
Hamilton-Jacobi	
Reachability	Analysis	I

CMPT	419/983
Mo	Chen

SFU	Computing	Science
16/10/2019

Reachability	Analysis:	Avoidance

Assumptions:	
• Model	of	robot
• Unsafe	region:	Obstacle

Unsafe	region

Backward	reachable	set	
(States	leading	to	danger)

Reachable	set

Control	policy

Reachability	Analysis:	Goal	Reaching
Backward	reachable	set

Target	set

3

• Model	of	robot
• Goal	region

Backward	reachable	set	
(States	leading	to	goal)

Control	policy

Assumptions
• System	dynamics: 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑡 ≤ 0 (by	convention,	final	time	is	0)

• State	𝑥
• Single	vehicle,	multiple	vehicle,	relative	coordinates

• Disturbance	𝑑:	uncontrolled	factors	that	affect	the	system,	such	as	wind
• Can	be	used	to	model	other	agents,	when	state	includes	them
• Assume	worst	case

𝑦-

𝑥-

𝜃-
𝑥-, 𝑦-, 𝜃-

𝑥/, 𝑦/, 𝜃/

𝑥 =

𝑥-
𝑦-
𝜃-
𝑥/
𝑦/
𝜃/

𝑥 =
𝑥-
𝑦-
𝜃-

𝜃0

𝑥0, 𝑦0

𝑥 =
𝑥0
𝑦0
𝜃0

Assumptions
• “Target	set”,	𝒯
• Can	specify	set	of	states	leading	to	danger
• Expressed	through	set	notation

𝑥 =
𝑥-
𝑦-
𝜃-

Obstacle
at	 𝑥̅, 𝑦3

𝒯 = 𝑥: 𝑥- − 𝑥̅ / + 𝑦- − 𝑦3 / ≤ 𝑟 ⊆ ℝ:

𝜃0

𝑥0, 𝑦0

𝑥 =
𝑥0
𝑦0
𝜃0

𝒯 = 𝑥: 𝑥0
/ + 𝑦0

/ ≤ 𝑅 ⊆ ℝ:

Information	Pattern

• Control:	chosen	by	“ego”	robot
• Disturbances:	chosen	by	other	robot	(or	weather	gods)

• Assume	worst	case

• “Open-loop”	strategies
• Ego	robot	declares	entire	plan
• Other	robot	responds	optimally	(worst-case)
• Conservative,	unrealistic,	but	computationally	cheap

• “Non-anticipative”	strategies
• Other	robot	acts	based	on	state	and	control	trajectory	up	current	time
• Notation:	𝑑 ⋅ = Γ 𝑢 ⋅
• Disturbance	still	has	the	advantage:	it	gets	to	react	to	the	control!

Reachability	Analysis

7

• Model	of	robot
• Unsafe	region

Backward	reachable	set	(States	leading	to	danger)

Control	policy

• Model	of	robot
• Goal	region

Backward	reachable	set	(States	leading	to	goal)

Control	policy

• 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑
• 𝒯

• 𝒜 𝑡 = 𝑥̅: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, 𝑥 0 ∈ 𝒯

• ℛ 𝑡 = 𝑥̅: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, 𝑥 0 ∈ 𝒯

• 𝑢∗ 𝑡, 𝑥

Reachability	Analysis

8

• Model	of	robot
• Unsafe	region

Control	policy

• Model	of	robot
• Goal	region

Control	policy

• 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑
• 𝒯 • 𝑢∗ 𝑡, 𝑥

• 𝒜 𝑡 = 𝑥̅: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, 𝑥 0 ∈ 𝒯

States	at	time	𝑡 satisfying	the	following:
there	exists	a	disturbance such	that	for	all	control, system enters	target	set	at	𝑡 = 0

• ℛ 𝑡 = 𝑥̅: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, 𝑥 0 ∈ 𝒯

States	at	time	𝑡 satisfying	the	following:
for	all	disturbances, there	exists	a	control such	that system enters	target	set	at	𝑡 = 0

Backward	reachable	set	(States	leading	to	danger)

Backward	reachable	set	(States	leading	to	goal)

Computing	Reachable	Sets:	
Hamilton-Jacobi	Approach
• Start	from	continuous	time	dynamic	programming

• Observe	that	disturbances	do	not	affect	the	procedure

• Remove	running	cost

• Pick	final	cost	intelligently

Dynamic	Programming:	Continuous	Time

• Let	𝐽 𝑡, 𝑥(𝑡) = 𝑙 𝑇, 𝑥 𝑇 + ∫ 𝑐 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡K
L

• 𝑉 0, 𝑥(0) = min
Q ⋅

𝐽 0, 𝑥 0 is	what	we	want

• Strategy:	
• make	a	“discrete	time”	argument	with	Δ𝑡
• Let	Δ𝑡 → 0

minimize 𝑙 𝑇, 𝑥 𝑇 + V 𝑐 𝑥 𝑡 , 𝑢 𝑡 𝑑𝑡
K

W
subject to 𝑥̇ 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

Final	cost
Running	cost

Dynamic	model

𝑥 𝑡 ∈ ℝ_, 𝑢 𝑡 ∈ ℝ`, 𝑥 0 = 𝑥W

Cost	functional,	𝐽 𝑥 ⋅ , 𝑢 ⋅

Dynamic	Programming:	Continuous	Time

• Let

• Dynamic	programming	principle:

• Approximate	integral	and	Taylor	expand	𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿
• Derive	Hamilton-Jacobi	partial	differential	equation	(HJ	PDE)

𝑉 𝑡, 𝑥 𝑡 = min
Q[c,d] ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠
K

L
+ 𝑙 𝑥 𝑇

𝐽 𝑡, 𝑥(𝑡) = V 𝑐 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠
K

L
+ 𝑙 𝑥 𝑇 “Cost	to	go”

“Value	function”,	“𝐽∗ 𝑡, 𝑥 𝑡 ”
𝑎

𝑏-

𝑏/

𝑏:

𝑑

𝐽ijkl 𝐽ijkm

𝐽ijkn

𝐽kno
∗

𝐽kmo
∗

𝐽klo
∗

𝑉 𝑡, 𝑥 𝑡 = min
Q[c,cpq] ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

Write	out	time	interval	explicitly	for	clarity

Dynamic	Programming:	Continuous	Time

• Approximations	for	small	𝛿:

• Omit	𝑡 dependence…

• 𝑉 𝑡, 𝑥 does	not	depend	on	𝑢

𝑉 𝑡, 𝑥 𝑡 = min
Q[c,cpq] ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

𝑐 𝑥 𝑡 , 𝑢 𝑡 𝛿
𝑉 𝑡, 𝑥(𝑡) +

𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +
𝜕𝑉
𝜕𝑡 𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢

𝑉 𝑡, 𝑥 = min
Q

𝑐 𝑥, 𝑢 𝛿	 + 𝑉 𝑡, 𝑥 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢 +
𝜕𝑉
𝜕𝑡 𝛿	

𝑉 𝑡, 𝑥 = 𝑉 𝑡, 𝑥 + min
Q

𝑐 𝑥, 𝑢 𝛿	 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢 +
𝜕𝑉
𝜕𝑡 𝛿	

Assume	constant	𝑢 L,Lrs à Optimization	over	a	vector,	not	a	function!

Dynamic	Programming:	Continuous	Time

• Approximations	for	small	𝛿:

• Omit	𝑡 dependence…

• 𝑉 𝑡, 𝑥 does	not	depend	on	𝑢

𝑉 𝑡, 𝑥 𝑡 = min
Q[c,cpq] ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

𝑐 𝑥 𝑡 , 𝑢 𝑡 𝛿
𝑉 𝑡, 𝑥(𝑡) +

𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +
𝜕𝑉
𝜕𝑡 𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢

𝑉 𝑡, 𝑥 = min
Q

𝑐 𝑥, 𝑢 𝛿	 + 𝑉 𝑡, 𝑥 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢 +
𝜕𝑉
𝜕𝑡 𝛿	

𝑉 𝑡, 𝑥 = 𝑉 𝑡, 𝑥 + min
Q

𝑐 𝑥, 𝑢 𝛿	 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢 +
𝜕𝑉
𝜕𝑡 𝛿	

Assume	constant	𝑢 L,Lrs à Optimization	over	a	vector,	not	a	function!

Dynamic	Programming:	Continuous	Time

• Approximations	for	small	𝛿:

• Omit	𝑡 dependence…

• 𝑉 𝑡, 𝑥 does	not	depend	on	𝑢

𝑉 𝑡, 𝑥 𝑡 = min
Q[c,cpq] ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

𝑐 𝑥 𝑡 , 𝑢 𝑡 𝛿
𝑉 𝑡, 𝑥(𝑡) +

𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +
𝜕𝑉
𝜕𝑡 𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢

𝑉 𝑡, 𝑥 = min
Q

𝑐 𝑥, 𝑢 𝛿	 + 𝑉 𝑡, 𝑥 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢 +
𝜕𝑉
𝜕𝑡 𝛿	

0 =
𝜕𝑉
𝜕𝑡 𝛿 + min

Q
𝑐 𝑥, 𝑢 𝛿	 +

𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢

Assume	constant	𝑢 L,Lrs à Optimization	over	a	vector,	not	a	function!

Dynamic	Programming:	Continuous	Time

• Approximations	for	small	𝛿:

• Omit	𝑡 dependence…

• 𝑉 𝑡, 𝑥 does	not	depend	on	𝑢

𝑉 𝑡, 𝑥 𝑡 = min
Q[c,cpq] ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

𝑐 𝑥 𝑡 , 𝑢 𝑡 𝛿
𝑉 𝑡, 𝑥(𝑡) +

𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥(𝑡), 𝑢(𝑡) +
𝜕𝑉
𝜕𝑡 𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢

𝑉 𝑡, 𝑥 = min
Q

𝑐 𝑥, 𝑢 𝛿	 + 𝑉 𝑡, 𝑥 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢 +
𝜕𝑉
𝜕𝑡 𝛿	

0 =
𝜕𝑉
𝜕𝑡 + min

Q
𝑐 𝑥, 𝑢 	 +

𝜕𝑉
𝜕𝑥

u

𝑓 𝑥, 𝑢

Assume	constant	𝑢 L,Lrs à Optimization	over	a	vector,	not	a	function!

Computing	Reachable	Sets:	
Hamilton-Jacobi	Approach
• Start	from	continuous	time	dynamic	programming

• Observe	that	disturbances	do	not	affect	the	procedure

• Remove	running	cost

• Pick	final	cost	intelligently

𝑎

𝑏-

𝑏/

𝑏:

𝑑

𝐽ijkl 𝐽ijkm

𝐽ijkn

𝐽kno
∗

𝐽kmo
∗

𝐽klo
∗

Dynamic	Programming:	Continuous	Time
(with	disturbances	and	𝑇 = 0)
• Let

• Dynamic	programming	principle:

• Approximate	integral	and	Taylor	expand	𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿
• Derive	Hamilton-Jacobi	partial	differential	equation	(HJ	PDE)

𝑉 𝑡, 𝑥 𝑡 = min
v Q ⋅

max
Q ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠
W

L
+ 𝑙 𝑥 𝑇

𝐽 𝑡, 𝑥(𝑡) = V 𝑐 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠
W

L
+ 𝑙 𝑥 𝑇 “Cost	to	go”

𝑉 𝑡, 𝑥 𝑡 = min
v Q ⋅

max
Q ⋅

V 𝑐 𝑥(𝑠), 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

Worst-case	disturbance	-- do	the	opposite	of	the	control

Dynamic	Programming:	Continuous	Time
(with	disturbances	and	𝑇 = 0)
• Approximations	for	small	𝛿:

• Omit	𝑡 dependence…

• 𝑉 𝑡, 𝑥 does	not	depend	on	𝑢 or	𝑑

𝑉 𝑡, 𝑥 𝑡 = min
v Q ⋅

max
Q ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑑 𝑡 𝛿

𝑉 𝑡, 𝑥 = max
Q

min
o

𝑐 𝑥, 𝑢, 𝑑 𝛿	 + 𝑉 𝑡, 𝑥 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢, 𝑑 +
𝜕𝑉
𝜕𝑡 𝛿	

𝑉 𝑡, 𝑥 = 𝑉 𝑡, 𝑥 + max
Q

min
o

𝑐 𝑥, 𝑢, 𝑑 𝛿	 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢, 𝑑 +
𝜕𝑉
𝜕𝑡 𝛿	

• Assume	constant	𝑢 and	𝑑 à Optimization	over	vectors,	not	functions!
• Order	of	max	and	min	reverse:	disturbance	has	the	advantage

𝑉 𝑡, 𝑥(𝑡) +
𝜕𝑉
𝜕𝑥

⋅ 𝛿𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑑(𝑡) +
𝜕𝑉
𝜕𝑡

𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢, 𝑑

Dynamic	Programming:	Continuous	Time
(with	disturbances	and	𝑇 = 0)
• Approximations	for	small	𝛿:

• Omit	𝑡 dependence…

• 𝑉 𝑡, 𝑥 does	not	depend	on	𝑢 or	𝑑

𝑉 𝑡, 𝑥 𝑡 = min
v Q ⋅

max
Q ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑑 𝑡 𝛿

𝑉 𝑡, 𝑥 = max
Q

min
o

𝑐 𝑥, 𝑢, 𝑑 𝛿	 + 𝑉 𝑡, 𝑥 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢, 𝑑 +
𝜕𝑉
𝜕𝑡 𝛿	

𝑉 𝑡, 𝑥 = 𝑉 𝑡, 𝑥 + max
Q

min
o

𝑐 𝑥, 𝑢, 𝑑 𝛿	 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢, 𝑑 +
𝜕𝑉
𝜕𝑡 𝛿	

• Assume	constant	𝑢 and	𝑑 à Optimization	over	vectors,	not	functions!
• Order	of	max	and	min	reverse:	disturbance	has	the	advantage

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢, 𝑑

𝑉 𝑡, 𝑥(𝑡) +
𝜕𝑉
𝜕𝑥

⋅ 𝛿𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑑(𝑡) +
𝜕𝑉
𝜕𝑡

𝛿

Dynamic	Programming:	Continuous	Time
(with	disturbances	and	𝑇 = 0)
• Approximations	for	small	𝛿:

• Omit	𝑡 dependence…

• 𝑉 𝑡, 𝑥 does	not	depend	on	𝑢 or	𝑑

𝑉 𝑡, 𝑥(𝑡) = min
v Q ⋅

max
Q ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑑 𝑡 𝛿

𝑉 𝑡, 𝑥 = max
Q

min
o

𝑐 𝑥, 𝑢, 𝑑 𝛿	 + 𝑉 𝑡, 𝑥 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢, 𝑑 +
𝜕𝑉
𝜕𝑡 𝛿	

0 =
𝜕𝑉
𝜕𝑡 𝛿 + max

Q
min

o
𝑐 𝑥, 𝑢, 𝑑 𝛿	 +

𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢, 𝑑

• Assume	constant	𝑢 and	𝑑 à Optimization	over	vectors,	not	functions!
• Order	of	max	and	min	reverse:	disturbance	has	the	advantage

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢, 𝑑

𝑉 𝑡, 𝑥(𝑡) +
𝜕𝑉
𝜕𝑥

⋅ 𝛿𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑑(𝑡) +
𝜕𝑉
𝜕𝑡

𝛿

Dynamic	Programming:	Continuous	Time
(with	disturbances	and	𝑇 = 0)
• Approximations	for	small	𝛿:

• Omit	𝑡 dependence…

• 𝑉 𝑡, 𝑥 does	not	depend	on	𝑢 or	𝑑

𝑉 𝑡, 𝑥 𝑡 = min
v Q ⋅

max
Q ⋅

V 𝑐 𝑥 𝑠 , 𝑢 𝑠 , 𝑑 𝑠 𝑑𝑠
Lrs

L
+ 𝑉 𝑡 + 𝛿, 𝑥 𝑡 + 𝛿

c 𝑥 𝑡 , 𝑢 𝑡 , 𝑑 𝑡 𝛿

𝑥 𝑡 + 𝛿𝑓 𝑥, 𝑢, 𝑑

𝑉 𝑡, 𝑥 = max
Q

min
o

𝑐 𝑥, 𝑢, 𝑑 𝛿	 + 𝑉 𝑡, 𝑥 +
𝜕𝑉
𝜕𝑥

u

𝛿𝑓 𝑥, 𝑢, 𝑑 +
𝜕𝑉
𝜕𝑡 𝛿	

0 =
𝜕𝑉
𝜕𝑡 + max

Q
min

o
𝑐 𝑥, 𝑢, 𝑑 +

𝜕𝑉
𝜕𝑥

u

𝑓 𝑥, 𝑢, 𝑑

• Assume	constant	𝑢 and	𝑑 à Optimization	over	vectors,	not	functions!
• Order	of	max	and	min	reverse:	disturbance	has	the	advantage

𝑉 𝑡, 𝑥(𝑡) +
𝜕𝑉
𝜕𝑥

⋅ 𝛿𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝑑(𝑡) +
𝜕𝑉
𝜕𝑡

𝛿

Computing	Reachable	Sets:	
Hamilton-Jacobi	Approach
• Start	from	continuous	time	dynamic	programming

• Observe	that	disturbances	do	not	affect	the	procedure

• Remove	running	cost

• Pick	final	cost	intelligently

Remove	Running	Cost,	Pick	Final	Cost

• Hamilton-Jacobi	Equation
• 0 = yz

yL
+ max

o
min

Q
𝑐 𝑥, 𝑢, 𝑑 + yz

y{

u
𝑓 𝑥, 𝑢, 𝑑 , 𝑉 0, 𝑥 = 𝑙 𝑥

• Remove	running	cost
• 0 = yz

yL
+ max

o
min

Q

yz
y{

u
𝑓 𝑥, 𝑢, 𝑑 , 𝑉 0, 𝑥 = 𝑙 𝑥

• Pick	final	cost	such	that
• 𝑥 ∈ 𝒯 ⇔ 𝑙 𝑥 ≤ 0
• Example:	If	𝒯 = 𝑥: 𝑥0

/ + 𝑦0
/ ≤ 𝑅 ⊆ ℝ:,	we	can	pick	𝑙 𝑥0, 𝑦0, 𝜃0 = 𝑥0

/ + 𝑦0
/ − 𝑅

𝜃0

𝑥0, 𝑦0

𝑥 =
𝑥0
𝑦0
𝜃0

𝒯 = 𝑥: 𝑥0
/ + 𝑦0

/ ≤ 𝑅 ⊆ ℝ:

Pick	Final	Cost

• Pick	final	cost	such	that
• 𝑥 ∈ 𝒯 ⇔ 𝑙 𝑥 ≤ 0
• If	𝒯 = 𝑥: 𝑥0

/ + 𝑦0
/ ≤ 𝑅 ⊆ ℝ:,	we	can	pick	𝑙 𝑥0, 𝑦0, 𝜃0 = 𝑥0

/ + 𝑦0
/ − 𝑅

• Why	is	this	correct?
• Final	state	𝑥 0 is	in	𝒯 if	and	only	if	𝑙 𝑥 0 ≤ 0
• To	avoid	𝒯,	control	should	maximize	𝑙 𝑥 0

• Worst-case	disturbance	would	minimize

• 𝑉 𝑡, 𝑥 = min
v Q

max
Q

𝑙 𝑥 0

𝑥} 0

𝑥k 0

𝑙 𝑥 ≤ 0,	
target	set

𝑉 0, 𝑥} 0 > 0
𝑉 0, 𝑥k 0 ≤ 0

𝑥k 𝑡

𝑥} 𝑡

𝑙 𝑥 ,	“Target	set”

Reaching	vs.	Avoiding
• Avoiding	danger

• BRS	definition
𝒜 𝑡 = 𝑥̅: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, 𝑥 0 ∈ 𝒯

• Value	function
𝑉 𝑡, 𝑥 = min

v Q
max

Q
𝑙 𝑥 0

• HJ	PDE
𝜕𝑉
𝜕𝑡

+ max
Q

min
o

𝜕𝑉
𝜕𝑥

u

𝑓 𝑥, 𝑢, 𝑑 = 0

• Optimal	control

𝑢∗ = arg max
Q

min
o

𝜕𝑉
𝜕𝑥

u

𝑓 𝑥, 𝑢, 𝑑

• Reaching	a	goal

• BRS	definition
ℛ 𝑡 = 𝑥̅: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, 𝑥 0 ∈ 𝒯

• Value	function
𝑉 𝑡, 𝑥 = max

v Q
min

Q
𝑙 𝑥 0

• HJ	PDE
𝜕𝑉
𝜕𝑡

+ min
Q

max
o

𝜕𝑉
𝜕𝑥

u

𝑓 𝑥, 𝑢, 𝑑 = 0

• Optimal	control

𝑢∗ = arg min
Q

max
o

𝜕𝑉
𝜕𝑥

u

𝑓 𝑥, 𝑢, 𝑑

Optimal	Control	and	Disturbance

• Example:	Scalar	control	and	disturbance	affine	system
• Dynamics:	𝑥̇ = 𝑓 𝑥 + ∑ 𝑔� 𝑥 𝑢�� + ∑ ℎ� 𝑥 𝑑�� , 𝑥 ∈ ℝ
• Control	and	disturbance	constraints:	𝑢� ∈ 𝑢�, 𝑢3� , 𝑑� ∈ 𝑑�, 𝑑̅�

𝜕𝑉
𝜕𝑡 + min

Q�∈ Q�,Q��
max

o�∈ o�,o3�

𝜕𝑉
𝜕𝑥

u

𝑓 𝑥, 𝑢, 𝑑 = 0

𝜕𝑉
𝜕𝑡 + min

Q�∈ Q�,Q��
max

o�∈ o�,o3�

𝜕𝑉
𝜕𝑥 𝑓 𝑥 + � 𝑔� 𝑥 𝑢�

�

+ � ℎ� 𝑥 𝑑�
�

= 0

𝜕𝑉
𝜕𝑡 + min

Q�∈ Q�,Q��
max

o�∈ o�,o3�

𝜕𝑉
𝜕𝑥 𝑓 𝑥 + �

𝜕𝑉
𝜕𝑥 𝑔� 𝑥 𝑢�

�

+ �
𝜕𝑉
𝜕𝑥 ℎ� 𝑥 𝑑�

�

= 0

𝑢� =
𝑢�,

𝜕𝑉
𝜕𝑥 𝑔� 𝑥 ≥ 0

𝑢3�,
𝜕𝑉
𝜕𝑥 𝑔� 𝑥 < 0

𝑑� =
𝑑�,

𝜕𝑉
𝜕𝑥 𝑔� 𝑥 < 0

𝑑̅�,
𝜕𝑉
𝜕𝑥 𝑔� 𝑥 ≥ 0

Optimal	Control	and	Disturbance

• Easy	to	compute	for	many	common	types	of	control	and	disturbance	
constraints

• Interval	constraints:	easy	-- see	last	slide
• Polytopic	constraints:	easy	-- test	all	vertices
• Other:	ideally,	need	analytic	expression
• Optimization	needs	to	be	done	at	every	grid	point!

Eg. yz
yL + min

Q
max

o
yz
y{

u
𝑓 𝑥, 𝑢, 𝑑 = 0

Terminology

• Minimal	backward	reachable	set
• 𝒜 𝑡 = 𝑥̅: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, 𝑥 0 ∈ 𝒯
• Control	minimizes	size	of	reachable	set

• Maximal	backward	reachable	set
• ℛ 𝑡 = 𝑥̅: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, 𝑥 0 ∈ 𝒯
• Control	maximizes	size	of	reachable	set

• Minimal	and	maximal	backward	reachable	tube
• 𝒜̅ 𝑡 = 𝑥̅: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, ∃𝑠 ∈ 𝑡, 0 , 𝑥 𝑠 ∈ 𝒯
• ℛ3 𝑡 = 𝑥̅: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , 𝑥̇ = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = 𝑥̅, ∃𝑠 ∈ 𝑡, 0 , 𝑥 𝑠 ∈ 𝒯

