
Introduction	to	Regression	and	
Machine	Learning

CMPT	419/983
Mo	Chen

SFU	Computing	Science
21/10/2019

Machine	Learning

• Goal:
• Given	some	inputs	𝑥 (eg. pixels	of	an	image)
• Predict	some	output	𝑦 = 𝑓 𝑥 (eg. object)

• Assumption:	
• During	data	generation,	output	𝑦 depends	on	𝑥 probabilistically,	𝑦~𝑝 𝑥

• Procedure:
• Choose	𝑓 to	be	the	same	type	or	probability	distribution	as	𝑝 (usually	
unknown)
• Parametrize	𝑓 using	parameters	𝜃
• Determine	𝜃 that	best	fits	/	maximizes	the	probability	of	observing	data

Machine	Learning

• Application	of	nonlinear	
optimization
• Takes	advantage	of	available	data

• Supervised	learning
• Regression
• Classification

• Unsupervised	learning
• Clustering
• Reinforcement	learning

Machine	Learning

• Very	scalable	with	additional	data
• Requires	a	lot	of	data

• Computer	vision
• Natural	language	processing
• Game	playing
• Robotics

Outline

• Regression:	two	perspectives
• Function	fitting
• Probabilistic	interpretation

• Classification

• Neural	Networks

Regression
• Given	𝑥 ∈ ℝ!

• “features”,	“covariate”,	“predictors”

• Predict	𝑦 ∈ ℝ"

• “response”,	“outputs”

• Learn	the	function	𝑓: ℝ! → ℝ" such	that	𝑦 ≈ 𝑓 𝑥
• 𝑓 is	the	model	for	regression
• Use	data:	 𝑥# , 𝑦# #$%&

• Parametrize	the	function	𝑓 using	the	parameters	𝜃 à 𝑦 ≈ 𝑓' 𝑥
• 𝜃 and	the	form	of	𝑓 determines	the	class	of	functions		in	your	model
• Learning	𝑓 à learning	parameters	𝜃

Regression

• Supervised	learning	is	regression
• 𝑓. is	determined	through	“supervision”	by	data	 𝑥/, 𝑦/
• We	think	of	data	as	being	“generated	in	real	life”	from	some	probability	
distribution

• Machine/deep	learning	is	regression	using	a	neural	network
• Neural	network	(for	now):	complex	𝑓. with	many	components	in	𝜃

• Neural	networks	are	hard	to	analyze,	but	analyzing	regression	with	
simple(r)	models	provides	good	intuition

Models	for	Regression

• Assumed	probability	distribution	from	which	data	is	generated

• Simplest	model:	Linear
• 𝑦 = 𝜃(𝑥 + 𝜖,	where	𝜖 is	noise

• Put	data	into	matrix	vector	form:	(scalar	𝑦)

• 𝑋 =
−𝑥%(−

⋮
−𝑥&(−

∈ ℝ&×!, 𝑌 =
𝑦%
⋮

𝑦&
∈ ℝ&

• Minimize	loss	function:	𝑙 𝜃 = 𝑌 − 𝑋𝜃 *
* (eg.𝑙 𝜃 = ∑ 𝑦# − 𝜃+ − 𝜃%𝑥# *)

• Seems	to	make	sense	if	noise	is	zero-mean
𝜃∗ = arg min

.
𝑌 − 𝑋𝜃 ?

?

𝜽∗ = 𝑿𝑻𝑿 C𝟏𝑿𝑻𝒀

Feature	Augmentation

• Raw	data:	 𝑥/, 𝑦/ /FG
H

• But	perhaps	𝑦 = 𝑓 𝑥 is	nonlinear
• Augment	data:	𝑥̅/ = 1, 𝑥/, 𝑥/

? , 𝑦K/ = 𝑦/

• Use	linear	model	between	𝑥̅ and	𝑦K
• 𝑦K = 𝜃L𝑥̅ + 𝜖 = 𝜃M + 𝜃G𝑥 + 𝜃?𝑥? + 𝜖
• Effectively	a	quadratic	model

• In	general,	𝑥̅/ = 1, 𝑥/, 𝑥/
?, … 𝑥/

H à degree	N	polynomial
• Correspondingly,	more	parameters	are	required

Observations

• More	parameters	à less	training	error,	but	
potentially	more	test	error
• Training	error:	error	when	fitting	model	𝑓. to	
data	
• Test	error:	error	when	using	model	to	do	
prediction

• In	our	example,	the	true	model	is	quadratic
• High	order	polynomial	would	have	very	large	
test	errors	à overfitting
• Assumption	about	distribution	of	data	is	
wrong!
• In	general,	the	true	model	is	unknown

Training	Error	and	Test	Error

Number	of	parameters

Training	error

Test	error

Error	mostly	due	to	noise

Error	mostly	due	wrong	
model/assumed	distribution	of	data

Addressing	Overfitting

• Validation	of	Trained	Models	(hold-out	data)
• Divide	data	up	into	training	and	validation	(hold-out)	data
• Do	training	on	the	training	data	àminimize	training	error
• Validate	the	model	on	validation	data	à obtain	validation	error

• Regularization
• Add	penalty	to	size	of	parameters

𝑁-Fold	Cross	Validation

• Divide	data	into	𝑁 (roughly)	equal	parts
• Go	through	each	part
• Do	training	on	the	other	𝑁 − 1 parts	(so	one	part	is	hold-out)
• Evaluate	model	on	the	hold-out	data	to	get	à validation	error

• Validation	error	is	the	average	of	all	validation	errors	from	above
• Approximates	performance	during	test,	where	new	data	is	generated

𝑁-Fold	Cross	Validation

• Validation	error	is	the	average	of	all	validation	errors	from	above
• Approximates	performance	during	test,	where	new	data	is	generated

• What	could	still	go	wrong?
• The	distribution	of	data	during	test	can	be		different	from	the	previous	data

Regularization

• L2	regularization:	
• Heuristic:	the	underlying	ground	
truth	model	does	not	have	large	𝜃
• 𝑙 𝜃 = 𝑌 − 𝑋𝜃 ?

? + 𝜆 𝜃 ?
?

• “Tikhonov	regularization”
• Statistics:	“ridge	regression”
• Machine	learning:	“weight	decay”

• L1	regularization:
• Heuristic:	many	parameters	in	the	
underlying	ground	truth	model	are	0
• 𝑙 𝜃 = 𝑌 − 𝑋𝜃 ?

? + 𝜆 𝜃 G
• Statistics:	“LASSO”
• Signal	processing:	“basis	pursuit”

• “Elastic	net	regularization”:	combination	of	both
• 𝑙 𝜃 = 𝑌 − 𝑋𝜃 ?

? + 𝜆 1 − 𝛼 𝜃 ?
? + 𝛼 𝜃 G

• Previously:	𝑙 𝜃 = 𝑦 − 𝑋𝜃 ?
?

• Example:	𝑙 𝜃 = ∑ 𝑦/ − 𝜃M − 𝜃G𝑥/ − 𝜃?𝑥/
? − 𝜃S𝑥/

S − 𝜃T𝑥/
T ?

Regularization
L1:	 𝜽 𝟏 = ∑ 𝜽𝒊𝒊

• Does	not	prioritize	reduction	of	
any	component	of	𝜃
• Encourages	sparsity

L2:	 𝜽 𝟐
𝟐 = ∑ 𝜽𝒊

𝟐
𝒊

• Prioritizes	reduction	of	large	
components	of	𝜃

Outline

• Regression:	two	perspectives
• Function	fitting	interpretation
• Probabilistic	interpretation

• Classification

• Neural	Networks

Maximum	Likelihood	Estimate

• Simplest	model:	Linear
• 𝑦 = 𝜃(𝑥 + 𝜖,	where	𝜖 is	noise
• Assume	noise	is	normally	distributed	with	zero	mean	and	variance	𝜎*: 𝜖~𝑁 0, 𝜎*

• 𝑦~𝑁 𝜃(𝑥, 𝜎* ,	𝑝 𝑦 𝜃, 𝑥 = %
*,-

𝑒.
/0123

4

454

• Data	consists	of	 𝑥# , 𝑦# #$%&

• Pick	the	𝜃 that	maximizes	𝑝 𝜃 𝑋, 𝑌 ≔ 𝑝 𝜃| 𝑥# , 𝑦# #$%
&

• Bayes’	rule:
𝑝 𝜃 𝑋, 𝑌 =

𝑝 𝑌|𝜃, 𝑋 𝑝 𝜃
𝑝 𝑌

• If	we	have	no	idea	what	𝜃 should	be,	we	can	choose	𝑝 𝜃 to	be	the	uniform	
distribution

𝜃∗ = arg max
'

𝑝 𝑌|𝜃, 𝑋

Maximum	Likelihood	Estimate

• Maximum	likelihood	estimate:	𝜃∗ = arg max
'

𝑝 𝑌|𝜃, 𝑋

• If	we	assume	𝑦# are	independent	and	identically	distributed	(i.i.d.),	then

𝑝 𝑌|𝜃, 𝑋 = 𝑝 𝑦%, 𝑦*, … , 𝑦&|𝑥%, 𝑥*, … , 𝑥&, 𝜃 =] 𝑝 𝑦#|𝑥# , 𝜃
&

#$%

• Earlier,	we	assumed	𝑦~𝑁 𝜃(𝑥, 𝜎* ,	𝑝 𝑦 𝜃, 𝑥 = %
*,-

𝑒.
/0123

4

454

• After	some	algebra,	we	get	𝜃∗ = arg min
'

𝑌 − 𝑋𝜃 *
*

• Exactly	the	same	result	as	least	squares!

Maximum	Likelihood	Estimate:	Details
𝜃∗ = arg max

.
𝑝 𝑌|𝜃, 𝑋

= arg max
.

] 𝑝 𝑦/|𝑥/, 𝜃
H

/FG
• Now,	use	the	fact	that	𝑃. 𝑦 𝑥 ~𝑁 𝜃L𝑥, 𝜎?

= arg max
.

]
1

2𝜋𝜎
𝑒C a7C.2b7

4

?c4
H

/FG

= arg max
.

𝑒C ∑ a7C.2b7
4

?c4
8
79:

= arg min
.

d 𝑦/ − 𝜃L𝑥/
?

H

/FG
= arg min

.
𝑦 − 𝑋𝜃 ?

?

Maximum	A-Posteriori	(MAP)	Estimate

• What	if	we	have	a	prior	on	the	parameters?
• Recall	

𝑝 𝜃 𝑋, 𝑌 =
𝑝 𝑌|𝜃, 𝑋 𝑝 𝜃

𝑝 𝑌
• So,	we	need	to	pick	𝜃∗ = arg max

.
𝑝 𝑌|𝜃, 𝑋 𝑝 𝜃

• This	is	the	maximum	a-posteriori	estimate

• Suppose	𝜃~𝒩 0,2𝜆𝐼 ,	then	after	some	algebra,	we	get
𝜃∗ = arg min

.
𝑌 − 𝑋𝜃 ?

? + 𝜆 𝜃 ?
?

• Exactly	the	same	as	L2	regularization! 𝜽∗ = 𝑿𝑻𝑿 + 𝝀𝑰 C𝟏𝑿𝑻𝒀

Maximum	A-Posteriori	(MAP)	Estimate:	Details

• We	need	to	pick	𝜃∗ = arg max
.

𝑝 𝑌|𝜃, 𝑋 𝑝 𝜃 ,
• Suppose	𝜃~𝒩 0,2𝜆.%𝐼 ,	then	𝑝 𝜃 = det 4𝜋𝜆.%𝐼 .m

n 𝑒.;'o'

• Then,	we	have

𝜃∗ = arg max
.

𝑝 𝑌|𝜃, 𝑋 𝑝 𝜃 = arg max
.

] 𝑝 𝑦/|𝑥/, 𝜃
H

/FG

𝑝 𝜃

= arg max
.

]
1

2𝜋𝜎
𝑒C

a7C.2b7
4

?c4
H

/FG

det 4𝜋𝜆CG𝐼 CG
? 𝑒Cp.2.

= arg max
.

𝑒C ∑ a7C.2b7
4

?c4
8
79: Cp.2.

= arg min
.

𝑦 − 𝑋𝜃 ?
? + 𝜆 𝜃 ?

?

Function	Fitting	vs.	Probabilistic	Interpretation
• Assume	noise	is	normally	distributed,	then	the	following	are	equivalent:	
• 𝜃 obtained	from	maximum	likelihood
• 𝜃 obtained	from	minimizing	2-norm	of	error

• In	general,	different	loss	functions	correspond	different	assumptions	
about	noise	and	parameter	distributions
• L2	regularization:	𝜖 normally	distributed,	𝜃 is	normally	distributed
• L1	regularization:	𝜖 normally	distributed,	𝜃 Laplacian	distributed

Normal
distribution

Laplace
distribution

Outline

• Regression:	two	perspectives
• Function	fitting	interpretation
• Probabilistic	interpretation

• Classification

• Neural	Networks

Classification

• Given	𝑥 ∈ ℝq

• “features”,	“covariate”,	“predictors”

• Predict	𝒚 ∈ 𝟎, 𝟏 𝒎

• “response”,	“outputs”
• Sometimes	there	may	be	many	values	for	each	component	of	𝑦
• For	example,	in	optical	character	recognition	(numbers	only),	𝑦 ∈ 0,1, … , 9

• Learn	the	function	𝑓: ℝq → ℝv such	that	𝑦 ≈ 𝑓 𝑥
• Use	data:	 𝑥/, 𝑦/ /FG

H

Logistic	Regression

• Common	model	for	binary	classification,	𝑦 ∈ 0,1

• Assume	𝑝 𝑦 = 1 𝑥, 𝜃 = 𝑓 ∑ 𝜃/𝑥/H
/FG where	𝑓 𝑡 = x<

Gyx<

• Interpretation:	Suppose	∑ 𝜃/𝑥/H
/FG = 𝐶 is	fixed

• Then	𝑝 𝑦 = 1 𝑥, 𝜃 is	fixed,	and	equal	to	 x=

Gyx=
• 2D	example:	𝜃%𝑥% + 𝜃*𝑥* = 𝐶 is	a	line

• In	addition,	
• 𝑓 𝑡 → 0 as	𝑡 → −∞
• 𝑓 𝑡 → 1 as	𝑡 → ∞

𝑃' 𝑦 = 1 𝑥 =
𝑒>:

1 + 𝑒>:

𝑃' 𝑦 = 1 𝑥 =
𝑒>4

1 + 𝑒>4

Logistic	Regression

• Assume	𝑝 𝑦 = 1 𝑥, 𝜃 = 𝑓 ∑ 𝜃/𝑥/H
/FG where	𝑓 𝑡 = x<

Gyx<

• Observe	that	𝑝 𝑦 𝑥, 𝜃 = x/123

Gyx123

• Maximize	the	probability	by	choosing	𝜃

𝜃∗ = arg max
.

] 𝑝 𝑦/ 𝑥/, 𝜃
q

/FG

Logistic	Regression:	Details

𝜃∗ = arg max
'

] 𝑃' 𝑦# 𝑥#
!

#$%

= arg max
'

]
𝑒?|'o@|

1 + 𝑒'o@|

!

#$%

= arg max
'

log]
𝑒?|'o@|

1 + 𝑒'o@|

!

#$%

= arg max
'

d 𝑦#𝜃(𝑥# − log 1 + 𝑒'A�@|

!

#$%

= arg min
'

d log 1 + 𝑒'o@|

!

#$%

− 𝜃(d 𝑦#𝑥#
!

#$%

𝑔 𝑡 = log 1 + 𝑒B is	convex	à easy	to	solve	using	eg. gradient	descent

Outline

• Regression:	two	perspectives
• Function	fitting	interpretation
• Probabilistic	interpretation

• Classification

• Neural	Networks

Neural	Networks

• A	specific	form	of	𝑓. 𝑥
𝑥%

𝑥*

𝑥C

𝑦%

𝑦*

𝑦C

𝑦D

𝑦% = 𝑓 𝑥(𝑤% + 𝑏%

1

𝑦* = 𝑓 𝑥(𝑤* + 𝑏*

𝑦C = 𝑓 𝑥(𝑤C + 𝑏C

𝑦D = 𝑓 𝑥(𝑤D + 𝑏D

𝑦 = 𝑓 𝑥(𝑊 + 𝑏
• Parameters	𝜃 are	𝑊 and	𝑏
• “Weights”

Neural	Networks
• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓. 𝑥
• Neural	Network:	A	specific	form	of	𝑓. 𝑥

ℎ = 𝑓% 𝑥(𝑊% + 𝑏%

𝑥 ℎ
𝑦

𝑦 = 𝑓* ℎ(𝑊* + 𝑏*

input	layer hidden	layer
output	layer

“neuron”

Neural	Networks

ℎ% = 𝑓% 𝑥(𝑊% + 𝑏%

𝑥 ℎ%

ℎ*

ℎ* = 𝑓* ℎ%𝑊* + 𝑏*

input	layer hidden	layer	2

output	layer

𝑦

hidden	layer	2

𝑦 = 𝑓C ℎ*𝑊C + 𝑏C

• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓. 𝑥
• Neural	Network:	A	specific	form	of	𝑓. 𝑥

Neural	Networks

• Parameters	𝜃 are	the	weights	𝑊/
and	𝑏/

• 𝑓G, 𝑓?, 𝑓S are	nonlinear
• Otherwise	𝑓 would	just	be	a	single	
linear	function:

𝑦 = 𝑥(𝑊% + 𝑏% 𝑊* + 𝑏* 𝑊C + 𝑏C
 = 𝑥(𝑊%𝑊*𝑊C + 𝑏%𝑊*𝑊C + 𝑏*𝑊C + 𝑏C

• “Activation	functions”ℎ% = 𝑓% 𝑥(𝑊% + 𝑏%

𝑥 ℎ%

ℎ*

ℎ* = 𝑓* ℎ%𝑊* + 𝑏*

input	layer hidden	layer	2

output	layer

𝑦

hidden	layer	2

𝑦 = 𝑓C ℎ*𝑊C + 𝑏C

• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓. 𝑥
• Neural	Network:	A	specific	form	of	𝑓. 𝑥

Neural	Networks

• Common	choices	of	activation	
functions
• Sigmoid:	

1
1 + 𝑒Cb

• Softplus:
log 1 + 𝑒b

• Hyperbolic	tangent:	
tanh 𝑥

• Rectified	linear	unit	(ReLU):	
max 0, 𝑥

ℎ% = 𝑓% 𝑥(𝑊% + 𝑏%

𝑥 ℎ%

ℎ*

ℎ* = 𝑓* ℎ%𝑊* + 𝑏*

input	layer hidden	layer	2

output	layer

𝑦

hidden	layer	2

𝑦 = 𝑓C ℎ*𝑊C + 𝑏C

• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓. 𝑥
• Neural	Network:	A	specific	form	of	𝑓. 𝑥

• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓. 𝑥
• Neural	Network:	A	specific	form	of	𝑓. 𝑥

Training	Neural	Networks

• Given	current	𝜃, 𝑋, 𝑌,	compute	
𝑙 𝜃; 𝑋, 𝑌
• Compares	𝑓. 𝑋 with	ground	truth	𝑌
• Evaluation	of	𝑓:	“Forward	
propagation”

• Minimize	𝑙 𝜃; 𝑋, 𝑌
• Stochastic	gradient	descent
• Evaluation	of	�a

��:	“Back	propagation”

• Example:	 E?EFm
= E?

EGn
𝑊C

EGn
EGm

𝑊*
EGm
EFm

ℎ% = 𝑓% 𝑥(𝑊% + 𝑏%

𝑥 ℎ%

ℎ*

ℎ* = 𝑓* ℎ%𝑊* + 𝑏*

input	layer hidden	layer	2

output	layer

𝑦

hidden	layer	2

𝑦 = 𝑓C ℎ*𝑊C + 𝑏C

Backpropagation Example:	gradient	with	respect	to	
𝑊G

• �a
��:

= ��H
��4

��4
��:

= ��H
��4

��4
��:

��:
��:

• Each	term	is	a	tensor,	which	
results	from	taking	the	gradient	
of	a	vector	w.r.t. a	matrix

• Software	like	Tensorflow
performs	this	(and	other	
operations	common	in	machine	
learning)	efficiently

ℎ% = 𝑓% 𝑥(𝑊% + 𝑏%

𝑥 ℎ%

ℎ*

ℎ* = 𝑓* ℎ%𝑊* + 𝑏*

input	layer hidden	layer	2

output	layer

𝑦

hidden	layer	2

𝑦 = 𝑓C ℎ*𝑊C + 𝑏C

Common	Operations

• Fully	connected	(dot	product)

• Convolution
• Translationally	invariant
• Controls	overfitting

• Pooling	(fixed	function)
• Down-sampling
• Controls	overfitting

• Nonlinearity	layer	(fixed	function)
• Activation	functions,	e.g.	ReLU

Stanford	CS231n

towarddatascience.com

Example:	Small	VGG	Net	From	Stanford	CS231n

Neural	Network	Architectures

• Convolutional	neural	network	(CNN)
• Has	translational	invariance	properties	from	convolution
• Common	used	for	computer	vision

• Recurrent	neural	network	RNN
• Has	feedback	loops	to	capture	temporal	or	sequential	information
• Useful	for	handwriting	recognition,	speech	recognition,	reinforcement	
learning
• Long	short-term	memory	(LSTM):	special	type	of	RNN	with	advantages	in	
numerical	properties

• Others
• General	feedforward	networks,	variational	autoencoders	(VAEs),	conditional	
VAEs,	

Training	Neural	Networks

• Training	process	(optimization	algorithm)
• Standard	L1	and	L2	regularization
• Dropout:	randomly	set	neurons	to	zero	in	each	training	iteration
• Transform	input	data	(e.g.	rotating,	stretching,	adding	noise)
• Learning	rate	(step	size)	and	other	hyperparameter	tuning

• Software	packages:	Efficient	gradient	computation
• Caffe,	Torch,	Theano,	Tensor	Flow

