
Numerical Solutions to ODEs 
Part II
CMPT 419/983

18/09/2019



Stiff Equations

• ODEs with components that have very fast rates of change
• Usually requires very small step sizes for stability

• Example: ሶ𝑥1 = 𝑎𝑥1 with forward Euler
• Stability requires 1 + ℎ𝑎 ≤ 1
• For 𝑎 = −100, we have 1 − 100ℎ ≤ 1 ⇔ ℎ ≤ 0.02

• Small step size is required even if there are other slower changing 
components like ሶ𝑥2 = 𝑥1 − 𝑥2
• Implicit methods (eg. backward Euler) are useful here

ሶ𝑥1 = −100𝑥1
ሶ𝑥2 = 𝑥1 − 𝑥2

ሶ𝑥 =
−100 0
1 −1

𝑥



Stiff Equations

• Example:

• Forward Euler:

• Eigenvalues of ℎ𝐴: −ℎ,−100ℎ

• Eigenvalues of 𝐼 + ℎ𝐴 are 1 + ℎ𝜎 𝐴 : 1 − ℎ and −100ℎ

• So, we need 1 − ℎ < 1 and 1 − 100ℎ < 100 ⇒ ℎ < 0.02

ሶ𝑥1 = −100𝑥1
ሶ𝑥2 = 𝑥1 − 𝑥2

ሶ𝑥 = 𝐴𝑥 =
−100 0
1 −1

𝑥

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘

= 𝑦𝑘 + ℎ𝐴𝑦𝑘

= 𝐼 + ℎ𝐴 𝑦𝑘

Eigenvalues of 𝐴 are 𝜎 𝐴 = −1,−100



Forward Euler, ℎ = 0.01

ሶ𝑥1 = −100𝑥1

𝑥1 𝑡 = 𝑒−100𝑡

ሶ𝑥2 = 𝑥1 − 𝑥2
ሶ𝑥2 ≈ −𝑥2

𝑥2 𝑡 ≈ 𝑒−𝑡



Forward Euler, ℎ = 0.025



Matlab’s ode45 Solver (Explicit Method)

• Automatically chosen variable time steps: ℎ ≈ 0.002 to ℎ ≈ 0.008



Backward Euler, ℎ = 0.01

• Our system: ሶ𝑥 = 𝐴𝑥

• Backward Euler: 
• 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘+1

• 𝑦𝑘+1 = 𝑦𝑘 + ℎ𝐴𝑦𝑘+1

• 𝐼 − ℎ𝐴 𝑦𝑘+1 = 𝑦𝑘

• 𝑦𝑘+1 = 𝐼 − ℎ𝐴 −1𝑦𝑘

• Eigenvalues of 𝐼 − ℎ𝐴 −1 are 1 − ℎ𝜎 𝐴
−1

• No restrictions on ℎ if eigenvalues of 𝐴 have negative real part



Backward Euler, ℎ = 0.1
• Not super accurate, but stable

• Relatively slow for the same ℎ due to inverse: 𝑦𝑘+1 = 𝐼 − ℎ𝐴 −1𝑦𝑘



Numerical Solutions of ODEs

• In general, ሶ𝑥 = 𝑓 𝑥, 𝑢 does not have a closed-form solution
• Instead, we usually compute numerical approximations to simulate system behaviour

• Done through discretization: 𝑡𝑘 = 𝑘ℎ, 𝑢𝑘 ≔ 𝑢 𝑡𝑘

• ℎ represents size of time step

• Goal: compute 𝑦𝑘 ≈ 𝑥 𝑡𝑘

• Key considerations
• Consistency: Does the approximation satisfy the ODE as ℎ → 0?
• Accuracy: How fast does the solution converge?
• Stability: Do approximation error remain bounded over time?
• Convergence: Does the solution converge the true solution as ℎ → 0?



Classical Runge-Kutta Method (RK4)

• Main consideration: what slope to use? 
• Forward Euler: slope at beginning

𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘 , 𝑢𝑘

• Backward Euler: slope at the end
𝑦𝑘+1 = 𝑦𝑘 + ℎ𝑓 𝑦𝑘+1, 𝑢𝑘

• In general, we can use anything between 
𝑡𝑘 and 𝑡𝑘+1

• Classical Runge-Kutta: weighted average

ሶ𝑦 = 𝑦, 𝑦 𝑡 = 0.5𝑒𝑡

𝑡𝑘 + ℎ𝑡𝑘

ℎ



Classical Runge-Kutta Method (RK4)

• Main consideration: what slope to use?
• Weighted average

• 𝑦𝑘+1 = 𝑦𝑘 +
1

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

• 𝑘1 = ℎ𝑓 𝑡𝑘 , 𝑦𝑘

• 𝑘2 = ℎ𝑓 𝑡𝑘 +
ℎ

2
, 𝑦𝑘 +

𝑘1

2

• 𝑘3 = ℎ𝑓 𝑡𝑘 +
ℎ

2
, 𝑦𝑘 +

𝑘2

2

• 𝑘4 = ℎ𝑓 𝑡𝑘 + ℎ, 𝑦𝑘 + 𝑘3

• Properties
• Equivalent to Simpson’s rule
• 4th order accuracy

ሶ𝑦 = 𝑦, 𝑦 𝑡 = 0.5𝑒𝑡

ℎ

𝑡𝑘 𝑡𝑘 + ℎ



Classical Runge-Kutta Method (RK4)

• One of the most widely used methods

• 𝑦𝑘+1 = 𝑦𝑘 +
1

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

• 𝑘1 = ℎ𝑓 𝑡𝑘 , 𝑦𝑘

• 𝑘2 = ℎ𝑓 𝑡𝑘 +
ℎ

2
, 𝑦𝑘 +

𝑘1

2

• 𝑘3 = ℎ𝑓 𝑡𝑘 +
ℎ

2
, 𝑦𝑘 +

𝑘2

2

• 𝑘4 = ℎ𝑓 𝑡𝑘 + ℎ, 𝑦𝑘 + 𝑘3

• Intuitively: estimate 𝑦𝑘+1 using weighted average of slopes
• Mathematically: can show 

• Consistency: 
𝑒𝑘

ℎ
→ as ℎ → 0

• Stability for small enough ℎ
• Consistency + stability ⇔ convergence (4th order)



Numerical Solutions: Discussion

• Stiff equations

• Approximation errors
• Typically cannot be used to prove system properties

• Simulations cannot capture all system behaviours

• Libraries:
• Matlab: ode__ → ode45, ode113, etc. (ode__s for stiff equations)
• Python: scipy.integrate.odeint
• C++: odeint


