Model-Free Value-Based RL

CMPT 419/983
Mo Chen

SFU Computing Science
30/10/2019

Monte-Carlo Value Function Estimate

e Start with initial policy T and value function V or Q

* Use policy T to update Q: a = m(s)
* Repeat for many episodes:
* N(s,a) « N(s,a) +1

+ Q(s,a) « Q(s,a) + ——(R(s,a) — Q(s,a))

N(s,a)
* Use () to update policy
* e-greedy policy
* With probability €, choose random control
* With probability 1 — €, choose a = argmax{Q(s, a’)}
a

: 1 : : : :
* Pick e = o where k is the # of algorithm iterations
* Explore less as value function becomes more accurate

DP vs. MC Policy Evaluation

e Suppose the policy T is given
* Dynamic Programming * Monte-Carlo
V(s) «maxQ(s,a)
a

065, @) < 7(5,0) +7) [p(s'ls, V(")

DP vs. MC Policy Evaluation

e Suppose the policy T is given
* Dynamic Programming * Monte-Carlo

V(s) « maxQ(s,a) * Repeat for many episodes:
a N(s,a) « N(s,a) +1

065, @) < 7(5,0) +7) [p(s'ls, V(") 0(5,0) < Q(s,0) + a(R - (s, @)

Temporal-Difference (TD) Policy Evaluation

* Temporal-difference: a class of policy evaluation techniques TD(A)

* Most basic version: TD(0)

* From any state s, apply policy a = m(s) for one time step, obtain reward
r(s,a)
* Get to next state s’, and estimate return from then on using Q function
* Note: next action is also from the same policy, a’ = w(s")
* Q(s,a) « Q(s,a) + a(r(s,a) +yQ(s',a") — Q(s, @)
* Repeat for many episodes to obtain Q (s, a) estimates at many states s and
actions a

Temporal-Difference (TD) Policy Evaluation

* Most basic version: TD(0)
Q(s,a) « Q(s,a) + a(r(s,a) + yQ(s',a’) — Q(s,)
* Advantages:

* Online algorithm: Q can be updated during an
episode

* Does not require complete episodes

* Disadvantages:

e System may not be Markov 6
* Initial Q can be very bad and Q may never improve l

enough
O O

n-step 1D

* TD: Look ahead one step
* Q(s,a) « Q(s,a) + a(r(s,a) +yQ(s’,a’) — Q(s,a))

* n-step TD: look ahead n steps
Q(Sr Cl) < Q(S, Cl) +a (T(S, Cl) + VT(S+1' Cl_|_1) + yn_lr(s+(1’l—1)r a+(n—1)) + ynQ(S+Tl' a+n) _ Q(S; (1))

\

= Rn

* MC: Look ahead until the end of the episode

TD(A)

* n-step return estimate:
* R, = r(s,a) +)/T(S+1, a+1) + - Vn_lr(5+(n—1)r a+(n—1)) + ynQ(S+ru a+n)

* A-return: weighted average of different n-step returns
« Weights: (1 — A)A" 1
* Estimated return: (1 —) Yo, A" 1R,
* Small A = near-future rewards are more important
 Large A - far-future rewards are more important

* TD(A) policy evaluation:
* Q(s,a) « Q(s,) +a((L =D X "R, — Q(s,a))

SARSA Algorithm

 Start with initial policy ™ and value function V or Q

* Use e-greedy policy to update Q: a,a’~n(s), m is e-greedy
e Repeat for many episodes:
* Q(s,a) <« Q(s,a) + a(r(s,a) +vQ(s',a") — Q(s,a))
* New policy i is derived from new Q
* e-greedy policy

* With probability €, choose random control
* With probability 1 — €, choose a = arg max{Q (s, a’)}
a

* If 6, X %, then Q(s,a) — Q,+(s,a)

On-Policy and Off-Policy Learning

From SARSA:
* Use e-greedy policy to update Q: a,a’~n(s), m is e-greedy
* Repeat for many episodes: Q(s,a) « Q(s,a) + a(r(s, a) +yQ(s',a") — Q(s, a))

“Behaviour policy”: policy used to collect rewards -- a~mz(s)
“Target policy”: policy used to estimate future rewards -- a’~m,(s)

“On-policy learning”: Tz = 4
* SARSA is an on-policy learning algorithm

“Off-policy learning”: mz + 1
Q(s,a) « Q(s,a) + a(r(s,a) + yQ(s',a’) — Q(s,a)), where a~my(s), a’ ~m(s)

Off-Policy Learning

* Off-policy learning: Behaviour and target policies are different
Q(s,a) « Q(s,a) + a(r(s,a) +yQ(s’,a") — Q(s,a)), where a~mp(s), a'~mr(s)

* Advantages:
* Learn from observing another agent (eg. human) execute a different policy
* Learn from experience generated from old policies
* Improve two policies at once, while following one policy

* Example: Q-Learning algorithm
* g is e-greedy with respect to
e 7 is greedy with respect to

Q-Learning Algorithm

 Start with initial policy ™ and value function V or Q
* Update Q:

* Repeat for many episodes with e-greedy policy a~mg(s):
* Q(s,a) < Q(s,a) + « (r(s, a) + y max Q(s',a") — Q(s, a))

* Both the e-greedy mz and the greedy - are derived from @

o lIfe,a = %, then Q(s,a) —» Q,+(s,a)

Function Approximation

* So far, Q(s, a) is stored in a multi-dimensional array
* Model-free, but cannot solve large problems

* Parametrize value functions with parameters (or weights) w

* Q(s,a;w) = Q(s,a)
* Update parameters w using MC- or TD-based learning
* Hopefully, Q is generalizable to different states s and actions a

Fitting to a Known Q;

* Fit Q(S, a;w) to Q,(s,a)
minivgnize”Qn(S,A) —Q(S, 4; W)”z

* Training data: {(s;, a;), Q,(s;, a;)}
* The collection of states and actions in training data is denoted S and A

e Gradient with respect to w:
2 w
0r(S, M|, = 2(n(S,) = QS 4 w)) A2

e Gradient descent:

e wew—a(Qr(54)— QS 4w)) =E
* |In practice, use stochastic gradient descent

90 (S,A:w)

Monte-Carlo Incremental Weight Updates

* First-visit MC policy evaluation
e At the first time t that s is visited in an episode,
* Increment N(s,a) « N(s,a) + 1
 Record return S(s,a) « S(s,a) + Yyir(s,, a;)

* Repeat for many episodes
S(s,a) _
N(s,a) Q(s, a)

* Above procedure produces “training data” {S, 4, R}
e Storing a set of 5, A4, R, etc. is called “experience replay”
* This is as opposed to updating w as data is being collected

* Update weights:
W <—W-a(R —@(S,A;W))

 Estimate action-value function: R(s,a) =

0Q(S,4;w)
ow

* Guaranteed to converge to local optimum

Temporal-Difference Incremental Weight Updates

* Most basic version: TD(0)
* From any state s, apply policy a = m(s) for one time step, obtain reward r(s, a)
* Get to next state s’, and estimate return from then on using Q function

* Q(s,a) « Q(s,a) + a(r(s,a) +yQ(s',a") — Q(s,a))
* Repeat for many episodes to obtain Q (s, a) estimates at many states s and actions a

* Above procedure produces a collection of current and next states and
actions, S,A,R,S', A’

* Update weights using TD target:
cwew—a(R+yQ(S, A% w) - QS 4;w))

* Not always guaranteed to converge to local minimum

3Q(S,A;w)
ow

Q-Learning With Function Approximation

Goal: Given a set of weights w™, find the next set of weights w in

Q(s,a;w)

1. From any state s, apply e-greedy policy with respect to O (s, a; w™)
* This produces a collection S, 4, R, S’

2. Sample from the above collection to obtain a smaller data set
S, AR,S'
3. Update weights using stochastic gradient descent
N o o 2
minimize HR + y max Q(S’, a W_) — Q(S,A; W)H
w a 2

» Use deep Q-network (DQN) for Q(S, 4; w) > deep Q-learning

Deep Q-Learning Example: Atari Games

* Minh et al. “Playing Atari with Deep Reinforcement Learning,” 2013

* States: pixels from last few frames
e Actions: controls in the game
* Reward: game score

* Deep Q network: convolutional and fully connected layers

Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but
itis yet too clumsy to manage.

Deep Q-Learning: Robotics Example

* Gu et al. “Deep Reinforcement Learning for
Robotic Manipulation with Asynchronous Off-
Policy Updates,” 2017.

* States: joint angles, end-effector positions, and
their time derivatives, target position

e Actions: joint velocities of arm, torque of fingers

* Task: open door, pick up object and place it
elsewhere

* Deep Q network: two fully connected hidden
layers, 100 units each

* Main challenge: use multiple robots to learn at the
same time and share knowledge

test reward

== 1 worker
= 2 workers

100 200 300 400 500 600 700 800
updates (1000s)

gle rker - 4 hours
, ___—

