{i})^{2}} & 0 & \cdots & 0 \end{bmatrix}$$

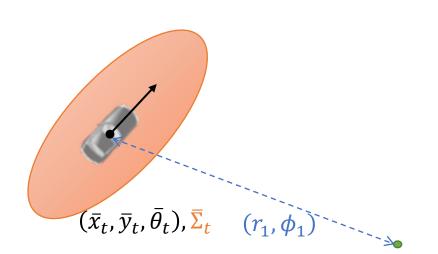
• Rewrite: $\frac{\partial h^i}{\partial y_t} = \bar{h}_t^i F_j$

Rewrite:
$$\overline{\frac{\partial y_{t}}{\partial y_{t}}} = h_{t}^{i} F_{j}$$

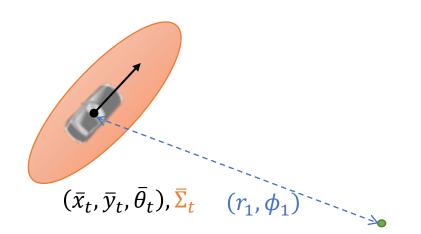
$$\bullet \ \overline{h}_{t}^{i} = \begin{bmatrix} \frac{-(m_{j,x} - y_{1,t})}{r_{t}^{i}} & \frac{-(m_{j,y} - y_{2,t})}{r_{t}^{i}} & 0 & \frac{m_{j,x} - y_{1,t}}{r_{t}^{i}} & \frac{m_{j,y} - y_{2,t}}{r_{t}^{i}} \\ \frac{m_{j,y} - y_{2,t}}{(r_{t}^{i})^{2}} & \frac{-(m_{j,x} - y_{1,t})}{(r_{t}^{i})^{2}} & -1 & \frac{-(m_{j,y} - y_{2,t})}{(r_{t}^{i})^{2}} & \frac{m_{j,x} - y_{1,t}}{(r_{t}^{i})^{2}} \end{bmatrix}$$

•
$$F_j = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

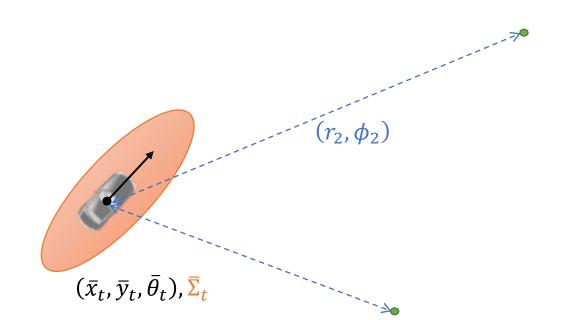
- Measurement model needs to be in the form $p(z_t|y_t,c_t)$
 - Assume independent measurements, $p(z_t|y_t) = \prod_i p(z_t^i|y_t, c_t^i)$
 - ullet At every time t, process each measurement separately/sequentially



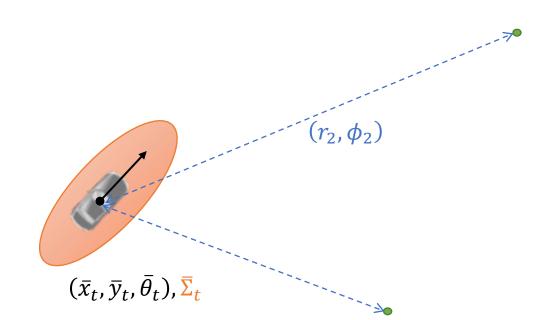
- Measurement model needs to be in the form $p(z_t|y_t,c_t)$
 - Assume independent measurements, $p(z_t|y_t) = \prod_i p(z_t^i|y_t, c_t^i)$
 - ullet At every time t, process each measurement separately/sequentially



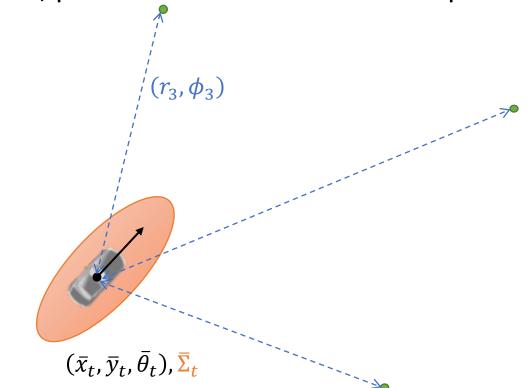
- Measurement model needs to be in the form $p(z_t|y_t,c_t)$
 - Assume independent measurements, $p(z_t|y_t) = \prod_i p(z_t^i|y_t, c_t^i)$
 - ullet At every time t, process each measurement separately/sequentially



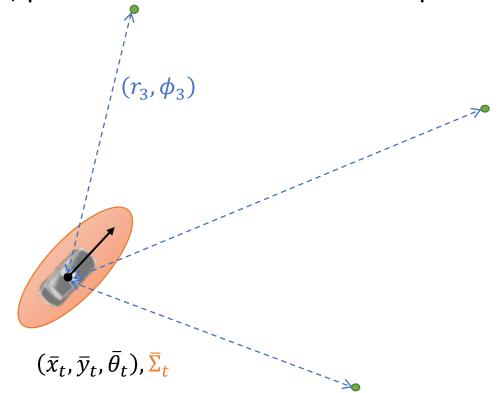
- Measurement model needs to be in the form $p(z_t|y_t,c_t)$
 - Assume independent measurements, $p(z_t|y_t) = \prod_i p(z_t^i|y_t, c_t^i)$
 - At every time t, process each measurement separately/sequentially



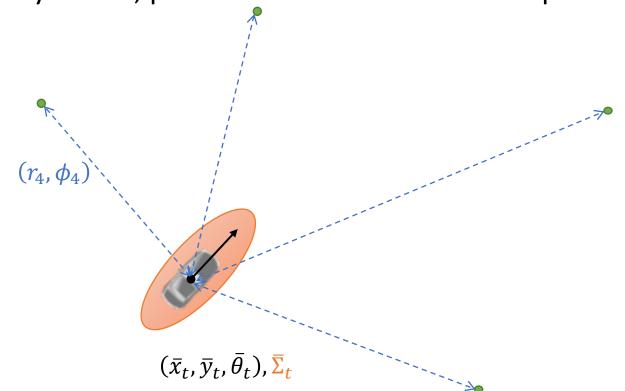
- Measurement model needs to be in the form $p(z_t|y_t,c_t)$
 - Assume independent measurements, $p(z_t|y_t) = \prod_i p(z_t^i|y_t, c_t^i)$
 - At every time t, process each measurement separately/sequentially



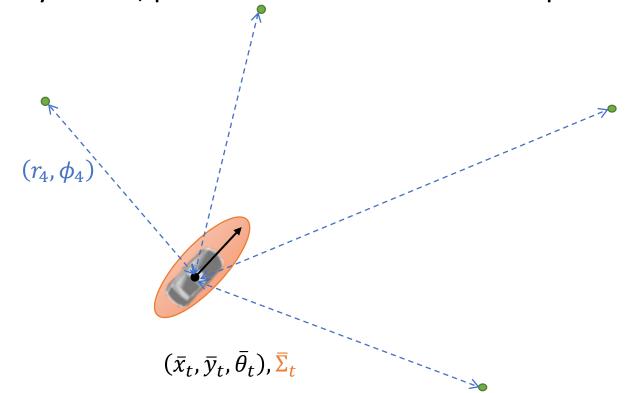
- Measurement model needs to be in the form $p(z_t|y_t,c_t)$
 - Assume independent measurements, $p(z_t|y_t) = \prod_i p(z_t^i|y_t, c_t^i)$
 - At every time t, process each measurement separately/sequentially



- Measurement model needs to be in the form $p(z_t|y_t,c_t)$
 - Assume independent measurements, $p(z_t|y_t) = \prod_i p(z_t^i|y_t, c_t^i)$
 - At every time t, process each measurement separately/sequentially



- Measurement model needs to be in the form $p(z_t|y_t,c_t)$
 - Assume independent measurements, $p(z_t|y_t) = \prod_i p(z_t^i|y_t, c_t^i)$
 - At every time t, process each measurement separately/sequentially



Extended Kalman Filter

- Extended Kalman filter algorithm:
 - $y_t = g(y_{t-1}, u_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, R_t)$
 - $z_t = h(y_t) + \delta_t, \delta_t \sim N(0, Q_t)$
 - Linearization: $G_t = \nabla g(\mu_{t-1}, u_{t-1}), H_t = \nabla h(\bar{\mu}_t)$

Input: μ_{t-1} , Σ_{t-1} , u_{t-1} , z_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\mu}_t = g(\mu_{t-1}, \mu_{t-1})$$

 $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^{\mathsf{T}} + R_t$

Perform measurement update:

$$K_t = \bar{\Sigma}_t H_t^{\mathsf{T}} (H_t \bar{\Sigma}_t H_t^{\mathsf{T}} + Q_t)^{-1}$$

$$\mu_t = \bar{\mu}_t + K_t (z_t - h(\bar{\mu}_t))$$

$$\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t$$

Return μ_t , Σ_t

EKF SLAM measurement update step details:

- For each measurement, $H_t^i \in \mathbb{R}^{2 \times (3+2N)}$
- Process each measurement separately
 - For each z_t^i , i = 1, ..., N,

1.
$$K_t^i = \overline{\Sigma}_t (H_t^i)^{\mathsf{T}} (H_t^i \overline{\Sigma}_t (H_t^i)^{\mathsf{T}} + Q_t)^{-1}$$

2.
$$\bar{\mu}_t \leftarrow \bar{\mu}_t + K_t^i \left(\hat{z}_t^i - h^i(\bar{\mu}_t) \right)$$

3.
$$\bar{\Sigma}_t \leftarrow (I - K_t^i H_t^i) \bar{\Sigma}_t$$

- Above computation is done based on land mark $j = c_t^i$ (assuming known correspondence)
- At the end, set $\mu_t = \bar{\mu}_t$, $\Sigma_t = \bar{\Sigma}_t$

EKF SLAM

Preliminary steps

- Initialize μ_0 , Σ_0
- Define dynamics g for augmented state y
- Define R_t for augmented state y
 - Land mark position estimates can be initialized to anything, since variance is infinite
- Calculate Jacobians G_t , H_t

Input: μ_{t-1} , Σ_{t-1} , u_{t-1} , z_t

Output: μ_t , Σ_t

Perform prediction:

$$\bar{\Sigma}_{t} = g(\mu_{t-1}, \mu_{t-1}) \\ \bar{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{\mathsf{T}} + R_{t}$$

Perform measurement update:

- For each $z_t^i = (r_t^i, \phi_t^i), i = 1, ..., N$,
- 1. $j = c_t^i$
- 2. If land mark j has not been seen, then

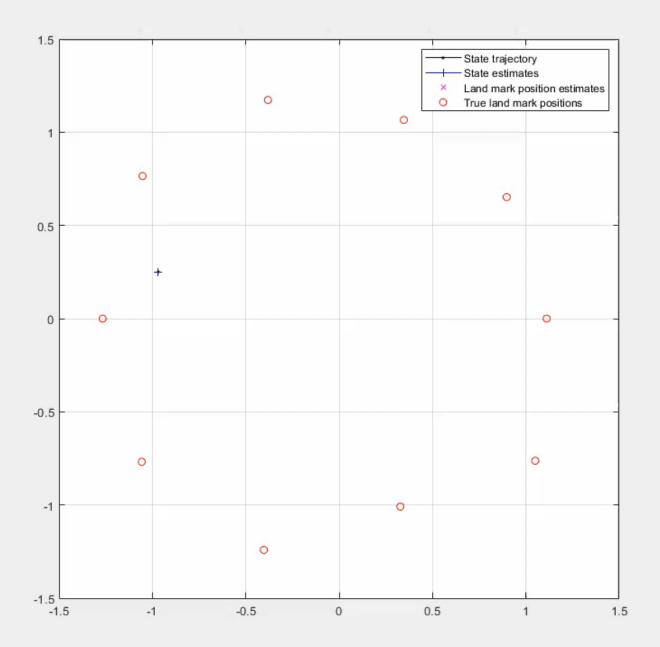
$$\begin{bmatrix} \bar{\mu}_{2+2j,t} \\ \bar{\mu}_{3+2j,t} \end{bmatrix} = \begin{bmatrix} \bar{\mu}_{1,t} + r_t^i \cos(\phi_t^i + \bar{\mu}_{3,t}) \\ \bar{\mu}_{2,t} + r_t^i \sin(\phi_t^i + \bar{\mu}_{3,t}) \end{bmatrix}_{-1}$$

3.
$$K_t^i = \overline{\Sigma}_t (H_t^i)^{\mathsf{T}} \left(H_t^i \overline{\Sigma}_t (H_t^i)^{\mathsf{T}} + Q_t \right)^{-1}$$

4.
$$\bar{\mu}_t = \bar{\mu}_t + K_t^i \left(z_t^i - h^i(\bar{\mu}_t) \right)$$

5.
$$\bar{\Sigma}_t = (I - K_t^i H_t^i) \bar{\Sigma}_t$$

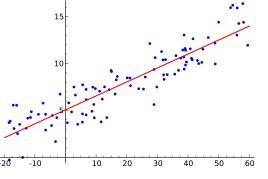
Return $\mu_t = \bar{\mu}_t$, $\Sigma_t = \bar{\Sigma}_t$



EKF SLAM: Discussion

- Computational complexity: $O(N^2)$, where N is the number of land marks
- Best for feature-based maps, due to small N
- Unknown correspondences
 - Use maximum likelihood to estimate which land mark is being observed
 - Add new land mark if none of the existing land marks are likely
 - Can produce duplicates of the same land mark
 - Can incorporate more advanced techniques such as outlier rejection, or make land marks more distinct
- Accurate SLAM prefers dense maps (large N), but computation becomes expensive
- Nonparametric filters (eg. Particle filters) are popular with occupancy grids

Finished!



- Overview of algorithms used for robotic decision making
 - Fundamentals for doing many areas of robotics research

- Nonlinear optimization and optimal control
- Reachability analysis
- Reinforcement Learning
- Localization and mapping

