Policy-Based and Actor-Critic RL

CMPT 419/983
Nov 4

Categories

* Model-based

* Explicitly involves an MDP model

e Model-free
 Does not involve an MDP model

* Value based
* Learns value function, and derives policy from value function

* Policy based

* Learns policy without value function

* Actor critic
* Incorporates both value function and policy

Policy Gradients

* If we executed a policy Ty from state s,, we obtain a trajectory

* T:=(Sy,Qy,S1, Aq) -)
e Note: this is a random variable

* The returnis given by R(7) = Y >0 vir(s,, a;)

* Also a random variable

* Expected return given parameters 6: J(0) = E;_,(7.9)[R(7)]

* Parameters for the optimal policy:
* 07 =arg mng Erpiz;0) [R(7)]

Policy Gradients

e Strategy: differentiate J(6) w.r.t. 8 and perform stochastic gradient
ascent

* Do this in a way that is model-free and computationally tractable

A

Policy Gradients

e Strategy: differentiate J(6) w.r.t. 8 and perform stochastic gradient
ascent

* Do this in a way that is model-free and computationally tractable

Policy Gradients

e Strategy: differentiate J(6) w.r.t. 8 and perform stochastic gradient
ascent

* Do this in a way that is model-free and computationally tractable

A

Policy Gradients

e Strategy: differentiate J(6) w.r.t. 8 and perform stochastic gradient
ascent

* Do this in a way that is model-free and computationally tractable

Policy Gradients

e Strategy: differentiate J(6) w.r.t. 8 and perform stochastic gradient
ascent

* Do this in a way that is model-free and computationally tractable

* To achieve this
* Write out J(60)
* Take gradient
* Do a math trick
* Obtain gradient expression that can be estimated easily

Write Out J (@) and Take Gradient

+ J(8) = Erp(r0)[R(D]
+J(6) = [.R@p(z;)dr

+ V] (0) = [R(t)Vgp(z; 0)dt
e Hard...

Log Gradient Trick

+ Vo) (6) = [R(D)Vep(z;)dt

* Trick:

Vv 0
 Vop(1;0) = p(r; 6) "4 52 = p(7; 6)V log p(x; 6)

* VoJ(0) = [R(D)p(z;0)Vg logp(t; 0) dt

* VoJ(6) = Er p(r;0)[R(7)Vg logp(7;)]

* Gradient is an expectation — can estimate this using techniques we learned
before!

Model-Free Estimate of Gradient

* VoJ(0) = Erpr;0)[R(T)Vg logp(7; 0)]

*p(7;0) = 1150 P(Ses1lSe ap)mg (ag|se)
*logp(t;0) = Xisollogp(ses1lse, ar) +logmg(as|s,)]
* Vg logp(t;0) = Y50 Vg logmg(a;|se)

* Amazingly, model-free
* Markov property is not used

* Vg log mg(as|s;y) is known: since the form of g is known
* Eg. Backprop if my is a neural network

Monte-Carlo Gradient Estimate

e Results so far:

* VoJ(0) = Erepr;0)|[R(T)Vg log p(7; 0)]
* Vglogp(z;0) = X0 Ve logmg(ag|sy)

« Some more algebra to write out gradient of V,/(0)
* VoJ(0) = Erepr:0)[R(T) Xts0 Vo logmg (ag|se)]
* VoJ(0) = Ezepz;0) X0 R(T)Vg logmg(as|se)]
* VoJ(0) = % iL1[Ze20 R()Vo logmg (asilse)]

REINFORCE Algorithm

* (Monte-Carlo Policy Gradient)
* Use policy mg(a|s) to obtain a trajectory T = {s,, a,, ... }

* Estimate the gradient of the reward
* VoJ(0) = IiV:1[tho R(7;)Vy 108”9(“t,i|5t,i)]

* Update policy parameters via (stochastic) gradient ascent
* 0« 0+aVy(O)

Observation 1

 Gradient estimate:
* Vo] (0) = Eropr0)[220 R(T)Vg log mg(at|st)]
* VgJ(0) = Iiv=1[2tzo R(7;)Vg logng(at,dst,i)]

 Gradient estimate also works for POMDPs without modification

R(z)ZV logmg(a;|s
Zve log g (a2 |st,2) ! o 10g g (a1 ls.,1)

t=0 \/Z Vo 1087T9(at,1|5t,1)
t=>0

Suppose R(t3) Z Vo logme(arz|st2)
. R(Tl) =2 t=0

* R(rz) =-1

* R(r3) =1

Observation 1

 Gradient estimate:
* Vo] (0) = Erpr0)[220 R(T)Vg log mg(at|se)]
* VgJ(0) = Iiv=1[2tzo R(7;)Vg logng(at,dst,i)]

 Gradient estimate also works for POMDPs without modification

* Parameter updates: 8 < 6 + a VgJ(0)
* Trajectories have high reward will be made more likely
* Trajectories with low reward will be made less likely
* A high-reward trajectory has good actions... on average

Observation 2

 Gradient estimate:
* Vo](0) = Erpr0)[220 R(T)Vg log my(as|se)]

e Causality?
* R(7) is the reward of the entire trajectory
* R(7) is multiplied in every term of the sum
* T includes times before t

* So, according to the above, the weight of Vg log mg(a;|s;) depends on times
priorto t?

e Simple fix:
* VpJ(0) = IEr~p(r;6?) [tho[(zt’zt yt’_tr(st» at))Ve log g (atlst)]]

Observation 3

e Gradient estimate:
* VoJ(0) = Erp(r;0)[Xe20 R(T)Vg log mg (at|st)]

2 Vg logmg(aszlst,2) R(t) z Vo logmo (acslses)
t>0 Z Vg logmg (at,l |St,1)

t=0

Suppose R(t3) Z Vg logmg (at,z |St,2)
* R(ty) =2

Z vg log 7_[9 (at’g |Stl3) ° R(TZ) - _1 R(TS) Z v@ log 7'[9 (at}g |St’3)

t>0 * R(r3) =1
t>0

Observation 3

e Gradient estimate:
* VoJ(0) = Erp(r;0)[Xe20 R(T)Vg log mg (at|st)]

2 Vg logmg(aszlsi2) R(r1) ; Vo logmo(aclse)
t>0 Z Vg logmg (at,l |St,1) -

t=0

Suppose R(t3) Z Vg logmg (at,z |St,2)
d R(Tl) - 10 t=0

Z V, log 1, (at,3 |St,3) * R(t,)=7 R(t,) Z Vg, logmg (at,3 |St’3)

t20 * R(z3)=9
t=0

Observation 3

 Gradient estimate:
* VoJ(0) = IET~p(T;9) [ZtZO R()Vy log g (atlst)]

R(71) Z Vg logmg (at,l |St,1)

>0
/Z Vg log g (at,1|5t,1) /
>0

Suppose
* R(Tl) — 10
i R(Tz) — 7
* R(t3) =9
* Performance is measured by reward R(7)
e But what is considered “good”?

* Need a baseline of comparison!

* VgJ(0) = ET~p(T;9)[ZtZO(R(T) — b)Vglogmg(at|se)]
* Fact: expectation is unchanged as long as b does not depend on 6

Revised REINFORCE

* (Monte-Carlo Policy Gradient)
* Use policy mg(a|s) to obtain a trajectory T = {s,, a,, ... }

* Estimate the gradient of the reward
* VoJ(0) = Eropp(r) [tho[(zt,ztyt'_tr(st, a;) — b)V@ logng(at|st)]]

* Update policy parameters via (stochastic) gradient ascent
c 0 0+aVyo)

Picking a Baseline

* Many choices

* Basic, intuitive choice
* b =Ay(s,a) = — Vz(s)
* Good action: one that gives a that is large relative to I/
* Bad action: one that gives a that is small relative to V

* A.(s,a) -- “advantage function”

e But we don’t know V...
e Learn it!

Actor-Critic Methods

 Actor (policy) decides which actions to take
* Critic (value function V) decides how good the action is

Actor-Critic Methods

* Basic algorithm, combining everything we’ve learned:

Start with some initial policy g and value function V (s; w)
* 0 and w are parameters

Collect data S, R, S’ by executing policy

- o ~ 2

Update V: mlngmze”R +yV(S5w™) =V (§ W)||2

 Many methods (eg. stochastic gradient descent)

Estimate policy gradient: VgJ(0) = E;~p(r.0) [tho (R" +yVe(S') - Vn(S')) Vg log g (at|st)]
Improve policy via gradient ascent: 8 < 8 + aVyJ(60)

Repeat 2-5 many times

State-of-the-Art Policy Gradient Methods

* Trust region policy optimization (TRPO)
* https://arxiv.org/abs/1502.05477

* Proximal policy optimization (PPO)
* https://arxiv.org/abs/1707.06347

Current Robotics Research

* Additional challenge: lack of data

* Transfer learning
e Learn in simulation, transfer knowledge to real-life
* Build better simulators

e Curriculum learning
* Learn easier tasks first, and increase difficulty gradually
* Lesson plans from reachability analysis

* Reward shaping: how to design reward
* Inverse reinforcement learning (figure out expert’s reward)
e Time-to-reach functions for simplified system, using optimal control (Xubo
Lyu)

Current Robotics Research

* Transfer learning

* Taylor, Stone. “Transfer Learnin% for Reinforcement Learning Domains: A Survey,”
https://dl.acm.org/citation.cfm?doid=1577069.1755839

* Harrison et al. “ADAPT: Zero-Shot Adaptive Policy Transfer for Stochastic Dynamical
Systems,” https://arxiv.org/abs/1707.04674

* Curriculum learning

* Florensa et al. “Reverse Curriculum Generation for Reinforcement Learning,”
http://proceedings.mlir.press/v78/florensal7a.html

* |vanovic et al. “BaRC: Backward Reachability Curriculum for Robotic Reinforcement
Learning,” https://arxiv.org/abs/1806.06161

* Reward shaping: how to design reward

* Abbeel, Ng. “Apprenticeship learning via inverse reinforcement learning,”
https://dl.acm.org/citation.cfm?id=1015430

e Time-to-reach function for simplified system, using optimal control (Xubo Lyu)

