Hamilton-Jacobi
Reachability Analysis |

CMPT 419/983
Mo Chen

SFU Computing Science
16/10/2019

Reachability Analysis: Avoidance

Reachable set | <ofe region

Assumptions: Control policy

Model of robot

Unsafe region: Obstacle Backward reachable set

(States leading to danger)

Reachability Analysis: Goal Reaching

Backward reachable set

Control policy
* Model of robot

 Goal region
Backward reachable set

(States leading to goal)

Target set

Assumptions

e System dynamics: x = f(x,u,d),t < 0 (by convention, final time is 0)

e State x
* Single vehicle, multiple vehicle, relative coordinates

(xz,yz, 92)

X =

 Disturbance d: uncontrolled factors that affect the system, such as wind

e Can be used to model other agents, when state includes them
* Assume worst case

Assumptions

* “Target set”, T
» Can specify set of states leading to danger
* Expressed through set notation

Obstacle
at (x,y)
01

&/

7=Vl -2+ (- 92 <7} SR

Information Pattern

* Control: chosen by “ego” robot

* Disturbances: chosen by other robot (or weather gods)
* Assume worst case

* “Open-loop” strategies
* Ego robot declares entire plan
* Other robot responds optimally (worst-case)
* Conservative, unrealistic, but computationally cheap

* “Non-anticipative” strategies
* Other robot acts based on state and control trajectory up current time
* Notation: d(-) = TI'[u](:)
* Disturbance still has the advantage: it gets to react to the control!

Reachability Analysis

Model of robot
Unsafe region

Model of robot
Goal region

o A() = {x:3aru]C), vul),x = f(x,u,d), x(t) = x,x(0) € T}

Backward reachable set (States leading to danger) gA 0/,
Control policy
o u*(t,x)

Control policy

Backward reachable set (States leading to goal)

o R(t) = {x:VI[u](:),ul),x = f(x,u,d),x(t) = x,x(0) € T}

(3)

Reachability Analysis

* Model of robot
* Unsafe region

« x=f(x,u,d)
e T

* Model of robot
* Goal region

States at time t satisfying the following:
there exists a disturbance such that for all control, system enters target setat t = 0

o A(t) ={:3aru]C), vul),x = f(x,u,d),x(t) = x,x(0) € T}

Backward reachable set (States leading to danger)

=)

Control policy

o u*(t,x)

Control policy

—

Backward reachable set (States leading to goal)

o R(t) = {x:VI[u](),Jul-),x = f(x,u,d), x(t) = ix,x(0) € T}

States at time t satisfying the following:
for all disturbances, there exists a control such that system enters target setatt = 0

Computing Reachable Sets:
Hamilton-Jacobi Approach

 Start from continuous time dynamic programming

* Observe that disturbances do not affect the procedure

* Remove running cost

* Pick final cost intelligently

Dynamic Programming: Continuous Time

Running cost

A
| 1

T
minimize l(T,x(T)) + f c(x(t),u(t))dt
0

u(’)
subject to x(t) = f(x(t), u(t))

x(t) € R"u(t) € R™ x(0) = x,

* Let J(t, x(t)) = (T, x(T)) + ftTc(x(t),u(t))dt
* 17(0,x(0)) = Ilrll(i.gl](o,x(())) is what we want

* Strategy:
* make a “discrete time” argument with At
e letAt—> 0

Dynamic Programming: Continuous Time

°* let Jjit,x@) = JTc(x(s),u(s))dg + 1(x(T)) “Cost to go”

t

V(t,x(t)) = m1n U c(x(s),u(s))ds + l(x(T))] ' ,‘]
/ “uy* n / ’ ’
Write out time interval explicitly for clarity “Value function”, °J (t’ x(t)) 27611?3 1

* Dynamic programming principle:

+6
V(t,x(t)) = min Ut c(x(s),u(s))ds +V(t+38,x(t+9))]
t J

Uit,e+6]()

T
|

* Approximate integral and Taylor expand V(t + 6, x(t + 6))
* Derive Hamilton-Jacobi partial differential equation (HJ PDE)

Dynamic Programming: Continuous Time

e Approximations for small ¢: x(6) + 8 Cx,)

+68
V(t x(t)) = min Ut c(x(s) u(s))ds + V(t + 5, x(t+95))]

Uure, t+8

C(x(t),u(t))5

* Omit t dependence...

_ avy\' oV
V(t,x) = min [c(x, w)o +V(tx)+ (a) Sf(x,u) + Ec?]

Assume constant up, .4 5] = Optimization over a vector, not a function!

* V(t,x) does not depend on u
.

ax) flaw) +5,]

V(t,x) =V(tx)+ muin [c(x, u)d + (

Dynamic Programming: Continuous Time

e Approximations for small ¢: x(6) + 8 Cx,)

+68
V(t x(t)) = min Ut c(x(s) u(s))ds + V(t + 5, x(t+95))]

Uure, t+8

C(x(t),u(t))5

* Omit t dependence...

_ avy\' oV
V(t,x) = min [c(x, w)o +V(tx)+ (a) Sf(x,u) + Ec?]

Assume constant up, .4 5] = Optimization over a vector, not a function!

* V(t,x) does not depend on u
.

av
) Sf(x,u) +E5]

V)= Vt0-+ muin [c(x, u)d + (Z_Z

Dynamic Programming: Continuous Time

e Approximations for small ¢: x(6) + 8 Cx,)

+68
V(t x(t)) = min Ut c(x(s) u(s))ds + V(t + 5, x(t+95) t]

Uure, t+8

C(x(t),u(t))5

* Omit t dependence...

vy ' oV
V(t,x) = muin [c(x, w)o +V(tx)+ (a) Sf(x,u) + Ec?]

Assume constant up, .4 5] = Optimization over a vector, not a function!

* V(t,x) does not depend on u

av

1%
0= a—é + m1n [c(x u)é + (x) &f (x, u)]

Dynamic Programming: Continuous Time

e Approximations for small ¢: x(6) + 8 Cx,)

+68
V(t x(t)) = min Ut c(x(s) u(s))ds + V(t + 5, x(t+95) t]

Uure, t+8

C(x(t),u(t))5

* Omit t dependence...

vy ' oV
V(t,x) = muin [c(x, w)o +V(tx)+ (a) Sf(x,u) + Ec?]

Assume constant up, .4 5] = Optimization over a vector, not a function!

* V(t,x) does not depend on u

av

aV
0= E-I_ min [c(x u) + (f(x, u)]

Computing Reachable Sets:
Hamilton-Jacobi Approach

 Start from continuous time dynamic programming

* Observe that disturbances do not affect the procedure

* Remove running cost

* Pick final cost intelligently

Dynamic Programming: Continuous Time
(with disturbances and T = 0)

* Let jitx@)= joc(x(s),u(s),d(s))ds +1(x(T)) “Costtogo”
V(t x(t)) = ml?) m(a)x U c(x(s) u(s), d(s))ds + l(x(T))]

Worst-case disturbance -- do the opposite of the control

* Dynamic programming principle:

+6
V(t,x(t)) = rr[%?) rlrtl(a)x Jt c(x(s), u(s), d(S))dS_+ V(t+6x(+ 5))]

| . .
* Approximate integral and Taylor expand V(t + 6, x(t + 6))
* Derive Hamilton-Jacobi partial differential equation (HJ PDE)

Dynamic Programming: Continuous Time
(with disturbances and T = 0)

* Approximations for small ¢: x(6) + 6f (x,u, d)

+6
V(t,x(t)) = rnzlj?) max Ut c(x(s), u(s), d(s))ds +V(t+6,x(t+ 5))]

c(x(o), u(t), d(t))s V(t,x(t)) + g—‘; S (e (), u(t),d(t)) + %—Z)

* Omit t dependence...

vy ' v
V(t,x) = maxmin|c(x,u,d)d +V(t,x) + (—) Sf(x,u,d) + =—3§
u d dx ot

\ * Assume constant u and d = Optimization over vectors, not functions!
* Order of max and min reverse: disturbance has the advantage

* V(t,x) does not depend on u ord
.

av av
V(t,x) = V(t,x) + max min [c(x, u,d)d + (—) Sf(x,u,d) + —5]
u d dx ot

Dynamic Programming: Continuous Time
(with disturbances and T = 0)

* Approximations for small ¢: x(6) + 6f (x,u, d)

+6
V(t,x(t)) = rnzlj?) max Ut c(x(s), u(s), d(s))ds +V(t+6,x(t+ 5))]

c(x(o), u(t), d(t))s V(t,x(t)) + g—‘; S (e (), u(t),d(t)) + %—Z)

* Omit t dependence...

vy ' v
V(t,x) = maxmin|c(x,u,d)d +V(t,x) + (—) Sf(x,u,d) + =—3§
u d dx ot

\ * Assume constant u and d = Optimization over vectors, not functions!
* Order of max and min reverse: disturbance has the advantage

* V(t,x) does not depend on u ord
.

av
) Sf(x,u,d) + 55]

1%
V) = V) + max mdin [c(x, u,d)d + (a
u

Dynamic Programming: Continuous Time
(with disturbances and T = 0)

* Approximations for small ¢: x(6) + 6f (x,u, d)

+68
V(t,x(t)) = rmﬁ?) m(a)x Ut c(x(s) u(s), d(s))ds + V(t + 6, x(t + 5))]

c(x(o), u(t), d(t))s V(t,x(t)) + g—‘; S (e (), u(t),d(t)) + %—Z)

* Omit t dependence...

vy ' v
V(t,x) = maxmin|c(x,u,d)d +V(t,x) + (—) Sf(x,u,d) + =—3§
u d dx ot

\ * Assume constant u and d = Optimization over vectors, not functions!

* Order of max and min reverse: disturbance has the advantage

* V(t,x) does not depend on u ord

1% 1%
0= 6—5 + maxm;n [c(x u,d)é +(x) &f (x,u, d)]

Dynamic Programming: Continuous Time
(with disturbances and T = 0)

* Approximations for small ¢: x(6) + 6f (x,u, d)
+6
V(t x(t)) = antl?) m(a)x Ut c(x(s) u(s), d(s))ds + V(t + 6, x(t+95))]

c(x(t), u(t), d(t))5 V(t, x(t)) + — 5f(x(t) u(t), d(t)) + a_)

* Omit t dependence...

vy ' oV
V(t,x) = maxmin|c(x,u,d)é + V(t,x) + (—) Sf(x,u,d) +——26
u d dx ot

\ * Assume constant u and d = Optimization over vectors, not functions!
* Order of max and min reverse: disturbance has the advantage

* V(t,x) does not depend on u ord

av av
0= E+maxmdm[c(xud)+()f(xud)]

Computing Reachable Sets:
Hamilton-Jacobi Approach

 Start from continuous time dynamic programming

* Observe that disturbances do not affect the procedure

* Remove running cost

* Pick final cost intelligently

Remove Running Cost, Pick Final Cost

* Hamilton-Jacobi Equation
v

e 0= a—+mazl;1xml}n [c(x u,d) +() f(x,u, d)] V(0,x) = l(x)
(xr,

Xr
: = (Y
* Remove running cost i [QT]

+ 0= 2+ maxmin [() Flxu, d)] V(0,%) = 1(x) r

* Pick final cost such that
cx€ET &Il(x)<0
* Example: If T = { X2 + Y2 < R} C R3, we can pick I(x,, ¥, 0,) = /x2 + y2 — R

[(x), ”Trget set”

Pick Final Cost

* Pick final cost such that
cxET &Il(x)<0

« If T = {x:\/x,? +y? < R} C R3, we can pick [(x;, Vy, 0;) = /x? + y2 — R

 Why is this correct?
* Final state x(0) is in T if and only if l(x(O)) <0

* To avoid T, control should maximize l(x(O))
* Worst-case disturbance would minimize *g (tc))

e V(t,x) = r[I‘l[br]l ml?xl(x(O))

v (0,x,(0)) >0
V(0,x,(0)) <0

Reaching vs. Avoiding

* Avoiding danger @ A | * Reaching a goal

* BRS definition * BRS definition
A(t) = {x: Aru] (), vu(-),x = f(x,u,d), x(t) = x,x(0) € T} R(t) = {x:VI'[u](-),Fu(),x = f(x,u,d),x(t) = x,x(0) € T}

* Value function e Value function
V(t,x) = min ml?xl(x(O)) V(t,x) = max min 1(x(0))

* HJPDE * HJ PDE

av

s max min (a) feoud)| = T min max (E) fl,u,d)| =

* Optimal control e Optimal control

VN _ avy'
u* = arg max min (—) flx,u,d) u* = arg min max (—) flx,u,d)
u d ox u d dx

Optimal Control and Disturbance

* Example: Scalar control and disturbance affine system
* Dynamics: x = f(x) + 2; 9i()u; + X hi(x)dj, x € R
» Control and disturbance constraints: u; € [ul,ul] d; € |d;, d;]

6V [
— min
ot {u €lusu]} { dJE[dJ djl}

f(x, u, d)

av
a {ule[ululmd,e[d,d,pHﬂ SIS zhw)
av

0t " ulusnd) (a8l axf 9+ Z ax S +Z h; (x)d;

1%

i gi(x) =0

alV
agi(x) <0

Optimal Control and Disturbance

e Easy to compute for many common types of control and disturbance
constraints

* Interval constraints: easy -- see last slide
* Polytopic constraints: easy -- test all vertices

e Other: ideally, need analytic expression
e Optimization needs to be done at every grid point!

)% . o\ " _
Eg. ot min max [(E) f(x,u, d)] =0

Terminology

e Minimal backward reachable set
* A(t) = {x: Al [u] (), Vul),x = f(x,u,d), x(t) = x,x(0) € T}
e Control minimizes size of reachable set

* Maximal backward reachable set
* R(t) = {e: VI [u] (), Ful), x = f(x,u,d),x(t) = x,x(0) € T}
* Control maximizes size of reachable set

o =
* Minimal and maximal backward reachable tube]

« A(t) = {&:3AT[u] (), vu(-),x = f(x,u,d),x(t) = x,3s € [t,0],x(s) € T}
e R(t) = {Z:VI'u](),Fu(),x = f(x,u,d), x(t) = x,3s € [t,0],x(s) € T}

