Introduction to
Machine

Regression and

_earning

CMPT 419/983
Mo Chen

SFU Computing Science
21/10/2019

Pattern
Classification

Machine Learning

* Goal:
* Given some inputs x (eg. pixels of an image)
* Predict some output y = f(x) (eg. object)

10 20 30 40 50

* Assumption:
 During data generation, output y depends on x probabilistically, y~p(x)

* Procedure:

* Choose f to be the same type or probability distribution as p (usually
unknown)

* Parametrize f using parameters 6
* Determine 6 that best fits / maximizes the probability of observing data

Machine Learning

* Application of nonlinear
optimization
* Takes advantage of available data

e Supervised learning
* Regression
* Classification

* Unsupervised learning
e Clustering
* Reinforcement learning

Pattern
Classification |

k—Mgans Clusters

Cluster 1 4+
Cluster 2 X
Cluster3Q

Machine Learning

* Very scalable with additional data
* Requires a lot of data

* Computer vision

* Natural language processing
* Game playing

* Robotics

Outline

* Regression: two perspectives
* Function fitting
* Probabilistic interpretation

e Classification

 Neural Networks

Regression

e Given x € R"

n /(]

» “features”, “covariate”, “predictors”

* Predict y € R™

n u

* “response”, “outputs”

* Learn the function f: R"™ - R™ such thaty = f(x)
 f is the model for regression
« Use data: {x;, y;}i,

* Parametrize the function f using the parameters 8 2 y = fg(x)

* 0 and the form of f determines the class of functions in your model
* Learning f = learning parameters 6

Regression

e Supervised learning is regression
* fo is determined through “supervision” by data {x;, y;}

* We think of data as being “generated in real life” from some probability
distribution

* Machine/deep learning is regression using a neural network
* Neural network (for now): complex fg with many components in 6

* Neural networks are hard to analyze, but analyzing regression with
simple(r) models provides good intuition

Models for Regression

* Assumed probability distribution from which data is generated

* Simplest model: Linear
« y=0Tx+ ¢, where € is noise |

* Put data into matrix vector form: (scalar y)

—x{ — Y1

« X = : EIRNX",Y=<5>EIRN
—xpy — YN

* Minimize loss function: [(8) = ||Y — X0]|5 (eg.l(0) = Y.(y; — 0, — 0,x;)?)

e Seems to make sense if noise is zero-mean

0" = arg mginllY — X0||5
H*

Feature Augmentation

* Raw data: {x;, V; }i—1
* But perhaps y = f(x) is nonlinear

* Augment data: x; = (1, xi,xiz),}_/i = Yi

* Use linear model between x and y
cy=0"x+e=0p+0;x+0,x°+¢€
 Effectively a quadratic model

* In general, X; = (1,x;, x7, ...x{') = degree N polynomial
* Correspondingly, more parameters are required

Observations

* More parameters =2 less training error, but
potentially more test error
* Training error: error when fitting model fg to
data

* Test error: error when using model to do
prediction

* In our example, the true model is quadratic
* High order polynomial would have very large
test errors = overfitting
e Assumption about distribution of data is
wrong!
* In general, the true model is unknown

Training Error and Test Error

Error mostly due wrong
model/assumed distribution of data

Error mostly due to noise

Training error

Test error

Number of parameters

Addressing Overfitting

* VValidation of Trained Models (hold-out data)

 Divide data up into training and validation (hold-out) data
* Do training on the training data = minimize training error
* Validate the model on validation data = obtain validation error

e Regularization
e Add penalty to size of parameters

N-Fold Cross Validation

* Divide data into N (roughly) equal parts

* Go through each part
e Do training on the other N — 1 parts (so one part is hold-out)
 Evaluate model on the hold-out data to get = validation error

* Validation error is the average of all validation errors from above
e Approximates performance during test, where new data is generated

N-Fold Cross Validation

* Validation error is the average of all validation errors from above
e Approximates performance during test, where new data is generated

* What could still go wrong?
* The distribution of data during test can be different from the previous data

Regularization

e Previously: [(8) = |ly — X0||5
* Example: [(8) = Z(yi — 0y — 01x; — 92xi2 - 93xi3 — 943%4)2

* L2 regularization: * L1 regularization:

e Heuristic: the underlying ground * Heuristic: many parameters in the
truth model does not have large 6 underlying ground truth model are 0

+ 1(0) = |IY — X6112 + 2116113 + 1(0) = IIY — X611 + 21161l

* “Tikhonov regularization” e Statistics: “LASSO”

* Statistics: “ridge regression” Signal processing: “basis pursuit”
* Machine learning: “weight decay”

« “Elastic net regularization”: combination of both
+ 10) = Y = X013+ A (1 - @)ll6ll3 + alloll,)

Regularization

L1: |0]l, = 3,16;] L2: 1613 = X, 67

* Does not prioritize reduction of ¢ Prioritizes reduction of large
any component of 6 components of 6

* Encourages sparsity

3 T

Outline

* Regression: two perspectives
* Function fitting interpretation
* Probabilistic interpretation

e Classification

 Neural Networks

Maximum Likelihood Estimate

* Simplest model: Linear

—4

« y =0"x + €, where € is noise R N S S S
* Assume noise is normally distributed with zero mean and variance g%:e~N(0,0%)
(y=6Tx)

+ y~N(07x,0%), p(y|0,x) = e 27

2O
» Data consists of {x;, y;}1-,
* Pick the 8 that maximizes p(0|X,Y) := p(9|{xi,yi IiV=1)

* Bayes’ rule: (Y6, X)p(6)
_ pe.A)p
p(O1X,Y) = p(Y)

* If we have no idea what 6 should be, we can choose p(8) to be the uniform
distribution

0" = arg meaxp(Y|9,X)

Maximum Likelihood Estimate

* Maximum likelihood estimate: 8 = arg mglxp(Y|9,X)

* If we assume y; are independent and identically distril\l?uted (i.i.d.), then

p(Y16,X) = PO0, Yo o Yulas X 2, 0) = | | PGl 6)

N e Ar)

* Earlier, we assumed y~N(6"x,0%), p(y]6,x) = e 2

* After some algebra, we get 0* = arg meinllY — X0||5

* Exactly the same result as least squares!

Maximum Likelihood Estimate: Details

0" = argm%a’xp(ﬂ@ , X)

= daIg maxl_[p(yllxl 0)

* Now, use the fact that Py (ny)~N(9Tx 02)

_(yi—QTxi)z}

= darg mglx 6

I -

= arg mlnlly X013

Maximum A-Posteriori (MAP) Estimate

 What if we have a prior on the parameters?

e Recall
p(Y16,X)p(6)

p(Y)
* So, we need to pick 8* = arg max p(Y|6,X)p(0)

p(O|X,Y) =

* This is the maximum a-posteriori estimate

* Suppose 8~N(0,2A1), then after some algebra, we get
0* = argmeinllY — X0||5 + 2116]|5

* Exactly the same as L2 regularization! 0* = (XTX + /11)_1XTY

Maximum A-Posteriori (MAP) Estimate: Details

* We need to pick 8* = arg max p(Y|6,X)p(0),

* Suppose 8~N(0,2A71), then p(0) = det(4mA~ 11)—5 o076

* Then, we have N

0" = argmaxp(Y|0,X) p(0) = argmgxnp(yilxiﬁ)p(ﬁ)
=1

N 1 (J’i—QTxi)z 1 T
= arg max e 202 det(4mA=11)"2e=40 0
0 _i V2o
N (yl QTxl) T
=argm51x{ —2iz1 gz A6 9}
= argme}nlly — X015 + 7116115

Function Fitting vs. Probabilistic Interpretation

* Assume noise is normally distributed, then the following are equivalent:
* 0 obtained from maximum likelihood
* 0 obtained from minimizing 2-norm of error

* In general, different loss functions correspond different assumptions
about noise and parameter distributions

* L2 regularization: € normally distributed, 6 is normally distributed

Normal t e ! Laplace
distribution [] [- distribution

Outline

* Regression: two perspectives
* Function fitting interpretation
* Probabilistic interpretation

e Classification

 Neural Networks

Classification

e Given x € R"

/(] V/a{i

» “features”, “covariate”, “predictors”

* Predicty € {0,1}™

n

* “response”, “outputs”
* Sometimes there may be many values for each component of y
* For example, in optical character recognition (humbers only), y € {0,1, ..., 9}

* Learn the function f: R"™ - R™ such that y = f(x)
* Use data: {x;, y; 1,

Logistic Regression

« Common model for binary classification, y € {0,1}

C1

. t
« Assume p(y = 1|x,8) = (TN, 6;x") where f(t) = — "= =1 .

1+et
* Interpretation: Suppose Y., 8;x' = C is fixed
eC

 Thenp(y =1 |x,0) is fixed, and equal to ¢

2D example: ;x4 + 6,x, = Cis aline
* |[n addition,

e f(t) > 0ast > —

e f(t) > 1last > oo

Logistic Regression

et

1+el

* Assume p(y = 1]x,0) = f(TX, 6;x') where f(t) =

eyGTx

* Observe that p(y|x,0) =

14+e07x

* Maximize the probability by choo%ing v,

0" = argmax 1_[p(yilx;, 0)
=1

Logistic Regression: Details

n
o = argmg]| [PoColeo
o i=1

eVif x;
arg max
5 6 1_[1 -|—e‘9Txi

=1

R ovifTx
arg max lo 1_[
SIg™ 08 1+ef

1=1
n 05

arg meaxz (yiQTxi — log (1 T engi)) 04

i=1

n n 3
arg min {Z log(1 + eeTxi) -07 (Z yixl-)}
=1 \ Y , =1

g(t) =log(1 + et) is convex = easy to solve using eg. gradient descent

Outline

* Regression: two perspectives
* Function fitting interpretation
* Probabilistic interpretation

e Classification

 Neural Networks

Neural Networks

* A specific form of f5(x)

e Parameters 8@ are W and b
 “Weights”

Neural Networks

* Regression: Choose 0 such thaty = f5(x)

* Neural Network: A specifiyc form of fg(x)

X h

input layer hidden layer

output layer

“neuron” h=filx™W,+by) y=f,(h"W,+b,)

Neural Networks

* Regression: Choose 0 such thaty = f5(x)
* Neural Network: A specif;lc2 form of fg(x)

output layer
y = f3(h, W5 + b3)

input layer hidden layer 2

hidden layer 2
hy = f1(xTW1 + by)
h, = f,(hyW; + b;)

Neural Networks

* Regression: Choose 8 such that y = fy(x)

* Neural Network: A specific form of fo(x) * Parameters 0 are the weights W/,
h, and bi

* f1, f2, f3 are nonlinear

* Otherwise f would just be a single
linear function:
output layer y = ((x "Wy + by)W, + by)W3 + b3
Y = fs(haW3 + b3) = x TW,WoWs5 + byWyWs + byWs + by

input layer hidden layer 2 I o f _ .
i °
h, = f,(x"W, + b,) fiddenlayer2 Activation functions

h, = fz(h1W2 + bz)

Neural Networks

* Regression: Choose 8 such that y = fy(x)

* Neural Network: A specific form of fg(x) e Common choices of activation
h, functions

* Sigmoid:

» Softplus:

output layer
y = f3(h, W3 + b3)

* Hyperbolic tangent:

input layer hidden layer 2 tanh x

hidden layer 2
hy = f1(XTW1 + by)
h, = f,(h,W; + by)

* Rectified linear unit (ReLU):
max (0, x) |

Training Neural Networks

* Regression: Choose 8 such that y = fy(x)

* Neural Network: A specific form of fg(x) * Given current 8, X,Y, compute
1(6;X,Y)
* Compares fg(X) with ground truth Y

* Evaluation of f: “Forward
propagation”

output layer ° AT .
S ot b Minimize l.(6’, X,.Y)
e Stochastic gradient descent

input layer hidden layer 2 .
h, = f,(xTW, +b,) hidden layer 2

hy, = fo(hiW; + by) . L0y _ 9y oh, Ohy
Example: oW, = o, (W3) on (W3) oW,

. a o« . ”
e Evaluation of %V: Back propagation

Backpropagation

input layer hidden layer 2
hl - fl(XTW1 + bl)

output layer
y = f3(h, W3 + b3)

hidden layer 2
h, = f,(h{W; + b,)

Example: gradient with respect to
Wi
dy _ 8f; dh, _ df; dh, dhy

~ 9h,dW; 0Oh, dhi OW;

e Each term is a tensor, which
results from taking the gradient
of a vector w.r.t. a matrix

e Software like Tensorflow
performs this (and other
operations common in machine
learning) efficiently

Source pixel

Common Operations

Fully connected (dot product)

Convolution
* Translationally invariant
* Controls overfitting

Destination pixel

towarddatascience.com

Pooling (fixed function)
* Down-sampling
* Controls overfitting

and stride 2

/‘

AV WA WA

AR

A\

A

AN

A

L
L
L
L
|~

max pool with 2x2 filters

Nonlinearity layer (fixed function)
* Activation functions, e.g. RelLU

>
>

Stanford CS231n

RELU RELU
lCONV

e dl VAR EAREAD

CONV

RELU RELU

RELU RELU

CONV

— VT BT RN ,QE

-
—
o
@\
)
O
O

S

O
(€l

-

(O
4+
)

-

O

S
L
4+

)
=
O
),
=
©

-
)
@

Q.

-

(O

pad
LL]

Neural Network Architectures

e Convolutional neural network (CNN)
* Has translational invariance properties from convolution
 Common used for computer vision

e Recurrent neural network RNN
* Has feedback loops to capture temporal or sequential information

» Useful for handwriting recognition, speech recognition, reinforcement
learning

e Long short-term memory (LSTM): special type of RNN with advantages in
numerical properties
e Others

* General feedforward networks, variational autoencoders (VAEs), conditional
VAEs,

Training Neural Networks

* Training process (optimization algorithm)
e Standard L1 and L2 regularization
* Dropout: randomly set neurons to zero in each training iteration
* Transform input data (e.g. rotating, stretching, adding noise)
* Learning rate (step size) and other hyperparameter tuning

e Software packages: Efficient gradient computation
e Caffe, Torch, Theano, Tensor Flow

