Introduction to Regression and Machine Learning

CMPT 419/983

Mo Chen

SFU Computing Science

21/10/2019

Machine Learning

• Goal:

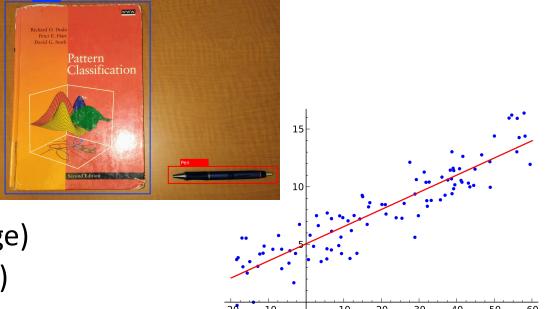
- Given some inputs x (eg. pixels of an image)
- Predict some output y = f(x) (eg. object)

Assumption:

• During data generation, output y depends on x probabilistically, $y \sim p(x)$

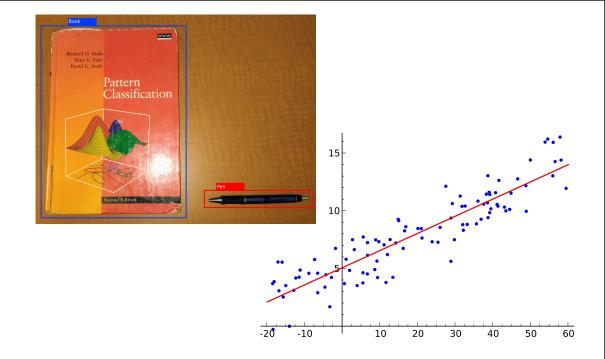
• Procedure:

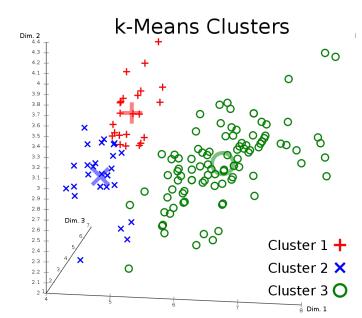
- Choose f to be the same type or probability distribution as p (usually unknown)
- Parametrize f using parameters θ
- Determine θ that best fits / maximizes the probability of observing data



Machine Learning

- Application of nonlinear optimization
 - Takes advantage of available data
- Supervised learning
 - Regression
 - Classification
- Unsupervised learning
 - Clustering
 - Reinforcement learning





Machine Learning

- Very scalable with additional data
- Requires a lot of data

- Computer vision
- Natural language processing
- Game playing
- Robotics

Outline

- Regression: two perspectives
 - Function fitting
 - Probabilistic interpretation
- Classification

Neural Networks

Regression

- Given $x \in \mathbb{R}^n$
 - "features", "covariate", "predictors"
- Predict $y \in \mathbb{R}^m$
 - "response", "outputs"
- Learn the function $f: \mathbb{R}^n \to \mathbb{R}^m$ such that $y \approx f(x)$
 - *f* is the model for regression
 - Use data: $\{x_i, y_i\}_{i=1}^{N}$
- Parametrize the function f using the parameters $\theta \rightarrow y \approx f_{\theta}(x)$
 - θ and the form of f determines the class of functions in your model
 - Learning $f \rightarrow$ learning parameters θ

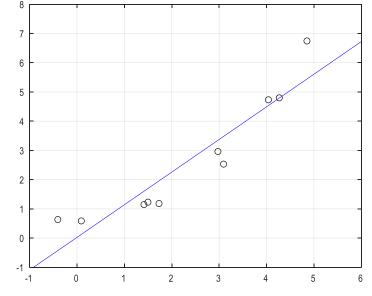
Regression

- Supervised learning is regression
 - f_{θ} is determined through "supervision" by data $\{x_i, y_i\}$
 - We think of data as being "generated in real life" from some probability distribution
- Machine/deep learning is regression using a neural network
 - Neural network (for now): complex f_{θ} with many components in θ
- Neural networks are hard to analyze, but analyzing regression with simple(r) models provides good intuition

Models for Regression

- Assumed probability distribution from which data is generated
- Simplest model: Linear
 - $y = \theta^T x + \epsilon$, where ϵ is noise
- Put data into matrix vector form: (scalar y)

•
$$X = \begin{pmatrix} -x_1^\top - \\ \vdots \\ -x_N^\top - \end{pmatrix} \in \mathbb{R}^{N \times n}, Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} \in \mathbb{R}^N$$



- Minimize loss function: $l(\theta) = ||Y X\theta||_2^2 \text{ (eg.} l(\theta) = \sum (y_i \theta_0 \theta_1 x_i)^2)$
 - Seems to make sense if noise is zero-mean

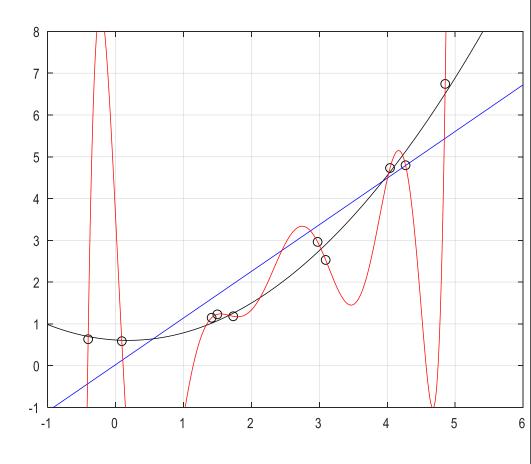
$$\theta^* = \arg\min_{\theta} ||Y - X\theta||_2^2$$
$$\theta^* = (X^T X)^{-1} X^T Y$$

Feature Augmentation

- Raw data: $\{x_i, y_i\}_{i=1}^{N}$
 - But perhaps y = f(x) is nonlinear
 - Augment data: $\bar{x}_i = (1, x_i, x_i^2), \bar{y}_i = y_i$
- Use linear model between \bar{x} and \bar{y}

•
$$\bar{y} = \theta^{\mathsf{T}} \bar{x} + \epsilon = \theta_0 + \theta_1 x + \theta_2 x^2 + \epsilon$$

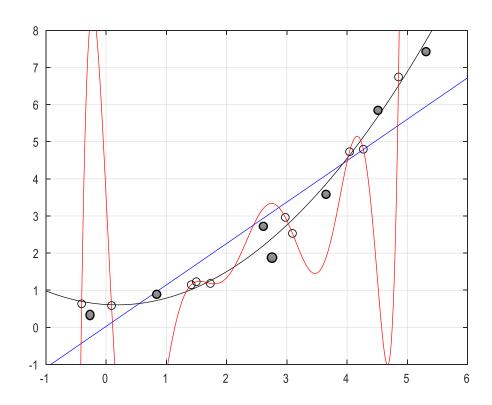
• Effectively a quadratic model



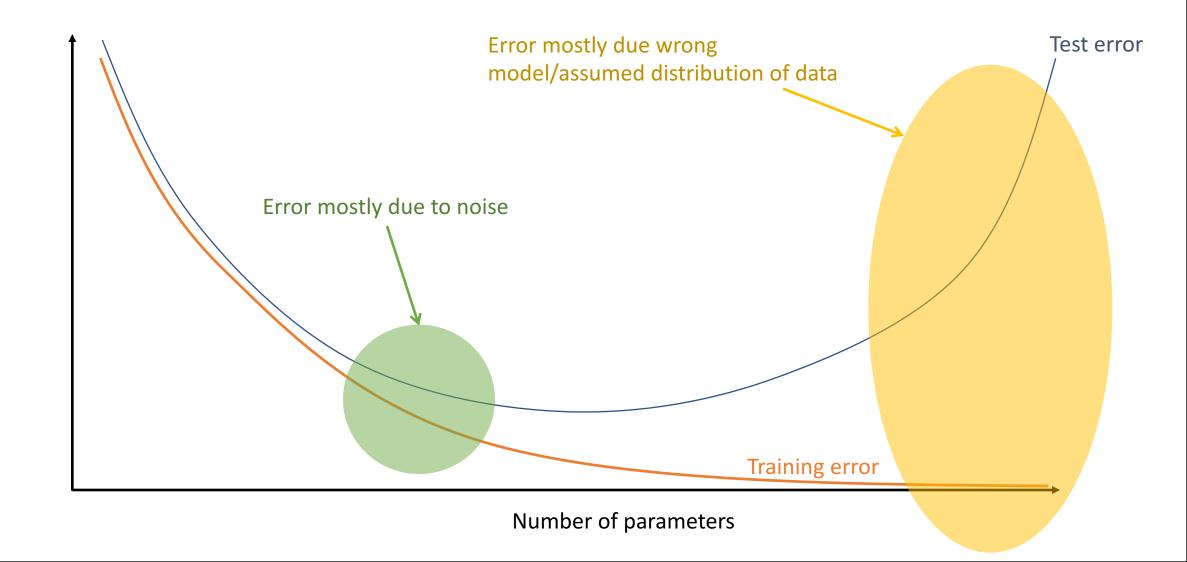
- In general, $\bar{x}_i = (1, x_i, x_i^2, \dots x_i^N) \rightarrow \text{degree N polynomial}$
 - Correspondingly, more parameters are required

Observations

- More parameters → less training error, but potentially more test error
 - Training error: error when fitting model f_{θ} to data
 - Test error: error when using model to do prediction
- In our example, the true model is quadratic
 - High order polynomial would have very large test errors → overfitting
 - Assumption about distribution of data is wrong!
 - In general, the true model is unknown



Training Error and Test Error



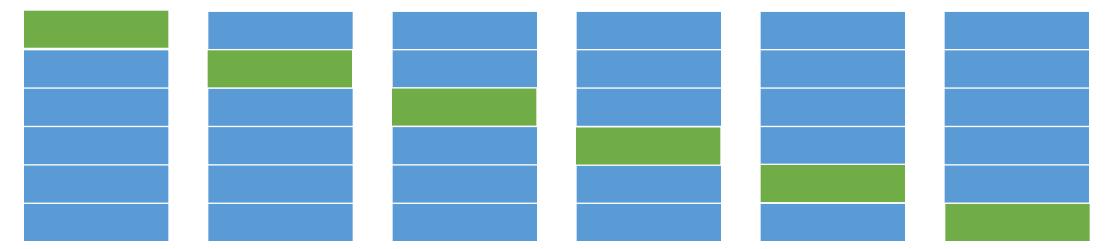
Addressing Overfitting

- Validation of Trained Models (hold-out data)
 - Divide data up into training and validation (hold-out) data
 - Do training on the training data → minimize training error

- Regularization
 - Add penalty to size of parameters

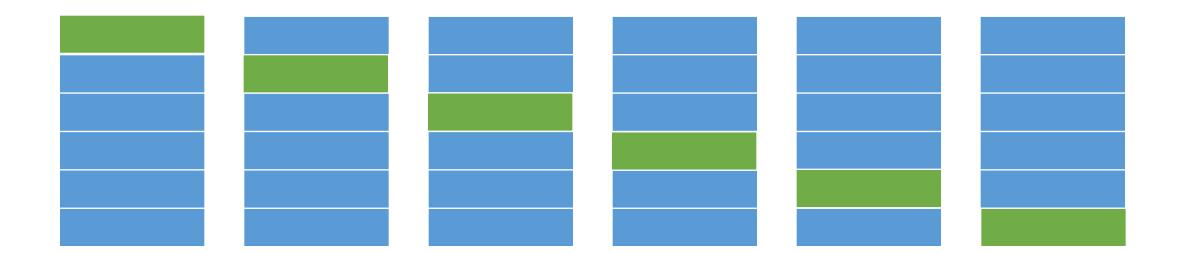
N-Fold Cross Validation

- Divide data into N (roughly) equal parts
- Go through each part
 - Do training on the other N-1 parts (so one part is hold-out)
 - Evaluate model on the hold-out data to get → validation error
- Validation error is the average of all validation errors from above
 - Approximates performance during test, where new data is generated



N-Fold Cross Validation

- Validation error is the average of all validation errors from above
 - Approximates performance during **test**, where new data is generated
- What could still go wrong?
 - The distribution of data during test can be different from the previous data



Regularization

- Previously: $l(\theta) = ||y X\theta||_2^2$
 - Example: $l(\theta) = \sum (y_i \theta_0 \theta_1 x_i \theta_2 x_i^2 \theta_3 x_i^3 \theta_4 x_i^4)^2$
- L2 regularization:
 - Heuristic: the underlying ground truth model does not have large θ
 - $l(\theta) = ||Y X\theta||_2^2 + \lambda ||\theta||_2^2$
 - "Tikhonov regularization"
 - Statistics: "ridge regression"
 - Machine learning: "weight decay"

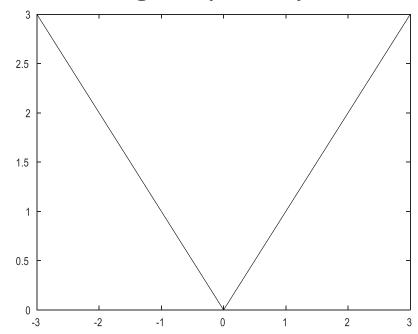
- L1 regularization:
 - Heuristic: many parameters in the underlying ground truth model are 0
 - $l(\theta) = ||Y X\theta||_2^2 + \lambda ||\theta||_1$
 - Statistics: "LASSO"
 - Signal processing: "basis pursuit"
- "Elastic net regularization": combination of both

•
$$l(\theta) = ||Y - X\theta||_2^2 + \lambda \left((1 - \alpha) ||\theta||_2^2 + \alpha ||\theta||_1 \right)$$

Regularization

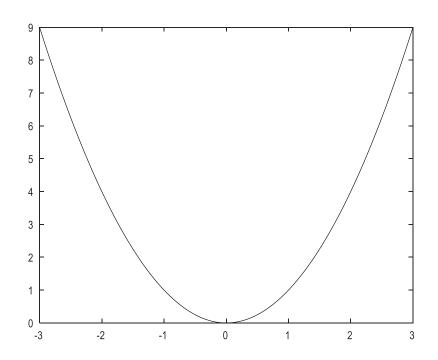
L1:
$$\|\boldsymbol{\theta}\|_1 = \sum_i |\boldsymbol{\theta}_i|$$

- Does not prioritize reduction of any component of $\boldsymbol{\theta}$
- Encourages sparsity



L2:
$$\|\theta\|_2^2 = \sum_i \theta_i^2$$

• Prioritizes reduction of large components of θ

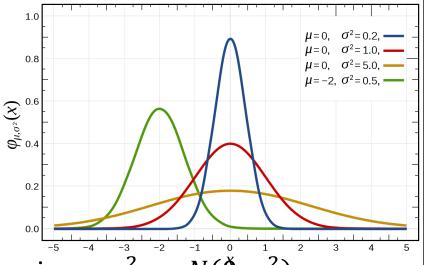


Outline

- Regression: two perspectives
 - Function fitting interpretation
 - Probabilistic interpretation
- Classification

Neural Networks

Maximum Likelihood Estimate



- Simplest model: Linear
 - $y = \theta^T x + \epsilon$, where ϵ is noise
 - Assume noise is normally distributed with zero mean and variance σ^2 : $\epsilon \sim N(0, \sigma^2)$

•
$$y \sim N(\theta^{\mathsf{T}} x, \sigma^2), p(y|\theta, x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-\theta^{\mathsf{T}} x)^2}{2\sigma^2}}$$

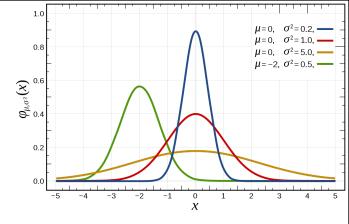
- Data consists of $\{x_i, y_i\}_{i=1}^N$
 - Pick the θ that maximizes $p(\theta|X,Y) \coloneqq p(\theta|\{x_i,y_i\}_{i=1}^N)$
 - Bayes' rule:

$$p(\theta|X,Y) = \frac{p(Y|\theta,X)p(\theta)}{p(Y)}$$

• If we have no idea what θ should be, we can choose $p(\theta)$ to be the uniform distribution

$$\theta^* = \arg\max_{\theta} p(Y|\theta, X)$$

Maximum Likelihood Estimate



- Maximum likelihood estimate: $\theta^* = \arg \max_{\Omega} p(Y|\theta, X)$
- If we assume y_i are independent and identically distributed (i.i.d.), then

$$p(Y|\theta, X) = p(y_1, y_2, \dots, y_N | x_1, x_2, \dots, x_N, \theta) = \prod_{i=1}^{n} p(y_i | x_i, \theta)$$

- $p(Y|\theta,X) = p(y_1,y_2,...,y_N|x_1,x_2,...,x_N,\theta) = \prod_{i=1}^{n} p(y_i|x_i,\theta)$ Earlier, we assumed $y \sim N(\theta^\top x,\sigma^2)$, $p(y|\theta,x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(y-\theta^\top x)^2}{2\sigma^2}}$
- After some algebra, we get $\theta^* = \arg\min_{\alpha} ||Y X\theta||_2^2$
 - Exactly the same result as least squares!

Maximum Likelihood Estimate: Details

$$\theta^* = \arg\max_{\theta} p(Y|\theta, X)$$

$$= \arg\max_{\theta} \prod_{i=1}^N p(y_i|x_i, \theta)$$
• Now, use the fact that $P_{\theta}(y|x) \sim N(\theta^{\top}x, \sigma^2)$

$$= \arg\max_{\theta} \left\{ \prod_{i=1}^N \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y_i - \theta^{\top}x_i)^2}{2\sigma^2}} \right\}$$

$$= \arg\max_{\theta} \left\{ e^{-\sum_{i=1}^N \frac{(y_i - \theta^{\top}x_i)^2}{2\sigma^2}} \right\}$$

$$= \arg\min_{\theta} \left\{ \sum_{i=1}^N (y_i - \theta^{\top}x_i)^2 \right\}$$

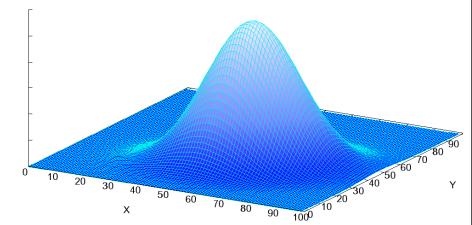
$$= \arg\min_{\theta} \|y - X\theta\|_2^2$$

Maximum A-Posteriori (MAP) Estimate

- What if we have a prior on the parameters?
 - Recall

$$p(\theta|X,Y) = \frac{p(Y|\theta,X)p(\theta)}{p(Y)}$$

- So, we need to pick $\theta^* = \arg \max_{\alpha} p(Y|\theta, X)p(\theta)$
- This is the maximum a-posteriori estimate



- Suppose $\theta \sim \mathcal{N}(0,2\lambda I)$, then after some algebra, we get $\theta^* = \arg\min_{\theta} ||Y - X\theta||_2^2 + \lambda ||\theta||_2^2$
 - Exactly the same as L2 regularization! $\theta^* = (X^TX + \lambda I)^{-1}X^TY$

$$\boldsymbol{\theta}^* = \left(X^T X + \lambda I\right)^{-1} X^T Y$$

Maximum A-Posteriori (MAP) Estimate: Details

- We need to pick $\theta^* = \arg\max_{\theta} p(Y|\theta, X)p(\theta)$, Suppose $\theta \sim \mathcal{N}(0, 2\lambda^{-1}I)$, then $p(\theta) = \det(4\pi\lambda^{-1}I)^{-\frac{1}{2}}e^{-\lambda\theta^{\mathsf{T}}\theta}$
- Then, we have

$$\theta^* = \arg\max_{\theta} p(Y|\theta, X) p(\theta) = \arg\max_{\theta} \prod_{i=1}^{N} p(y_i|x_i, \theta) p(\theta)$$

$$= \arg\max_{\theta} \left\{ \left(\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\left(y_i - \theta^{\mathsf{T}} x_i\right)^2}{2\sigma^2}\right) \det(4\pi\lambda^{-1}I)^{-\frac{1}{2}} e^{-\lambda\theta^{\mathsf{T}}\theta} \right\}$$

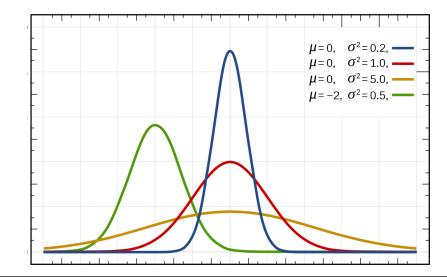
$$= \arg\max_{\theta} \left\{ e^{-\sum_{i=1}^{N} \frac{\left(y_i - \theta^{\mathsf{T}} x_i\right)^2}{2\sigma^2} - \lambda\theta^{\mathsf{T}}\theta} \right\}$$

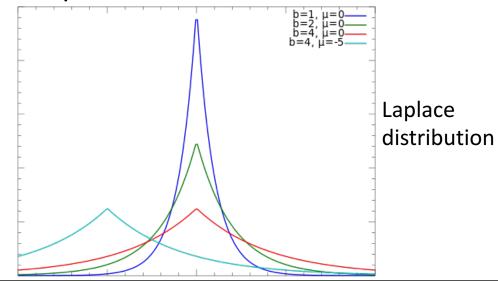
$$= \arg\min_{\theta} ||y - X\theta||_2^2 + \lambda ||\theta||_2^2$$

Function Fitting vs. Probabilistic Interpretation

- Assume noise is normally distributed, then the following are equivalent:
 - θ obtained from maximum likelihood
 - θ obtained from minimizing 2-norm of error
- In general, different loss functions correspond different assumptions about noise and parameter distributions
 - L2 regularization: ϵ normally distributed, θ is normally distributed
 - L1 regularization: ϵ normally distributed, θ Laplacian distributed

Normal distribution





Outline

- Regression: two perspectives
 - Function fitting interpretation
 - Probabilistic interpretation
- Classification

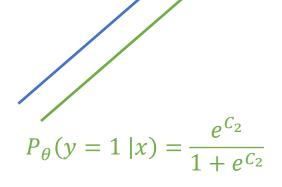
Neural Networks

Classification

- Given $x \in \mathbb{R}^n$
 - "features", "covariate", "predictors"
- Predict $y \in \{0, 1\}^m$
 - "response", "outputs"
 - Sometimes there may be many values for each component of y
 - For example, in optical character recognition (numbers only), $y \in \{0,1,...,9\}$
- Learn the function $f: \mathbb{R}^n \to \mathbb{R}^m$ such that $y \approx f(x)$
 - Use data: $\{x_i, y_i\}_{i=1}^{N}$

Logistic Regression

- Common model for binary classification, $y \in \{0,1\}$
- Assume $p(y = 1 | x, \theta) = f(\sum_{i=1}^{N} \theta_i x^i)$ where $f(t) = \frac{e^t}{1 + e^t}$ $P_{\theta}(y = 1 | x) = \frac{e^{c_1}}{1 + e^{c_1}}$
- Interpretation: Suppose $\sum_{i=1}^{N} \theta_i x^i = C$ is fixed
 - Then $p(y = 1 | x, \theta)$ is fixed, and equal to $\frac{e^{C}}{1+e^{C}}$
 - 2D example: $\theta_1 x_1 + \theta_2 x_2 = C$ is a line
 - In addition,
 - $f(t) \to 0$ as $t \to -\infty$
 - $f(t) \rightarrow 1$ as $t \rightarrow \infty$



Logistic Regression

- Assume $p(y=1|x,\theta)=f\left(\sum_{i=1}^N\theta_ix^i\right)$ where $f(t)=\frac{e^t}{1+e^t}$ Observe that $p(y|x,\theta)=\frac{e^{y\theta^\top x}}{1+e^{\theta^\top x}}$
- Maximize the probability by choosing heta

$$\theta^* = \arg \max_{\theta} \prod_{i=1}^{n} p(y_i|x_i, \theta)$$

Logistic Regression: Details $\theta^* = \arg \max_{\theta}$ $= \arg \max_{\theta}$ $= \arg\max_{\theta} \log \left(\prod_{i=1}^{n} \frac{e^{y_i \theta^{\mathsf{T}} x_i}}{1 + e^{\theta^{\mathsf{T}} x_i}} \right)$ $= \arg\max_{\theta} \sum_{i=1}^{n} \left(y_i \theta^{\mathsf{T}} x_i - \log \left(1 + e^{\overline{\theta}^T x_i} \right) \right)$ $= \arg\min_{\theta} \left\{ \sum_{i=1}^{n} \log(1 + e^{\theta^{\mathsf{T}} x_i}) - \theta^{\mathsf{T}} \left(\sum_{i=1}^{n} y_i x_i \right) \right\}$ 0.5

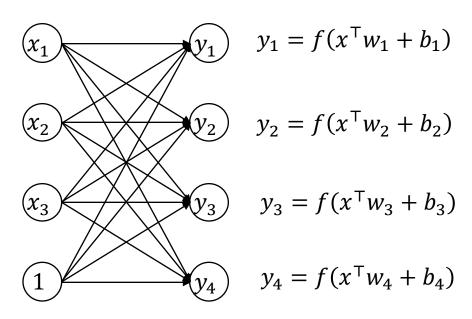
 $g(t) = \log(1 + e^t)$ is convex \rightarrow easy to solve using eg. gradient descent

Outline

- Regression: two perspectives
 - Function fitting interpretation
 - Probabilistic interpretation
- Classification

Neural Networks

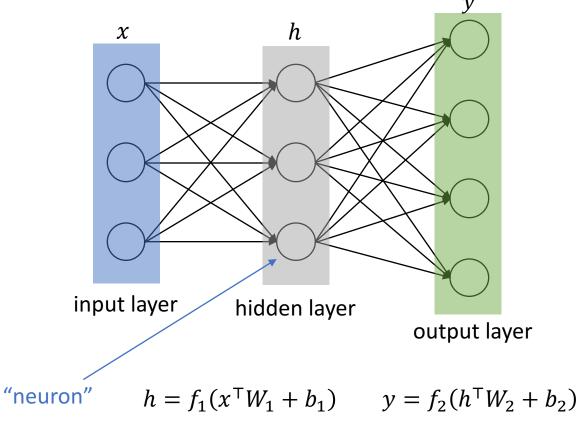
• A specific form of $f_{\theta}(x)$



$$y = f(x^{\mathsf{T}}W + b)$$

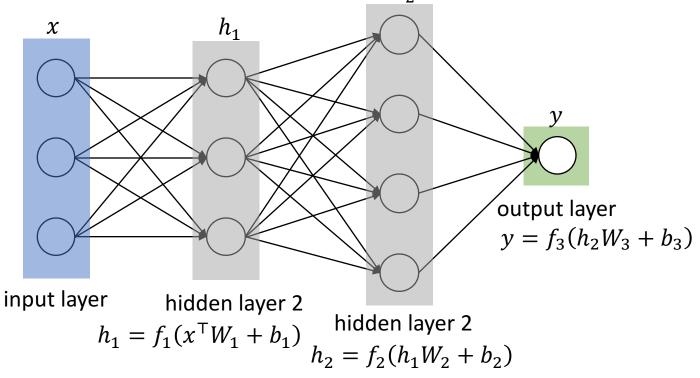
- Parameters θ are W and b
- "Weights"

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

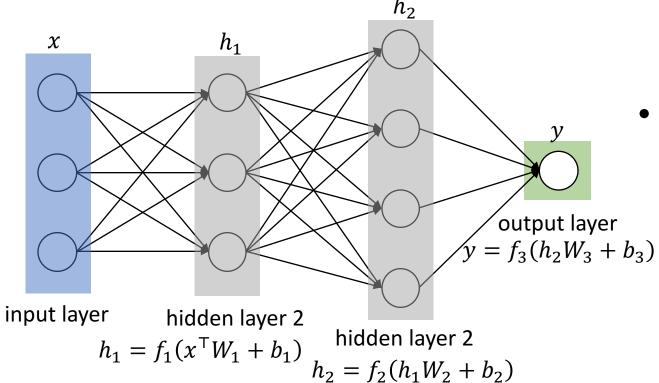


• Regression: Choose θ such that $y \approx f_{\theta}(x)$

• Neural Network: A specific form of $f_{\theta}(x)$



- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$ Parameters θ are the weights W_i



• Parameters heta are the weights W_i and b_i

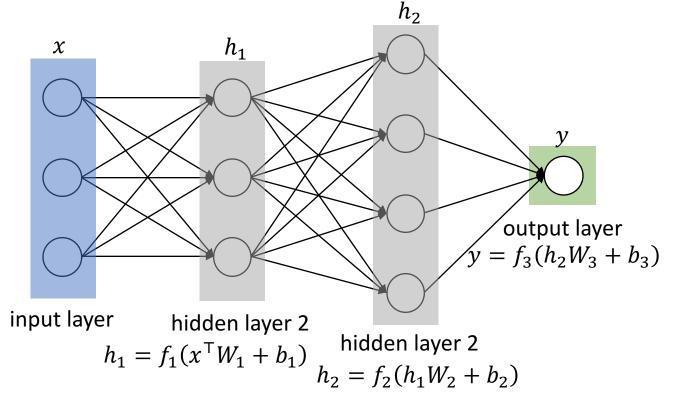
- f_1 , f_2 , f_3 are nonlinear
 - Otherwise *f* would just be a single linear function:

$$y = ((x^{\mathsf{T}}W_1 + b_1)W_2 + b_2)W_3 + b_3$$

= $x^{\mathsf{T}}W_1W_2W_3 + b_1W_2W_3 + b_2W_3 + b_3$

• "Activation functions"

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$



Common choices of activation functions

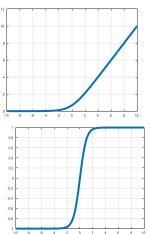
• Sigmoid:

$$\frac{1}{1 + e^{-x}}$$

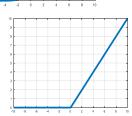
• Softplus:

$$\log(1+e^x)$$

• Hyperbolic tangent: tanh *x*

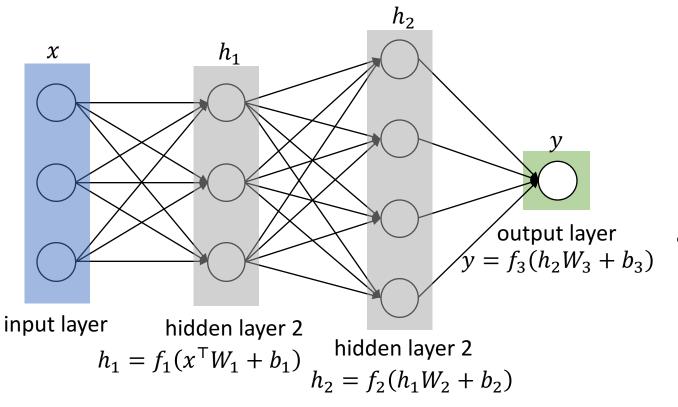


• Rectified linear unit (ReLU): max(0, x)



Training Neural Networks

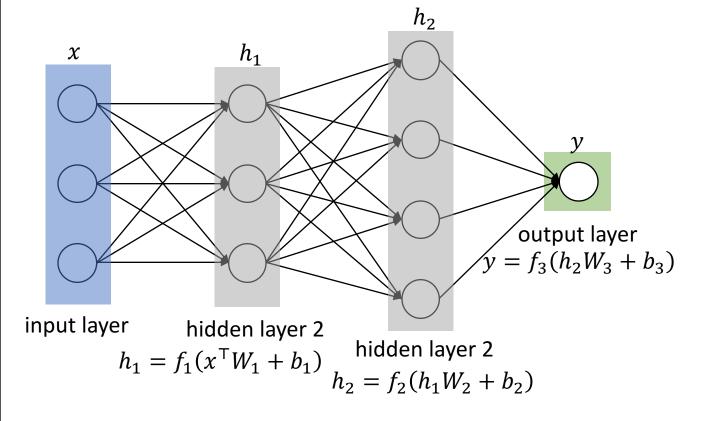
- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$



- Given current θ, X, Y , compute $l(\theta; X, Y)$
 - Compares $f_{\theta}(X)$ with ground truth Y
 - Evaluation of f: "Forward propagation"

- Minimize $l(\theta; X, Y)$
 - Stochastic gradient descent
 - Evaluation of $\frac{\partial y}{\partial W}$: "Back propagation"
 - Example: $\frac{\partial y}{\partial W_1} = \frac{\partial y}{\partial h_2} (W_3) \frac{\partial h_2}{\partial h_1} (W_2) \frac{\partial h_1}{\partial W_1}$

Backpropagation



Example: gradient with respect to W_1

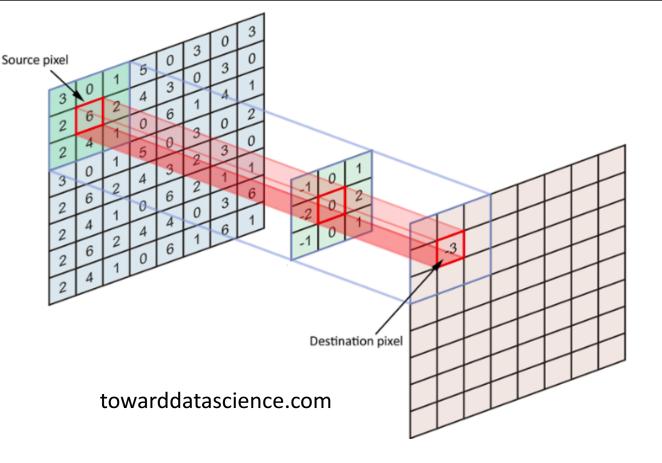
•
$$\frac{\partial y}{\partial W_1} = \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial W_1} = \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}$$

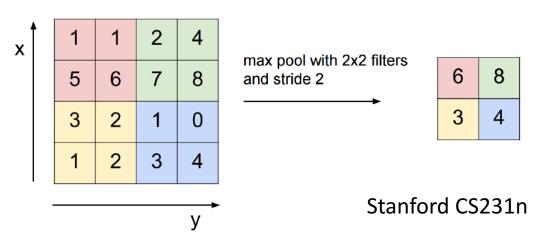
 Each term is a tensor, which results from taking the gradient of a vector w.r.t. a matrix

 Software like Tensorflow performs this (and other operations common in machine learning) efficiently

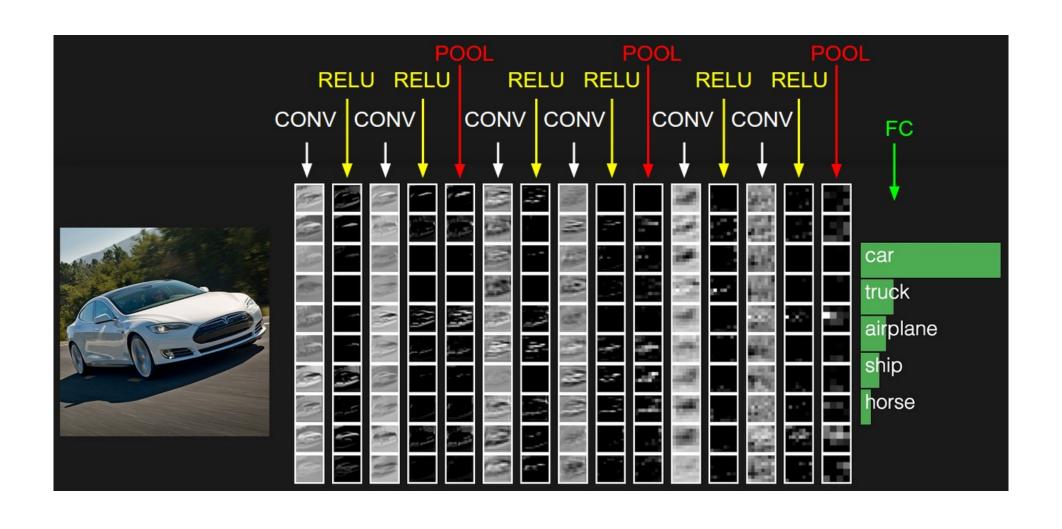
Common Operations

- Fully connected (dot product)
- Convolution
 - Translationally invariant
 - Controls overfitting
- Pooling (fixed function)
 - Down-sampling
 - Controls overfitting
- Nonlinearity layer (fixed function)
 - Activation functions, e.g. ReLU





Example: Small VGG Net From Stanford CS231n



Neural Network Architectures

- Convolutional neural network (CNN)
 - Has translational invariance properties from convolution
 - Common used for computer vision
- Recurrent neural network RNN
 - Has feedback loops to capture temporal or sequential information
 - Useful for handwriting recognition, speech recognition, reinforcement learning
 - Long short-term memory (LSTM): special type of RNN with advantages in numerical properties

Others

 General feedforward networks, variational autoencoders (VAEs), conditional VAEs,

Training Neural Networks

- Training process (optimization algorithm)
 - Standard L1 and L2 regularization
 - Dropout: randomly set neurons to zero in each training iteration
 - Transform input data (e.g. rotating, stretching, adding noise)
 - Learning rate (step size) and other hyperparameter tuning
- Software packages: Efficient gradient computation
 - Caffe, Torch, Theano, Tensor Flow