
11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 1/42

CMPT 419/983 Fall 2019 Reinforcement Learning with Tensorflow
Tutorial

This tutorial will provide a brief overview of the core concepts and functionality of Tensorflow. This
tutorial will cover the following:

Part 1: Tensorflow

1. What is Tensorflow
2. How to input data
3. How to perform computations
4. How to create variables
5. How to train a neural network
6. Tips and tricks

Part 2: OpenAI

1. Introduction to OpenAI
2. Agent and Environment
3. Q-Learning
4. Deep Q Learning using OpenAI and TensorFlow

Part 1: Tensorflow
Installation: To install Tensorflow, please refer to https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html
(https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html)

If you have a CUDA enabled GPU in your system, I highly recommend that you install the GPU version from the above website. Note: For
this sepcific notebook and assignment 3, installing the GPU version is not required and you can install the CPU version.

https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 2/42

In [46]:

In [2]:

1. What is Tensorflow
Tensorflow is a framework to define a series of computations. You define inputs, what operations should be performed, and then
Tensorflow will compute the outputs for you.

importing libraries
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.patches as mpatches

resetting tensorflow computation graph - Just housekeeping stuff
def tf_reset():
 try:
 sess.close()
 except:
 pass
 tf.reset_default_graph()
 return tf.Session()

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 3/42

Big idea : Tensor + Flow; Express a numeric computation as a graph
Graph nodes are operations which have any number of inputs and outputs
Grapgh egdes are tensors which flow between nodes

Let's see what a Tensor is:

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 4/42

Below is a simple high-level example of a tensorflow graph for h = ReLU(Wx + b) :

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 5/42

In [3]:

2. How to input data
Tensorflow has multiple ways for you to input data.

h = ReLU(Wx + b)

b = tf.Variable(tf.zeros((100,))) # all zeros
W = tf.Variable(tf.random_uniform((784, 100), -1, 1)) # W ~ Uniform(-1,1)

x = tf.placeholder(tf.float32, (100, 784))

h = tf.nn.relu(tf.matmul(x, W) + b)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 6/42

One way is to have the inputs be constants: As the name suggests, the value stored in constants can't be changes later.
Variables are stateful nodes which output their current value. For the parameters in a network, always use Variables.
Placeholders are nodes whose value is fed in at the execution time. Training data to any network is inserted at execution time so is
stored in placeholders.

In [4]:

In [5]:

As above, having our inputs be constants is inflexible. We want to be able to change what data we input at runtime. We do this using
placeholders:

c = 3.0

Out[5]: ['Const', 'Const_1', 'add']

create the session you'll work in
you can think of this as a "blank piece of paper" that you'll be writing math on
sess = tf_reset()

define your inputs
a = tf.constant(1.0)
b = tf.constant(2.0)

do some operations
c = a + b

get the result
c_run = sess.run(c)

print('c = {0}'.format(c_run))

Let's see the nodes in computation graph for the above example
[n.name for n in tf.get_default_graph().as_graph_def().node]

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 7/42

In [6]:

But what if we don't know the size of our input beforehand? One dimension of a tensor is allowed to be 'None', which means it can be
variable sized:

c0 = [3.]
c1 = [6.]

sess = tf_reset()

define your inputs
a = tf.placeholder(dtype=tf.float32, shape=[1], name='a_placeholder')
b = tf.placeholder(dtype=tf.float32, shape=[1], name='b_placeholder')

do some operations
c = a + b

get the result
c0_run = sess.run(c, feed_dict={a: [1.0], b: [2.0]})
c1_run = sess.run(c, feed_dict={a: [2.0], b: [4.0]})

print('c0 = {0}'.format(c0_run))
print('c1 = {0}'.format(c1_run))

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 8/42

In [7]:

3. How to perform computations
Now that we can input data, we want to perform useful computations on the data.

First, let's create some data to work with:

Tensor("a_placeholder:0", shape=(?,), dtype=float32)
a shape: (?,)
Tensor("b_placeholder:0", shape=(?,), dtype=float32)
b shape: (?,)
c0 = [3.]
c1 = [3. 6.]

sess = tf_reset()

inputs
a = tf.placeholder(dtype=tf.float32, shape=[None], name='a_placeholder')
b = tf.placeholder(dtype=tf.float32, shape=[None], name='b_placeholder')

do some operations
c = a + b

get outputs
c0_run = sess.run(c, feed_dict={a: [1.0], b: [2.0]})
c1_run = sess.run(c, feed_dict={a: [1.0, 2.0], b: [2.0, 4.0]})

print(a)
print('a shape: {0}'.format(a.get_shape()))
print(b)
print('b shape: {0}'.format(b.get_shape()))
print('c0 = {0}'.format(c0_run))
print('c1 = {0}'.format(c1_run))

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 9/42

In [8]:

We can do simple operations, such as addition:

In [9]:

Be careful about the dimensions of the tensors, some operations may work even when you think they shouldn't...

a:
[[-1.]
 [-2.]
 [-3.]]
b:
[[1. 2. 3.]]

b:
[[1. 2. 3.]]
c:
[[2. 4. 6.]]

sess = tf_reset()

inputs
a = tf.constant([[-1.], [-2.], [-3.]], dtype=tf.float32)
b = tf.constant([[1., 2., 3.]], dtype=tf.float32)

a_run, b_run = sess.run([a, b])
print('a:\n{0}'.format(a_run))
print('b:\n{0}'.format(b_run))

c = b + b

c_run = sess.run(c)
print('b:\n{0}'.format(b_run))
print('c:\n{0}'.format(c_run))

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 10/42

In [10]:

Also, some operations may be different than what you expect:

a:
[[-1.]
 [-2.]
 [-3.]]
b:
[[1. 2. 3.]]
c:
[[0. 1. 2.]
 [-1. 0. 1.]
 [-2. -1. 0.]]

c = a + b

c_run = sess.run(c)
print('a:\n{0}'.format(a_run))
print('b:\n{0}'.format(b_run))
print('c:\n{0}'.format(c_run))

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 11/42

In [11]:

Operations can be chained together:

In [12]:

Finally, Tensorflow has many useful built-in operations:

a:
[[-1.]
 [-2.]
 [-3.]]
b:
[[1. 2. 3.]]
c_elementwise:
[[-1. -2. -3.]
 [-2. -4. -6.]
 [-3. -6. -9.]]
c_matmul:
[[-14.]]

b:
[[1. 2. 3.]]
c0:
[[2. 4. 6.]]
c1:
[[3. 5. 7.]]

c_elementwise = a * b
c_matmul = tf.matmul(b, a)

c_elementwise_run, c_matmul_run = sess.run([c_elementwise, c_matmul])
print('a:\n{0}'.format(a_run))
print('b:\n{0}'.format(b_run))
print('c_elementwise:\n{0}'.format(c_elementwise_run))
print('c_matmul: \n{0}'.format(c_matmul_run))

operations can be chained together
c0 = b + b
c1 = c0 + 1

c0_run, c1_run = sess.run([c0, c1])
print('b:\n{0}'.format(b_run))
print('c0:\n{0}'.format(c0_run))
print('c1:\n{0}'.format(c1_run))

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 12/42

In [13]:

4. How to create variables
Now that we can input data and perform computations, we want some of these operations to involve variables that are free parameters,
and can be trained using an optimizer (e.g., gradient descent).

First, let's create some data to work with:

In [14]:

We'll now create a variable

b:
[[1. 2. 3.]]
c:
2.0

b:
[[1. 2. 3.]]

c = tf.reduce_mean(b)

c_run = sess.run(c)
print('b:\n{0}'.format(b_run))
print('c:\n{0}'.format(c_run))

sess = tf_reset()

inputs
b = tf.constant([[1., 2., 3.]], dtype=tf.float32)

sess = tf.Session()

b_run = sess.run(b)
print('b:\n{0}'.format(b_run))

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 13/42

In [15]:

and check that it's been added to Tensorflow's variables list:

In [16]:

We can do operations with the variable just like any other tensor:

In [17]:

Before we can run any of these operations, we must first initalize the variables

In [18]:

and then we can run the operations just as we normally would.

<tf.Variable 'myvar:0' shape=(1, 3) dtype=float32_ref>

[<tf.Variable 'myvar:0' shape=(1, 3) dtype=float32_ref>]

Tensor("Const:0", shape=(1, 3), dtype=float32)
<tf.Variable 'myvar:0' shape=(1, 3) dtype=float32_ref>
Tensor("add:0", shape=(1, 3), dtype=float32)

var_init_value = [[2.0, 4.0, 6.0]]
var = tf.get_variable(name='myvar',
 shape=[1, 3],
 dtype=tf.float32,
 initializer=tf.constant_initializer(var_init_value))

print(var)

print(tf.global_variables())

can do operations
c = b + var
print(b)
print(var)
print(c)

init_op = tf.global_variables_initializer()
sess.run(init_op)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 14/42

In [19]:

So far we haven't said yet how to optimize these variables. We'll cover that next in the context of an example.

5. How to train a simple neural network for regression probelem and
a Multi Layer Perceptron neural network for MNIST classification
We've discussed how to input data, perform operations, and create variables. We'll now show how to combine all of these---with some
minor additions---to train a neural network on a simple regression problem.

First, we'll create data for the 1-dimensional regression problem:

b:
[[1. 2. 3.]]
var:
[[2.0, 4.0, 6.0]]
c:
[[3. 6. 9.]]

c_run = sess.run(c)

print('b:\n{0}'.format(b_run))
print('var:\n{0}'.format(var_init_value))
print('c:\n{0}'.format(c_run))

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 15/42

In [20]:

But first, let's see what a mulitlayer perceptron looks like

Out[20]: <matplotlib.collections.PathCollection at 0x26f0f492be0>

%matplotlib inline

generate the data
inputs = np.linspace(-2*np.pi, 2*np.pi, 10000)[:, None]
outputs = np.sin(inputs) + 0.05 * np.random.normal(size=[len(inputs),1])

plt.scatter(inputs[:, 0], outputs[:, 0], s=0.1, color='k', marker='o')

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 16/42

The below code creates the inputs, variables, neural network operations, mean-squared-error loss, gradient descent optimizer, and runs
the optimizer using minibatches of the data.

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 17/42

In [21]: sess = tf_reset()

def create_model():
 # create inputs
 input_ph = tf.placeholder(dtype=tf.float32, shape=[None, 1])
 output_ph = tf.placeholder(dtype=tf.float32, shape=[None, 1])

 W0 = tf.Variable(tf.random_normal([1, 20]))
 W1 = tf.Variable(tf.random_normal([20, 20]))
 W2 = tf.Variable(tf.random_normal([20, 1]))

 b0 = tf.Variable(tf.random_normal([20]))
 b1 = tf.Variable(tf.random_normal([20]))
 b2 = tf.Variable(tf.random_normal([1]))

 # create computation graph
 output_pred = tf.add(tf.matmul(input_ph, W0), b0)
 output_pred = tf.nn.relu(output_pred)

 output_pred = tf.add(tf.matmul(output_pred, W1), b1)
 output_pred = tf.nn.relu(output_pred)

 output_pred = tf.add(tf.matmul(output_pred, W2), b2)

 return input_ph, output_ph, output_pred

input_ph, output_ph, output_pred = create_model()

create loss
mse = tf.reduce_mean(0.5 * tf.square(output_pred - output_ph))

create optimizer
opt = tf.train.AdamOptimizer().minimize(mse)

initialize variables
sess.run(tf.global_variables_initializer())
create saver to save model variables
saver = tf.train.Saver()

run training
batch_size = 1024
for training_step in range(10000):

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 18/42

Now that the neural network is trained, we can use it to make predictions:

0000 mse: 190.343
1000 mse: 0.082
2000 mse: 0.044
3000 mse: 0.028
4000 mse: 0.019
5000 mse: 0.010
6000 mse: 0.006
7000 mse: 0.003
8000 mse: 0.003
9000 mse: 0.002

 # get a random subset of the training data
 indices = np.random.randint(low=0, high=len(inputs), size=batch_size)
 input_batch = inputs[indices]
 output_batch = outputs[indices]

 # run the optimizer and get the mse
 _, mse_run = sess.run([opt, mse], feed_dict={input_ph: input_batch, output_ph: output_batch})

 # print the mse every so often
 if training_step % 1000 == 0:
 print('{0:04d} mse: {1:.3f}'.format(training_step, mse_run))
 saver.save(sess, './tmp/model.ckpt')

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 19/42

In [22]:

INFO:tensorflow:Restoring parameters from ./tmp/model.ckpt

Out[22]: <matplotlib.collections.PathCollection at 0x26f106d59b0>

%matplotlib inline

sess = tf_reset()

create the model
input_ph, output_ph, output_pred = create_model()

restore the saved model
saver = tf.train.Saver()
saver.restore(sess, "./tmp/model.ckpt")

output_pred_run = sess.run(output_pred, feed_dict={input_ph: inputs})

plt.scatter(inputs[:, 0], outputs[:, 0], c='k', marker='o', s=0.1)
plt.scatter(inputs[:, 0], output_pred_run[:, 0], c='r', marker='o', s=0.1)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 20/42

In [23]:

WARNING:tensorflow:From <ipython-input-23-d18731ab1cbf>:19: read_data_sets (from tensorflow.contrib.learn.pytho
n.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From C:\Users\Shubam Sachdeva\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-pac
kages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:260: maybe_download (from tensorflow.contrib.lear
n.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please write your own downloading logic.
WARNING:tensorflow:From C:\Users\Shubam Sachdeva\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-pac
kages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:262: extract_images (from tensorflow.contrib.lear
n.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting /tmp/data/train-images-idx3-ubyte.gz
WARNING:tensorflow:From C:\Users\Shubam Sachdeva\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-pac
kages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:267: extract_labels (from tensorflow.contrib.lear
n.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting /tmp/data/train-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Users\Shubam Sachdeva\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-pac

""" Multilayer Perceptron.

A Multilayer Perceptron (Neural Network) implementation example using
TensorFlow library. This example is using the MNIST database of handwritten
digits (http://yann.lecun.com/exdb/mnist/).

Links:
 [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).

Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""

from __future__ import print_function
import tensorflow as tf

Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 21/42

In [24]:

In [25]:

In [26]:

kages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:110: dense_to_one_hot (from tensorflow.contrib.le
arn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.one_hot on tensors.
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Users\Shubam Sachdeva\AppData\Local\Continuum\Anaconda2\envs\tensorflow\lib\site-pac
kages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:290: DataSet.__init__ (from tensorflow.contrib.le
arn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.

Parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
display_step = 1

Network Parameters
n_hidden_1 = 128 # 1st layer number of neurons
n_hidden_2 = 64 # 2nd layer number of neurons
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)

tf Graph input
X = tf.placeholder("float", [None, n_input])
Y = tf.placeholder("float", [None, n_classes])

Store layers weight & bias
weights = {
 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
 'b1': tf.Variable(tf.random_normal([n_hidden_1])),
 'b2': tf.Variable(tf.random_normal([n_hidden_2])),
 'out': tf.Variable(tf.random_normal([n_classes]))
}

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 22/42

In [27]: # Create model
def multilayer_perceptron(x):
 # Hidden fully connected layer with 256 neurons
 layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
 # Hidden fully connected layer with 256 neurons
 layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
 # Output fully connected layer with a neuron for each class
 out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
 return out_layer

Construct model
logits = multilayer_perceptron(X)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 23/42

In [28]:

WARNING:tensorflow:From <ipython-input-28-6ca114f21025>:3: softmax_cross_entropy_with_logits (from tensorflow.p
ython.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:

Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.

See @{tf.nn.softmax_cross_entropy_with_logits_v2}.

Define loss and optimizer
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
 logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
Initializing the variables
init = tf.global_variables_initializer()

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 24/42

In [29]:

Epoch: 0001 cost=157.289312099
Epoch: 0002 cost=43.143069897
Epoch: 0003 cost=30.213085677
Epoch: 0004 cost=23.335482633
Epoch: 0005 cost=19.076330198
Epoch: 0006 cost=16.087118572
Epoch: 0007 cost=13.692821933
Epoch: 0008 cost=12.057206927
Epoch: 0009 cost=10.625388635
Epoch: 0010 cost=9.445129234
Epoch: 0011 cost=8.607318865
Epoch: 0012 cost=7.635662027
Epoch: 0013 cost=7.052506600
Epoch: 0014 cost=6.499331078
Epoch: 0015 cost=6.021332975

with tf.Session() as sess:
 sess.run(init)

 # Training cycle
 for epoch in range(training_epochs):
 avg_cost = 0.
 total_batch = int(mnist.train.num_examples/batch_size)
 # Loop over all batches
 for i in range(total_batch):
 batch_x, batch_y = mnist.train.next_batch(batch_size)
 # Run optimization op (backprop) and cost op (to get loss value)
 _, c = sess.run([train_op, loss_op], feed_dict={X: batch_x,
 Y: batch_y})
 # Compute average loss
 avg_cost += c / total_batch
 # Display logs per epoch step
 if epoch % display_step == 0:
 print("Epoch:", '%04d' % (epoch+1), "cost={:.9f}".format(avg_cost))
 print("Optimization Finished!")

 # Test model
 pred = tf.nn.softmax(logits) # Apply softmax to logits
 correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))
 # Calculate accuracy
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
 print("Accuracy:", accuracy.eval({X: mnist.test.images, Y: mnist.test.labels}))

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 25/42

Not so hard after all! There is much more functionality to Tensorflow besides what we've covered, but you now know the basics.

6. Tips and tricks

(a) Check your dimensions

In [30]:

(b) Check what variables have been created

In [31]:

(c) Look at the tensorflow API (https://www.tensorflow.org/api_docs/python/), or open up a python terminal and investigate!

Optimization Finished!
Accuracy: 0.8834

I_am_a_variable:0
I_am_a_variable_too:0

example of "surprising" resulting dimensions due to broadcasting
a = tf.constant(np.random.random((4, 1)))
b = tf.constant(np.random.random((1, 4)))
c = a * b
assert c.get_shape() == (4, 4)

sess = tf_reset()
a = tf.get_variable('I_am_a_variable', shape=[4, 6])
b = tf.get_variable('I_am_a_variable_too', shape=[2, 7])
for var in tf.global_variables():
 print(var.name)

https://www.tensorflow.org/api_docs/python/

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 26/42

In [32]:

Help on function reduce_mean in module tensorflow.python.ops.math_ops:

reduce_mean(input_tensor, axis=None, keepdims=None, name=None, reduction_indices=None, keep_dims=None)
 Computes the mean of elements across dimensions of a tensor. (deprecated arguments)

 SOME ARGUMENTS ARE DEPRECATED. They will be removed in a future version.
 Instructions for updating:
 keep_dims is deprecated, use keepdims instead

 Reduces `input_tensor` along the dimensions given in `axis`.
 Unless `keepdims` is true, the rank of the tensor is reduced by 1 for each
 entry in `axis`. If `keepdims` is true, the reduced dimensions
 are retained with length 1.

 If `axis` is None, all dimensions are reduced, and a
 tensor with a single element is returned.

 For example:

    ```python 
    x = tf.constant([[1., 1.], [2., 2.]]) 
    tf.reduce_mean(x)  # 1.5 
    tf.reduce_mean(x, 0)  # [1.5, 1.5] 
    tf.reduce_mean(x, 1)  # [1.,  2.] 
    ``` 

 Args:
 input_tensor: The tensor to reduce. Should have numeric type.
 axis: The dimensions to reduce. If `None` (the default),
 reduces all dimensions. Must be in the range
 `[-rank(input_tensor), rank(input_tensor))`.
 keepdims: If true, retains reduced dimensions with length 1.
 name: A name for the operation (optional).
 reduction_indices: The old (deprecated) name for axis.
 keep_dims: Deprecated alias for `keepdims`.

 Returns:
 The reduced tensor.

 @compatibility(numpy)

help(tf.reduce_mean)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 27/42

(d) Tensorflow has some built-in layers to simplify your code.

 Equivalent to np.mean

 Please note that `np.mean` has a `dtype` parameter that could be used to
 specify the output type. By default this is `dtype=float64`. On the other
 hand, `tf.reduce_mean` has an aggressive type inference from `input_tensor`,
 for example:

    ```python 
    x = tf.constant([1, 0, 1, 0]) 
    tf.reduce_mean(x)  # 0 
    y = tf.constant([1., 0., 1., 0.]) 
    tf.reduce_mean(y)  # 0.5 
    ``` 

 @end_compatibility

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 28/42

In [33]:

Help on function fully_connected in module tensorflow.contrib.layers.python.layers.layers:

fully_connected(inputs, num_outputs, activation_fn=<function relu at 0x0000026F095AB7B8>, normalizer_fn=Non
e, normalizer_params=None, weights_initializer=<function variance_scaling_initializer.<locals>._initializer
at 0x0000026F10A92048>, weights_regularizer=None, biases_initializer=<tensorflow.python.ops.init_ops.Zeros o
bject at 0x0000026F10A8E6D8>, biases_regularizer=None, reuse=None, variables_collections=None, outputs_colle
ctions=None, trainable=True, scope=None)
 Adds a fully connected layer.

 `fully_connected` creates a variable called `weights`, representing a fully
 connected weight matrix, which is multiplied by the `inputs` to produce a
 `Tensor` of hidden units. If a `normalizer_fn` is provided (such as
 `batch_norm`), it is then applied. Otherwise, if `normalizer_fn` is
 None and a `biases_initializer` is provided then a `biases` variable would be
 created and added the hidden units. Finally, if `activation_fn` is not `None`,
 it is applied to the hidden units as well.

 Note: that if `inputs` have a rank greater than 2, then `inputs` is flattened
 prior to the initial matrix multiply by `weights`.

 Args:
 inputs: A tensor of at least rank 2 and static value for the last dimension;
 i.e. `[batch_size, depth]`, `[None, None, None, channels]`.
 num_outputs: Integer or long, the number of output units in the layer.
 activation_fn: Activation function. The default value is a ReLU function.
 Explicitly set it to None to skip it and maintain a linear activation.
 normalizer_fn: Normalization function to use instead of `biases`. If
 `normalizer_fn` is provided then `biases_initializer` and
 `biases_regularizer` are ignored and `biases` are not created nor added.
 default set to None for no normalizer function
 normalizer_params: Normalization function parameters.
 weights_initializer: An initializer for the weights.
 weights_regularizer: Optional regularizer for the weights.
 biases_initializer: An initializer for the biases. If None skip biases.
 biases_regularizer: Optional regularizer for the biases.
 reuse: Whether or not the layer and its variables should be reused. To be
 able to reuse the layer scope must be given.
 variables_collections: Optional list of collections for all the variables or
 a dictionary containing a different list of collections per variable.
 outputs_collections: Collection to add the outputs.

help(tf.contrib.layers.fully_connected)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 29/42

(e) Use variable scope (https://www.tensorflow.org/guide/variables#sharing_variables) to keep your variables organized.

In [34]:

(f) You can specify which GPU you want to use and how much memory you want to use

 trainable: If `True` also add variables to the graph collection
 `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
 scope: Optional scope for variable_scope.

 Returns:
 The tensor variable representing the result of the series of operations.

 Raises:
 ValueError: If x has rank less than 2 or if its last dimension is not set.

layer_0/W0:0
layer_0/b0:0
layer_1/W1:0
layer_1/b1:0
layer_2/W2:0
layer_2/b2:0

sess = tf_reset()

create variables
with tf.variable_scope('layer_0'):
 W0 = tf.get_variable(name='W0', shape=[1, 20], initializer=tf.contrib.layers.xavier_initializer())
 b0 = tf.get_variable(name='b0', shape=[20], initializer=tf.constant_initializer(0.))

with tf.variable_scope('layer_1'):
 W1 = tf.get_variable(name='W1', shape=[20, 20], initializer=tf.contrib.layers.xavier_initializer())
 b1 = tf.get_variable(name='b1', shape=[20], initializer=tf.constant_initializer(0.))

with tf.variable_scope('layer_2'):
 W2 = tf.get_variable(name='W2', shape=[20, 1], initializer=tf.contrib.layers.xavier_initializer())
 b2 = tf.get_variable(name='b2', shape=[1], initializer=tf.constant_initializer(0.))

print the variables
var_names = sorted([v.name for v in tf.global_variables()])
print('\n'.join(var_names))

https://www.tensorflow.org/guide/variables#sharing_variables

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 30/42

In [35]:

(g) You can use tensorboard (https://www.tensorflow.org/guide/summaries_and_tensorboard) to visualize and monitor the
training process.

In []:

Part 2: OpenAI Gym

1. Introduction to OpenAI Gym

OpenAI is the for-profit corporation which conducts research in the field of artificial intelligence (AI) with the stated aim to
promote and develop friendly AI in such a way as to benefit humanity as a whole.

Founded in late 2015, the San Francisco-based organization aims to “freely collaborate” with other institutions and researchers by
making its patents and research open to the public. The founders (notably Elon Musk and Sam Altman) are motivated in part by
concerns about the existential risk from artificial general intelligence

OpenAI Gym provides an easy use and set up enviromnments alognwith their simple interfaces.

User can define the action in the environment to be taken.

gpu_device = 0
gpu_frac = 0.5

make only one of the GPUs visible
import os
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_device)

only use part of the GPU memory
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_frac)
config = tf.ConfigProto(gpu_options=gpu_options)

create the session
tf_sess = tf.Session(graph=tf.Graph(), config=config)

https://www.tensorflow.org/guide/summaries_and_tensorboard

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 31/42

The basic idea of reinforcement learning can be summed up using this figure. Gym provides with both the agent and the environment

2. Agent and Environment
Let’s first define concept of agent and environment formally before proceeding further for understanding technical details about RL.

Environment is the universe of agent which changes state of agent with given action performed on
it.

Agent is the system that perceives environment via sensors and perform actions with
actuators.

In below situations Homer(Left) and Bart(right) are our agents and World is their environment. They performs actions on it and
improve their state of being by getting happiness as reward.

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 32/42

Let's see what an environment in OpenAI gym looks like

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 33/42

In [36]:

3. Q-Learning

To understand Q-Learning, let's look at the frozen lake environment first

Finished after 500 timesteps

import gym
env = gym.make('CartPole-v1')
env = gym.make('FrozenLake-v0')
env = gym.make('Acrobot-v1')
env = gym.make('MountainCarContinuous-v0') # try for different environements
observation = env.reset()
for t in range(1000):
 env.render()
 action = env.action_space.sample()
 observation, reward, done, info = env.step(action)
print(observation, reward, done, info)
 if done:
 print("Finished after {} timesteps".format(t+1))
 break
env.close()

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 34/42

Let's now look at at how to solve for the environment

The above equation states that the Q-value yielded from being at state s and performing action a is the immediate reward r(s,a) plus the
highest Q-value possible from the next state s’. Gamma here is the discount factor which controls the contribution of rewards further in the
future.

Q(s’,a) again depends on Q(s”,a) which will then have a coefficient of gamma squared. So, the Q-value depends on Q-values of future
states as shown here:

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 35/42

Since this is a recursive equation, we can start with making arbitrary assumptions for all q-values. With experience, it will converge to the
optimal policy. In practical situations, this is implemented as an update:

where alpha is the learning rate or step size. This simply determines to what extent newly acquired information overrides old information.

In [37]:

In [38]:

In [39]:

In [40]:

import gym
import numpy as np
import time, pickle, os

env = gym.make('FrozenLake-v0')

Let's declare the user defined parameters now
epsilon = 0.9
total_episodes = 100
max_steps = 100

lr_rate = 0.81
gamma = 0.96

creating a Q table that will store the possible state action pairs
Q = np.zeros((env.observation_space.n, env.action_space.n))

def choose_action(state):
 action=0
 if np.random.uniform(0, 1) < epsilon:
 action = env.action_space.sample()
 else:
 action = np.argmax(Q[state, :])
 return action

def learn(state, state2, reward, action):
 predict = Q[state, action]
 target = reward + gamma * np.max(Q[state2, :])
 Q[state, action] = Q[state, action] + lr_rate * (target - predict)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 36/42

In [41]:

But wait, does that mean we have to remember a table so big to take an action?

4. Deep Q-Learning for Frozen Lake
As above, the actions taken by default in an OpenAI gym environment are random. Let's code the Q-learning algorithm to solve this

Deep Q Learning

for episode in range(total_episodes):
 state = env.reset()
 t = 0

 while t < max_steps:
env.render()
 action = choose_action(state)
 state2, reward, done, info = env.step(action)
 learn(state, state2, reward, action)
 state = state2
 t += 1
 if done:
 break
 #time.sleep(0.1)
print(Q)

with open("frozenLake_qTable.pkl", 'wb') as f:
 pickle.dump(Q, f)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 37/42

Let's go back to the equation and see what is to be learnt by the network

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 38/42

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 39/42

In [42]:

In [43]:

In [44]:

Discrete(2)
Box(4,)

Discrete(4)
Discrete(16)

import gym
env = gym.make('CartPole-v0')
print(env.action_space)
print(env.observation_space)

import gym
env = gym.make('FrozenLake-v0')
print(env.action_space)
print(env.observation_space)

import tensorflow as tf

tf.reset_default_graph()

#These lines establish the feed-forward part of the network used to choose actions
inputs1 = tf.placeholder(shape=[1,16],dtype=tf.float32)
W = tf.Variable(tf.random_uniform([16,4],0,0.01))
Qout = tf.matmul(inputs1,W)
predict = tf.argmax(Qout,1)

#Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32)
loss = tf.reduce_sum(tf.square(nextQ - Qout))
trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
updateModel = trainer.minimize(loss)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 40/42

In [45]: init = tf.global_variables_initializer()

Set learning parameters
y = .99
e = 0.1
num_episodes = 2000
#create lists to contain total rewards and steps per episode
jList = []
rList = []
with tf.Session() as sess:
 sess.run(init)
 for i in range(num_episodes):
 #Reset environment and get first new observation
 s = env.reset()
 rAll = 0
 d = False
 j = 0
 #The Q-Network
 while j < 99:
 j+=1
 #Choose an action by greedily (with e chance of random action) from the Q-network
 a,allQ = sess.run([predict,Qout],feed_dict={inputs1:np.identity(16)[s:s+1]})
 if np.random.rand(1) < e:
 a[0] = env.action_space.sample()
 #Get new state and reward from environment
 s1,r,d,_ = env.step(a[0])
 #Obtain the Q' values by feeding the new state through our network
 Q1 = sess.run(Qout,feed_dict={inputs1:np.identity(16)[s1:s1+1]})
 #Obtain maxQ' and set our target value for chosen action.
 maxQ1 = np.max(Q1)
 targetQ = allQ
 targetQ[0,a[0]] = r + y*maxQ1
 #Train our network using target and predicted Q values
 _,W1 = sess.run([updateModel,W],feed_dict={inputs1:np.identity(16)[s:s+1],nextQ:targetQ})
 rAll += r
 s = s1
 if d == True:
 #Reduce chance of random action as we train the model.
 e = 1./((i/50) + 10)
 break
 jList.append(j)
 rList.append(rAll)

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 41/42

Reference
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
(https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/)
https://towardsdatascience.com/reinforcement-learning-with-openai-d445c2c687d2 (https://towardsdatascience.com/reinforcement-
learning-with-openai-d445c2c687d2)
https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288
(https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288)

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

In []:

Percent of succesful episodes: 46.9%

print("Percent of succesful episodes: " + str((sum(rList)/num_episodes)*100) + "%")

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python/
https://towardsdatascience.com/reinforcement-learning-with-openai-d445c2c687d2
https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288

11/12/2019 Reinforcement Learning in Tensorflow

localhost:8888/notebooks/CMPT 983/Tutorial/Reinforcement Learning in Tensorflow.ipynb 42/42

