
Model-Free	Value-Based	RL
CMPT	419/983

Mo	Chen
SFU	Computing	Science

30/10/2019

Monte-Carlo	Value	Function	Estimate

• Start	with	initial	policy	𝜋 and	value	function	𝑉 or	𝑄
• Use	policy	𝜋 to	update	𝑄:	𝑎 = 𝜋 𝑠
• Repeat	for	many	episodes:

• 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + ,

- .,/ 𝑅 𝑠, 𝑎 − 𝑄 𝑠, 𝑎

• Use	𝑄 to	update	policy	𝜋
• 𝜖-greedy	policy

• With	probability	𝜖,	choose	random	control
• With	probability	1 − 𝜖,	choose	𝑎 = argmax

/!
𝑄 𝑠, 𝑎8

• Pick	𝜖 = ,
9,	where	𝑘 is	the	#	of	algorithm	iterations

• Explore	less	as	value	function	becomes	more	accurate

𝜋 𝑄

policy	improvement	algorithm

policy	evaluation	algorithm

DP	vs.	MC	Policy	Evaluation

• Suppose	the	policy	𝜋 is	given
• Dynamic	Programming

𝑉 𝑠 ← max
/
𝑄 𝑠, 𝑎

𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾< 𝑝 𝑠8|𝑠, 𝑎 𝑉 𝑠8

.!

• Monte-Carlo

𝑠

𝑠,8 𝑠?8 𝑠@8

DP	vs.	MC	Policy	Evaluation

• Suppose	the	policy	𝜋 is	given
• Dynamic	Programming

𝑉 𝑠 ← max
/
𝑄 𝑠, 𝑎

𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾< 𝑝 𝑠8|𝑠, 𝑎 𝑉 𝑠8

.!

• Monte-Carlo
• Repeat	for	many	episodes:

𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 − 𝑄 𝑠, 𝑎

𝑠

𝑠,8 𝑠?8 𝑠@8

𝑠

𝑠,8 𝑠?8 𝑠@8

Temporal-Difference	(TD)	Policy	Evaluation

• Temporal-difference:	a	class	of	policy	evaluation	techniques	TD(𝜆)
• Most	basic	version:	TD(0)	
• From	any	state	𝑠,	apply	policy	𝑎 = 𝜋 𝑠 for	one	time	step,	obtain	reward	
𝑟 𝑠, 𝑎
• Get	to	next	state	𝑠8,	and	estimate	return	from	then	on	using	𝑄 function

• Note:	next	action	is	also	from	the	same	policy,	𝑎8 = 𝜋 𝑠8

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎
• Repeat	for	many	episodes	to	obtain	𝑄 𝑠, 𝑎 estimates	at	many	states	𝑠 and	
actions	𝑎

Temporal-Difference	(TD)	Policy	Evaluation

• Most	basic	version:	TD(0)	
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎

• Advantages:
• Online	algorithm:	𝑄 can	be	updated	during	an	
episode
• Does	not	require	complete	episodes

• Disadvantages:
• System	may	not	be	Markov
• Initial	𝑄 can	be	very	bad	and	𝑄 may	never	improve	
enough

𝑠

𝑠,8 𝑠?8 𝑠@8

𝑛-step	TD

• TD:	Look	ahead	one	step	
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎

• 𝑛-step	TD:	look	ahead	𝑛 steps
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑟 𝑠E,, 𝑎E, + ⋯𝛾GH,𝑟 𝑠E GH, , 𝑎E GH, + 𝛾G𝑄 𝑠EG, 𝑎EG − 𝑄 𝑠, 𝑎

• MC:	Look	ahead	until	the	end	of	the	episode

𝑠

𝑠,8 𝑠?8 𝑠@8

≔ 𝑅G 𝑠

𝑠,8 𝑠?8 𝑠@8

TD(𝜆)
• 𝑛-step	return	estimate:

• 𝑅G = 𝑟 𝑠, 𝑎 + 𝛾𝑟 𝑠E,, 𝑎E, + ⋯𝛾GH,𝑟 𝑠E GH, , 𝑎E GH, + 𝛾G𝑄 𝑠EG, 𝑎EG

• 𝜆-return:	weighted	average	of	different	𝑛-step	returns
• Weights:	 1 − 𝜆 𝜆GH,
• Estimated	return:	 1 − 𝜆 ∑ 𝜆GH,𝑅GK

GL,
• Small	𝜆à near-future	rewards	are	more	important	
• Large	𝜆à far-future	rewards	are	more	important

• TD(𝜆)	policy	evaluation:
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 1 − 𝜆 ∑ 𝜆GH,𝑅GK

GL, − 𝑄 𝑠, 𝑎

SARSA	Algorithm

• Start	with	initial	policy	𝜋 and	value	function	𝑉 or	𝑄
• Use	𝜖-greedy	policy	to	update	𝑄:	𝑎, 𝑎8~𝜋 𝑠 ,	𝜋 is	𝜖-greedy
• Repeat	for	many	episodes:

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎

• New	policy	𝜋 is	derived	from	new	𝑄
• 𝜖-greedy	policy

• With	probability	𝜖,	choose	random	control
• With	probability	1 − 𝜖,	choose	𝑎 = argmax

/!
𝑄 𝑠, 𝑎8

• If	𝜖, 𝛼 ∝ ,
9
,	then	𝑄 𝑠, 𝑎 → 𝑄P∗ 𝑠, 𝑎

𝜋 𝑄

policy	improvement	algorithm

policy	evaluation	algorithm

𝑠

𝑠′

𝑎
𝑟

𝑎8

On-Policy	and	Off-Policy	Learning

• From	SARSA:	
• Use	𝜖-greedy	policy	to	update	𝑄:	𝑎, 𝑎8~𝜋 𝑠 ,	𝜋 is	𝜖-greedy

• Repeat	for	many	episodes:	𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎

• “Behaviour	policy”:	policy	used	to	collect	rewards	-- 𝑎~𝜋S 𝑠
• “Target	policy”:	policy	used	to	estimate	future	rewards	-- 𝑎8~𝜋T 𝑠

• “On-policy	learning”:	𝜋S = 𝜋T
• SARSA	is	an	on-policy	learning	algorithm

• “Off-policy	learning”:	𝜋S ≠ 𝜋T
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎 ,	where	𝑎~𝜋S 𝑠 , 𝑎8~𝜋T 𝑠

Off-Policy	Learning

• Off-policy	learning:	Behaviour	and	target	policies	are	different
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎 ,	where	𝑎~𝜋S 𝑠 , 𝑎8~𝜋T 𝑠

• Advantages:
• Learn	from	observing	another	agent	(eg. human)	execute	a	different	policy
• Learn	from	experience	generated	from	old	policies
• Improve	two	policies	at	once,	while	following	one	policy

• Example:	Q-Learning	algorithm
• 𝜋S is	𝜖-greedy	with	respect	to	𝑄
• 𝜋T is	greedy	with	respect	to	𝑄

Q-Learning	Algorithm

• Start	with	initial	policy	𝜋 and	value	function	𝑉 or	𝑄
• Update	𝑄:
• Repeat	for	many	episodes	with	𝜖-greedy	policy	𝑎~𝜋S 𝑠 :

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾max
/!

𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎

• Both	the	𝜖-greedy	𝜋S and	the	greedy	𝜋T are	derived	from	𝑄

• If	𝜖, 𝛼 = ,
9
,	then	𝑄 𝑠, 𝑎 → 𝑄P∗ 𝑠, 𝑎

Function	Approximation

• So	far,	𝑄 𝑠, 𝑎 is	stored	in	a	multi-dimensional	array
• Model-free,	but	cannot	solve	large	problems

• Parametrize	value	functions	with	parameters	(or	weights)	𝑤
• 𝑄0 𝑠, 𝑎; 𝑤 ≈ 𝑄 𝑠, 𝑎
• Update	parameters	𝑤 using	MC- or	TD-based	learning
• Hopefully,	𝑄 is	generalizable	to	different	states	𝑠 and	actions	𝑎

Fitting	to	a	Known	𝑄+
• Fit	𝑄, 𝑠, 𝑎; 𝑤 to	𝑄P 𝑠, 𝑎

• Training	data:	 𝑠V, 𝑎V , 𝑄P 𝑠V, 𝑎V
• The	collection	of	states	and	actions	in	training	data	is	denoted	𝑆 and	𝐴

• Gradient	with	respect	to	𝑤:
• Y
YZ

𝑄[𝑆, 𝐴;𝑤 − 𝑄P 𝑆, 𝐴
?

?
= 2 𝑄P 𝑆, 𝐴 − 𝑄[𝑆, 𝐴;𝑤 Y [̂ _,`;Z

YZ

• Gradient	descent:
• 𝑤 ← 𝑤 − 𝛼 𝑄P 𝑆, 𝐴 − 𝑄[𝑆, 𝐴;𝑤 Y [̂ _,`;Z

YZ
• In	practice,	use	stochastic	gradient	descent

minimize
Z

𝑄P 𝑆, 𝐴 − 𝑄0 𝑆, 𝐴; 𝑤 ?
?

Monte-Carlo	Incremental	Weight	Updates

• First-visit	MC	policy	evaluation
• At	the	first	time	𝑡 that	𝑠 is	visited	in	an	episode,	

• Increment	𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
• Record	return	𝑆 𝑠, 𝑎 ← 𝑆 𝑠, 𝑎 + ∑𝛾b𝑟 𝑠b, 𝑎b
• Repeat	for	many	episodes

• Estimate	action-value	function:	𝑅 𝑠, 𝑎 = _ .,/
- .,/

≈ 𝑄 𝑠, 𝑎

• Above	procedure	produces	“training	data”	 𝑆, 𝐴, 𝑅
• Storing	a	set	of	𝑆, 𝐴, 𝑅,	etc.	is	called	“experience	replay”
• This	is	as	opposed	to	updating	𝑤 as	data	is	being	collected

• Update	weights:
• 𝑤 ← 𝑤 − 𝛼 𝑅 − 𝑄[𝑆, 𝐴;𝑤 Y [̂ _,`;Z

YZ

• Guaranteed	to	converge	to	local	optimum

Temporal-Difference	Incremental	Weight	Updates

• Most	basic	version:	TD(0)	
• From	any	state	𝑠,	apply	policy	𝑎 = 𝜋 𝑠 for	one	time	step,	obtain	reward	𝑟 𝑠, 𝑎
• Get	to	next	state	𝑠8,	and	estimate	return	from	then	on	using	𝑄 function

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠8, 𝑎8 − 𝑄 𝑠, 𝑎
• Repeat	for	many	episodes	to	obtain	𝑄 𝑠, 𝑎 estimates	at	many	states	𝑠 and	actions	𝑎

• Above	procedure	produces	a	collection	of	current	and	next	states	and	
actions,	𝑆, 𝐴, 𝑅, 𝑆8, 𝐴8

• Update	weights	using	TD	target:
• 𝑤 ← 𝑤 − 𝛼 𝑅 + 𝛾𝑄0 𝑆8, 𝐴8; 𝑤 − 𝑄0 𝑆, 𝐴; 𝑤 Y [̂ _,`;Z

YZ
• Not	always	guaranteed	to	converge	to	local	minimum

Q-Learning	With	Function	Approximation

Goal:	Given	a	set	of	weights	𝑤H,	find	the	next	set	of	weights	𝑤 in	
𝑄[𝑠, 𝑎; 𝑤
1. From	any	state	𝑠,	apply	𝜖-greedy	policy	with	respect	to	𝑄[𝑠, 𝑎; 𝑤H

• This	produces	a	collection	𝑆, 𝐴, 𝑅, 𝑆8

2. Sample	from	the	above	collection	to	obtain	a	smaller	data	set	
𝑆d, 𝐴d, 𝑅e, 𝑆d8

3. Update	weights	using	stochastic	gradient	descent	
minimize

Z
𝑅e + 𝛾max

/j
𝑄[𝑆d8, 𝑎8; 𝑤H − 𝑄[𝑆d, 𝐴d; 𝑤

?

?

• Use	deep	𝑄-network	(DQN)	for	𝑄[𝑆d, 𝐴d; 𝑤 à deep	Q-learning

Deep	Q-Learning	Example:	Atari	Games
• Minh	et	al.	“Playing	Atari	with	Deep	Reinforcement	Learning,”	2013

• States:	pixels	from	last	few	frames
• Actions:	controls	in	the	game
• Reward:	game	score
• Deep	Q	network:	convolutional	and	fully	connected	layers

Deep	Q-Learning:	Robotics	Example

• Gu	et	al.	“Deep	Reinforcement	Learning	for	
Robotic	Manipulation	with	Asynchronous	Off-
Policy	Updates,”	2017.

• States:	joint	angles,	end-effector	positions,	and	
their	time	derivatives,	target	position
• Actions:	joint	velocities	of	arm,	torque	of	fingers
• Task:	open	door,	pick	up	object	and	place	it	
elsewhere
• Deep	Q	network:	two	fully	connected	hidden	
layers,	100	units	each
• Main	challenge:	use	multiple	robots	to	learn	at	the	
same	time	and	share	knowledge

