Model-Free Value-Based RL

CMPT 419/983
Mo Chen
SFU Computing Science
30/10/2019
Monte-Carlo Value Function Estimate

- Start with initial policy π and value function V or Q
- Use policy π to update Q: $a = \pi(s)$
 - Repeat for many episodes:
 - $N(s,a) \leftarrow N(s,a) + 1$
 - $Q(s,a) \leftarrow Q(s,a) + \frac{1}{N(s,a)}(R(s,a) - Q(s,a))$
- Use Q to update policy π
 - ϵ-greedy policy
 - With probability ϵ, choose random control
 - With probability $1 - \epsilon$, choose $a = \arg\max_{a'}\{Q(s,a')\}$
 - Pick $\epsilon = \frac{1}{k'}$, where k' is the # of algorithm iterations
 - Explore less as value function becomes more accurate
DP vs. MC Policy Evaluation

• Suppose the policy π is given
 • Dynamic Programming
 $V(s) \leftarrow \max_a Q(s, a)$
 $Q(s, a) \leftarrow r(s, a) + \gamma \sum_{s'} [p(s'|s, a)V(s')]$
 • Monte-Carlo
DP vs. MC Policy Evaluation

• Suppose the policy π is given
 • Dynamic Programming
 \[
 V(s) \leftarrow \max_a Q(s, a)
 \]
 \[
 Q(s, a) \leftarrow r(s, a) + \gamma \sum_{s'} [p(s'|s, a)V(s')]
 \]
 • Monte-Carlo
 • Repeat for many episodes:
 \[
 N(s, a) \leftarrow N(s, a) + 1
 \]
 \[
 Q(s, a) \leftarrow Q(s, a) + \alpha (R - Q(s, a))
 \]
Temporal-Difference (TD) Policy Evaluation

- Temporal-difference: a class of policy evaluation techniques TD(\(\lambda \))
- Most basic version: TD(0)
 - From any state \(s \), apply policy \(a = \pi(s) \) for one time step, obtain reward \(r(s, a) \)
 - Get to next state \(s' \), and estimate return from then on using \(Q \) function
 - Note: next action is also from the same policy, \(a' = \pi(s') \)
 - \(Q(s, a) \leftarrow Q(s, a) + \alpha \left[r(s, a) + \gamma Q(s', a') - Q(s, a) \right] \)
 - Repeat for many episodes to obtain \(Q(s, a) \) estimates at many states \(s \) and actions \(a \)
Temporal-Difference (TD) Policy Evaluation

• Most basic version: TD(0)
 \[Q(s, a) \leftarrow Q(s, a) + \alpha (r(s, a) + \gamma Q(s', a') - Q(s, a)) \]

• Advantages:
 • Online algorithm: \(Q \) can be updated during an episode
 • Does not require complete episodes

• Disadvantages:
 • System may not be Markov
 • Initial \(Q \) can be very bad and \(Q \) may never improve enough
n-step TD

• TD: Look ahead one step
 • $Q(s, a) \leftarrow Q(s, a) + \alpha (r(s, a) + \gamma Q(s', a') - Q(s, a))$

• n-step TD: look ahead n steps
 \[
 Q(s, a) \leftarrow Q(s, a) + \alpha \left(r(s, a) + \gamma r(s_{+1}, a_{+1}) + \cdots \gamma^{n-1}r(s_{+(n-1)}, a_{+(n-1)}) + \gamma^n Q(s_{+n}, a_{+n}) - Q(s, a) \right) \]

• MC: Look ahead until the end of the episode
TD(λ)

• n-step return estimate:

 $R_n = r(s, a) + \gamma r(s_{+1}, a_{+1}) + \cdots + \gamma^{n-1} r(s_{+(n-1)}, a_{+(n-1)}) + \gamma^n Q(s_{+n}, a_{+n})$

• λ-return: weighted average of different n-step returns

 • Weights: $(1 - \lambda)\lambda^{n-1}$
 • Estimated return: $(1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_n$
 • Small $\lambda \rightarrow$ near-future rewards are more important
 • Large $\lambda \rightarrow$ far-future rewards are more important

• TD(λ) policy evaluation:

 $Q(s, a) \leftarrow Q(s, a) + \alpha ((1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_n - Q(s, a))$
SARSA Algorithm

• Start with initial policy π and value function V or Q

• Use ϵ-greedy policy to update Q: $a, a' \sim \pi(s)$, π is ϵ-greedy
 • Repeat for many episodes:
 • $Q(s, a) \leftarrow Q(s, a) + \alpha(r(s, a) + \gamma Q(s', a') - Q(s, a))$

• New policy π is derived from new Q
 • ϵ-greedy policy
 • With probability ϵ, choose random control
 • With probability $1 - \epsilon$, choose $a = \arg \max_{a'} \{Q(s, a')\}$

• If $\epsilon, \alpha \propto \frac{1}{k}$, then $Q(s, a) \to Q_{\pi^*}(s, a)$
On-Policy and Off-Policy Learning

• From SARSA:
 • Use ε-greedy policy to update Q: $a, a' \sim \pi(s)$, π is ε-greedy
 • Repeat for many episodes: $Q(s, a) \leftarrow Q(s, a) + \alpha(r(s, a) + \gamma Q(s', a') - Q(s, a))$

• “Behaviour policy”: policy used to collect rewards -- $a \sim \pi_B(s)$
• “Target policy”: policy used to estimate future rewards -- $a' \sim \pi_T(s)$

• “On-policy learning”: $\pi_B = \pi_T$
 • SARSA is an on-policy learning algorithm

• “Off-policy learning”: $\pi_B \neq \pi_T$
 $Q(s, a) \leftarrow Q(s, a) + \alpha(r(s, a) + \gamma Q(s', a') - Q(s, a))$, where $a \sim \pi_B(s), a' \sim \pi_T(s)$
Off-Policy Learning

- Off-policy learning: Behaviour and target policies are different
 \[Q(s, a) \leftarrow Q(s, a) + \alpha(r(s, a) + \gamma Q(s', a') - Q(s, a)) \], where \(a \sim \pi_B(s), a' \sim \pi_T(s) \)

- Advantages:
 - Learn from observing another agent (eg. human) execute a different policy
 - Learn from experience generated from old policies
 - Improve two policies at once, while following one policy

- Example: Q-Learning algorithm
 - \(\pi_B \) is \(\epsilon \)-greedy with respect to \(Q \)
 - \(\pi_T \) is greedy with respect to \(Q \)
Q-Learning Algorithm

• Start with initial policy π and value function V or Q
• Update Q:
 • Repeat for many episodes with ϵ-greedy policy $a \sim \pi_B(s)$:
 • $Q(s, a) \leftarrow Q(s, a) + \alpha \left(r(s, a) + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)$
• Both the ϵ-greedy π_B and the greedy π_T are derived from Q

• If $\epsilon, \alpha = \frac{1}{k}$, then $Q(s, a) \rightarrow Q_{\pi^*}(s, a)$
Function Approximation

• So far, $Q(s, a)$ is stored in a multi-dimensional array
 • Model-free, but cannot solve large problems

• Parametrize value functions with parameters (or weights) w
 • $\hat{Q}(s, a; w) \approx Q(s, a)$
 • Update parameters w using MC- or TD-based learning
 • Hopefully, Q is generalizable to different states s and actions a
Fitting to a Known Q_π

• Fit $\hat{Q}(s, a; w)$ to $Q_\pi(s, a)$
 \[
 \min_w \|Q_\pi(S, A) - \hat{Q}(S, A; w)\|^2
 \]
 • Training data: $\{(s_i, a_i), Q_\pi(s_i, a_i)\}$
 • The collection of states and actions in training data is denoted S and A

• Gradient with respect to w:
 • $\frac{\partial}{\partial w} \|\hat{Q}(S, A; w) - Q_\pi(S, A)\|^2 = 2 \left(Q_\pi(S, A) - \hat{Q}(S, A; w) \right) \frac{\partial \hat{Q}(s, A; w)}{\partial w}$

• Gradient descent:
 • $w \leftarrow w - \alpha \left(Q_\pi(S, A) - \hat{Q}(S, A; w) \right) \frac{\partial \hat{Q}(s, A; w)}{\partial w}$
 • In practice, use stochastic gradient descent
Monte-Carlo Incremental Weight Updates

- **First-visit MC policy evaluation**
 - At the first time t that s is visited in an episode,
 - Increment $N(s, a) \leftarrow N(s, a) + 1$
 - Record return $S(s, a) \leftarrow S(s, a) + \sum \gamma^t r(s_t, a_t)$
 - Repeat for many episodes
 - Estimate action-value function: $R(s, a) = \frac{S(s,a)}{N(s,a)} \approx Q(s, a)$

- Above procedure produces “training data” $\{S, A, R\}$
 - Storing a set of S, A, R, etc. is called “experience replay”
 - This is as opposed to updating w as data is being collected

- **Update weights:**
 - $w \leftarrow w - \alpha \left(R - \hat{Q}(S, A; w) \right) \frac{\partial \hat{Q}(S,A;w)}{\partial w}$

- Guaranteed to converge to local optimum
Temporal-Difference Incremental Weight Updates

- Most basic version: TD(0)
 - From any state s, apply policy $a = \pi(s)$ for one time step, obtain reward $r(s, a)$
 - Get to next state s', and estimate return from then on using Q function
 - $Q(s, a) \leftarrow Q(s, a) + \alpha (r(s, a) + \gamma Q(s', a') - Q(s, a))$
 - Repeat for many episodes to obtain $Q(s, a)$ estimates at many states s and actions a
- Above procedure produces a collection of current and next states and actions, S, A, R, S', A'

- Update weights using TD target:
 - $w \leftarrow w - \alpha \left(R + \gamma \hat{Q}(S', A'; w) - \hat{Q}(S, A; w) \right) \frac{\partial \hat{Q}(S, A; w)}{\partial w}$
 - Not always guaranteed to converge to local minimum
Q-Learning With Function Approximation

Goal: Given a set of weights w^-, find the next set of weights w in $\hat{Q}(s, a; w)$

1. From any state s, apply ϵ-greedy policy with respect to $\hat{Q}(s, a; w^-)$
 - This produces a collection S, A, R, S'

2. Sample from the above collection to obtain a smaller data set $\tilde{S}, \tilde{A}, \tilde{R}, \tilde{S}'$

3. Update weights using stochastic gradient descent
 \[
 \minimize \| \tilde{R} + \gamma \max_{a'} \hat{Q}(\tilde{S}', a'; w^-) - \hat{Q}(\tilde{S}, \tilde{A}; w) \|^2_2
 \]

 - Use deep Q-network (DQN) for $\hat{Q}(\tilde{S}, \tilde{A}; w) \rightarrow$ deep Q-learning
Deep Q-Learning Example: Atari Games

• Minh et al. “Playing Atari with Deep Reinforcement Learning,” 2013

• States: pixels from last few frames
• Actions: controls in the game
• Reward: game score
• Deep Q network: convolutional and fully connected layers
Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but it is yet too clumsy to manage.
Deep Q-Learning: Robotics Example

• States: joint angles, end-effector positions, and their time derivatives, target position
• Actions: joint velocities of arm, torque of fingers
• Task: open door, pick up object and place it elsewhere
• Deep Q network: two fully connected hidden layers, 100 units each
• Main challenge: use multiple robots to learn at the same time and share knowledge
Single Worker - 4 hours 1.5x