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Localization: Problem Setup

* Assume a map is given: m =
{my,m,, ..., my}
* Location based: each m; represents a specific
location and whether it’s occupied

* Feature based: each m; contains the location of
the ith land mark

* Robot maintains and updates its belief
about where it is with respect to the map
e Position belief is updated based on sensor data
* Position belief is a probability distribution

Siegwart and Nourba

shs, 2004
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Simultaneous Localization and Mapping (SLAM)

e Land marks m are unknown, and must be estimated at the same time as
internal state estimation

 Define combined state vector

=[]

* Calculate p(y¢|zq.¢, Uq:p—1)
* Previously, p(x;|z1.¢y Uy i1, M)

(Xt e, 0¢),
* Strategy: define dynamics for y;, and apply EKF




Simple Car with Range Sensors

]

* Internal state dynamics (Forward Euler) P
®* X1t = X1¢—1 T At - VCOSX3_4 \
* Xot =Xpp—1 +At-vVSINX34_4
* X3¢t = X3¢-1 T AL Uy g
N\
* Environment dynamics

e State: m; = (mi,x, mi,y),i =1, ..., N (note that in general we may not know
how many land marks are present)

* My = IhyxanMe—q (identity dynamics, since land marks don’t move)

e Car measures (with noise) range and bearing of each land mark




Simple Car Dynamics

* Put dynamics in the form y, = g(y,_1, Us—1) + €, €,~N (0, R;):
* y.and g(y;_1,U;—,) have 3 + 2N components
* First three components of g(y;_4,us_1): Forward Euler from ODE model of car
* Remaining components of g(y;_;,u;_1) : identity
* R; has zero entries except for top left 3X3 block

001 091 7
0Y1t—1 0Y342N t—1

ag

D Up_q) =
3yes (V-1 Ue-1)

* Jacobian G; =
0gs+2N _0g3+42N

L0Y1,t-1 0Y3+2N,t—1-
* Almost identity matrix... except for y3 ,_, dependenceiny, . andy,,




EKF SLAM: Prediction Step

* Extended Kalman filter algorithm: EKF SLAM prediction step details:

* V¢ = g(yt_l,ut_l) + €¢) Et"’N(O,Rt) ) Gt E IR(3+2N)X(3+2N); plug in l’lt—l
* z; = h(y) + 6., 6¢~N(0, Q)
* Linearization: G; = Vg(us—_, us—q), H = Vh(ji,)
Input: pe—1, Z¢—1, Ut—1,Z¢
Output: g, ¢ * Xt
Perform prEdiCt_iOT * Initialize upper left 3x3 block with zeros if
e = g(He-1,Ue-1) initial internal state is known exactly

St = GeZe—1Gy + Ry s . .
Initialize lower right 2N X2 N block with
Perform measurement update: : :
K, = 5,HT (H,S,H +0,)1 X[, nxon if there is no knowledge about

ur = iy + K (z¢ — h_(ﬁt)) land marks |
> = (I — K.H)Z, 2+ now refers to covariance of y

Return g, X o Rt = ]R(3+2N)><(3+2N).

* u now refers to mean of y, which includes
estimates of land mark positions

e RB+2N)x(3+2N).

» Zeros except for upper left 3x3 block



Simple Car with Range Sensors

* Measurements

°Zt_{Zt’Zt" }—{(Tt;ql)%) (rt’q')t) .}

* Measurement model
* Assume lth measurement at time ¢ corresponds to jth land mark

rt.] \/(m] x — X1 t) + (myy — x2 t) + 6, 6:~N(0,Q;)
l
i _atanZ(mj,y — X2t My x — xl,t) X3t

N

Function in most programming languages and returns any possible angle




Data Assoclation

* Define correspondence variable ¢t € {1, ..., N + 1}

. c,f = j < N means ith measurement at time t corresponds to jth land mark
* ¢/ = N + 1 means measurement does not correspond to any land mark

* This class: assume c; are known

* More advanced (and practical): estimate ¢! using maximum likelihood




Simple Car Measurement Model

* Measurement from a single land mark:

, i o 2 o 2 :
° Ztl' = ;ti] = \](m]’x yl’t) t (m]’y yz’t) + 61',' = hl(yt)i 6t~N(01 Qt)
t atanZ(mj,y — Y2, Myx — }’1,1:) — Y3t

* Jacobian: Mostly zeros. Let r{ = \/(mj,x — yl,,:)2 + (mj, — yz,t)2 (remember to plug in estimates)

[ dhL ont

oh' _ aylft 6Y3+;N,t € R2X(3+2N)

Yt ohs oh’

_ath aJ’3+2N,t_

IV_(mj,x__th) _(mj,y__yz,t) 0 0
s

Tt




Algebra... First Row

0 2 2
2 Jm = 310)” + (= 320)
= 1 ><2(mj,x — 3’1,t)x(_1)

2 2
2 () x=y1.) (M y=320)
- (mj,x_th)

2 2
J0m =10 4 (mjy=v20)




Simple Car Measurement Model

* Measurement from a single land mark:

, i o 2 o 2 :
° Ztl' = ;ti] = \](m]’x yl’t) t (m]’y yz’t) + 61',' = hl(yt)i 6t~N(01 Qt)
t atanZ(mj,y — Y2, Myx — }’1,1:) — Y3t

* Jacobian: Mostly zeros. Let r{ = \/(mj,x — yl,,:)2 + (mj, — yz,t)2 (remember to plug in estimates)

[ dhL ont
i

on' _ aylft 6Y3+;N,t e R2X(B+2N)

Yt ohs oh’

10Y1,¢t 0Y342N,t]

-_(mj,x__th) _(mj,y__yz,t)

Ty Tt

mj,y_yz,t

(1)

0O O




Simple Car Measurement Model

* Measurement from a single land mark:

, i o 2 o 2 :
° Ztl' = ;ti] = \](m]’x yl’t) t (m]’y yz’t) + 61',' = hl(yt)i 6t~N(01 Qt)
t atanZ(mj,y — Y2, Myx — }’1,1:) — Y3t

* Jacobian: Mostly zeros. Let r{ = \/(mj,x — yl,,:)2 + (mj, — yz,t)2 (remember to plug in estimates)

[ 9nt dnt
i
a_h: a3’1',t aJ’3+2.N,t ERZX(3+2N)
0yt ohs ohs
10Y1t 0Y34+2N,t]
__(mj,x_—h,t) —(mj,y_—YZ,t) 0 0 - 0 mj,xf)ﬁ,t mj,y—_J/Z,t
Ty rf T T
mjy=Yat —(mj,x—th) _(mj,y_yz,t) mjx—Yi,t
(+1)? (1) (+1)? (+1)?

0




Algebra... Second Row

mj,y‘yZ,t)

atanZ(mj,y — Yot mj;x o yl't) = arctan (mjx_Y1 t

mj,y_LVZ,t)
mijx—Yit
1 > —(mjy=ya:)
1+(mj,y—yz,t>2 (mjx=vie)
Mmjx=YV1,t
mjy—Yart

2 2
(mj,x—yl,t) +(mj,y—3’2,t)

arctan (

53’1,t

X(—1)




Simple Car Measurement Model

* Measurement from a single land mark:

. Zé . ;’;t] \/(m]x ylt) +(m]y th) +6 _hl(yt) 5 ~N (0, Qt)
t atanZ(m],y Y2,6 My x — )’1,t) Y3t

* Jacobian: Mostly zeros. Let r{ = \/(mj,x — yl,,:)2 + (mj, — yz,t)2 (remember to plug in estimates)

" ont dh!
a_hi: 0yt 0Y3+2N,t e R2X(3+2N)

0y dhk anl Y
10Y1 ¢t 0Y34+2N,t] Column 2 + J

(m]x Y1 t) _(mj,y_yz,t) 0 0 - 0 mj,x‘)’i,t mjy=Yat 0
rt rt rt rk
t t t t

m]y th —(mj,x—th) 1 0 - 0 _(mj,y_yz,t) mjx—Yi,t
(ri)” (r)® (ri)® (ri)”

0




Simple Car Measurement Model

* Measurement from a single land mark:

, i o 2 o 2 :
° Ztl' = ;ti] = \](m]’x yl’t) t (m]’y yz’t) + 61',' = hl(yt)i 6t~N(01 Qt)
t atanZ(mj,y — Y2, Myx — )’1,t) — Y3t

* Jacobian: Mostly zeros. Let r{ = \/(mj,x — yl,,:)2 + (mj, — yz,t)2 (remember to plug in estimates)

oy dnt
a_hi — ayl:t ay3+2'N’t = ]RZX(3+2N)
0Ye oh dhs
KAZY: 0Y3+2N,t. Column 2 + 2j
—(Mjx—y1e)  —(mjy—ar) 0 mj,xfyj,t miyYae
T Ty r}
—(Mjy=Y2¢) Mjx—V1r

()’ (D)’

mj,y_YZ,t

()’

0 0




Alternate Form For Measurement Model Jacobian

__(mj,x._th) _(mj,y__YZ,t) 0 0 - 0 mj,x_.J’Lt mj,y‘_)’z,t 0

dh! T T T T
dyt B Mmjy—Ya,t _(mj,x_th)
.2 .\ 2

(re) (r)

oht &

° iter — — hlFE.
Rewrite: - hiF;

_(mj,y_YZ,t) mjx—YVit

-1 0 -- 0 & -
(r) (r)

0

Yt )
_(mj,x_IVLt) _(mj,y_yz,t) 0 mjx—Yi,t mjy=Yat
rti Tti Tti rti
mijy=Yart _(mj,x_th) 1 _(mj,y—J’z,t) mjx—Yit

()’ (D)’ (D) (D)’




Simple Car Measurement Model

* Measurement model needs to be in the form p(z;|y;, c;)

* Assume independent measurements, p(z;|y;) = ]_[l-p(zﬂyt, cé)
* At every time t, process each measurement separately/sequentially
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Simple Car Measurement Model

* Measurement model needs to be in the form p(z;|y;, c;)

* Assume independent measurements, p(z;|y;) = l_[ip(ZHyt, Cé)

* At every time t, process each measurement separately/sequentially
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Simple Car Measurement Model

* Measurement model needs to be in the form p(z;|y;, c;)
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Simple Car Measurement Model

* Measurement model needs to be in the form p(z;|y;, c;)
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Simple Car Measurement Model

* Measurement model needs to be in the form p(z;|y;, c;)
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Extended Kalman Filter

) Extendfd I((alman f||’;e_: algorlt]\r;(n(;:R ) EKF SLAM measurement update step details:
Ye = G-t -1 T En G ot * For each measurement,
* Z = h(yt) + 51:, 6t~N(O, Qt) Hl € RZX(3+2N)

* Linearization: G = Vg(us_q,us—1), Hr = Vh(ji;)
* Process each measurement separately

Input: pe—1, 2¢—1, Ut—1, Z¢ * For each Z,f,i =1,..,N,

. ] N A AN ! _1
Output: us, X¢ 1. K!= Zt(Htl)T (Hézt(Htl)T + Qt)
Perform prediction: > e+ K2 — hica

e = g(pe-1 Ue— 1) | L—lt i t’ (?t‘ o
' 3, < (I - KH)E,

Zt GeZe-1Ge + Re . Above computation is done based on land mark
Perform measurement update: J = ¢{ (assuming known correspondence)

K = Z.H, (H:ZcH + Q)™ ~
ue = fie + Ke(2ze — h_(ﬁt)) * Atthe end, set y; = [i;, 2y = X4
e = (I — KHp )Xy

Return g, X




EKF SLAM

Preliminary steps
* Initialize ug, X

* Define dynamics g for augmented
state y

* Define R, for augmented state y

* Land mark position estimates can be
initialized to anything, since variance
is infinite

* Calculate Jacobians G4, H;

Input: pe 1, 2¢—1, Ut—1, Z¢
OUtpUt: Ut Zt
Perform prediction:
e = g(ue— 1;ut 1)
%t = GeZe—1 G + Ry
Perform measurement update:
* Foreachz; = (rt‘,qbé),i =1,..,N,
1. j=c
2. If land mark j has not been seen, then
H2+2j,t] flie +1¢ COS(Qbé + U3 t)
H3+2j,¢t fp +1¢ sm(gbt + U3 t)
3. Ktl — Zt(Ht) (Hézt(Ht) + Qt)
4. He=pet Kq (.Zt__ hl(#t))
5. %= (I — KtH)Z,
Return U = ﬁt, Zt — Zt

-1




State trajectory
—+— State estimates
*  Land mark position estimates
O True land mark positions




EKF SLAM: Discussion

« Computational complexity: O(N?4), where N is the number of land marks
* Best for feature-based maps, due to small N

* Unknown correspondences
* Use maximum likelihood to estimate which land mark is being observed
* Add new land mark if none of the existing land marks are likely
e Can produce duplicates of the same land mark

e Can incorporate more advanced techniques such as outlier rejection, or make land
marks more distinct

e Accurate SLAM prefers dense maps (large N), but computation becomes
expensive

* Nonparametric filters (eg. Particle filters) are popular with occupancy grids
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e Overview of algorithms used for robotic decision making
* Fundamentals for doing many areas of robotics research

Finished!

* Dynamical systems

* Nonlinear optimization and optimal control
* Reachability analysis

* Reinforcement Learning

* Localization and mapping




