Numerical Solutions to ODEs Part II

CMPT 419/983 18/09/2019

Stiff Equations

- ODEs with components that have very fast rates of change
 - Usually requires very small step sizes for stability
- Example: $\dot{x}_1 = ax_1$ with forward Euler
 - Stability requires $|1 + ha| \le 1$
 - For a=-100, we have $|1-100h| \le 1 \Leftrightarrow h \le 0.02$
- Small step size is required even if there are other slower changing components like $\dot{x}_2 = x_1 x_2$ $\dot{x}_1 = -100x_1$
 - Implicit methods (eg. backward Euler) are useful here

$$\dot{x} = \begin{bmatrix} -100 & 0 \\ 1 & -1 \end{bmatrix} x$$

 $\dot{x}_2 = x_1 - x_2$

Stiff Equations

Eigenvalues of *A* are $\sigma(A) = \{-1, -100\}$

• Example:

$$\dot{x}_1 = -100x_1 \\
\dot{x}_2 = x_1 - x_2$$

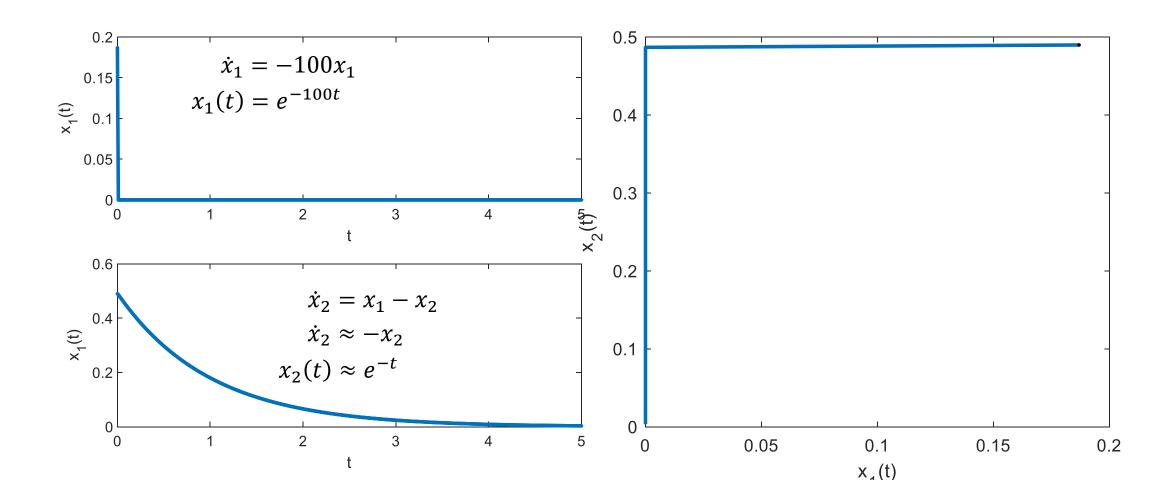
$$\dot{x} = Ax = \begin{bmatrix} -100 & 0 \\ 1 & -1 \end{bmatrix} x$$

• Forward Euler:

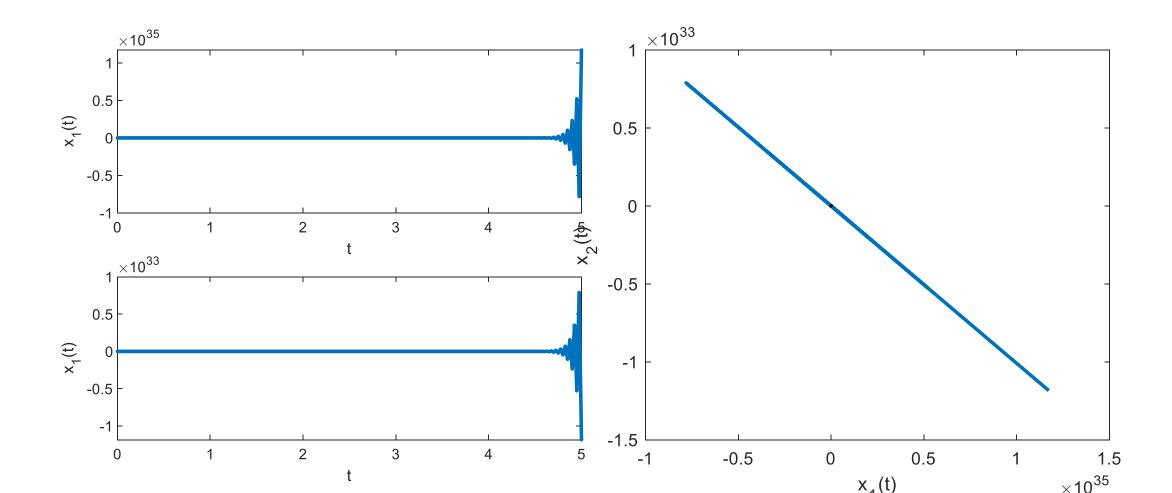
$$y^{k+1} = y^k + hf(y^k)$$
$$= y^k + hAy^k$$
$$= (I + hA)y^k$$

- Eigenvalues of hA: -h, -100h
- Eigenvalues of I + hA are $\{1 + h\sigma(A)\}$: 1 h and -100h
- So, we need |1 h| < 1 and $|1 100h| < 100 \Rightarrow h < 0.02$

Forward Euler, h = 0.01

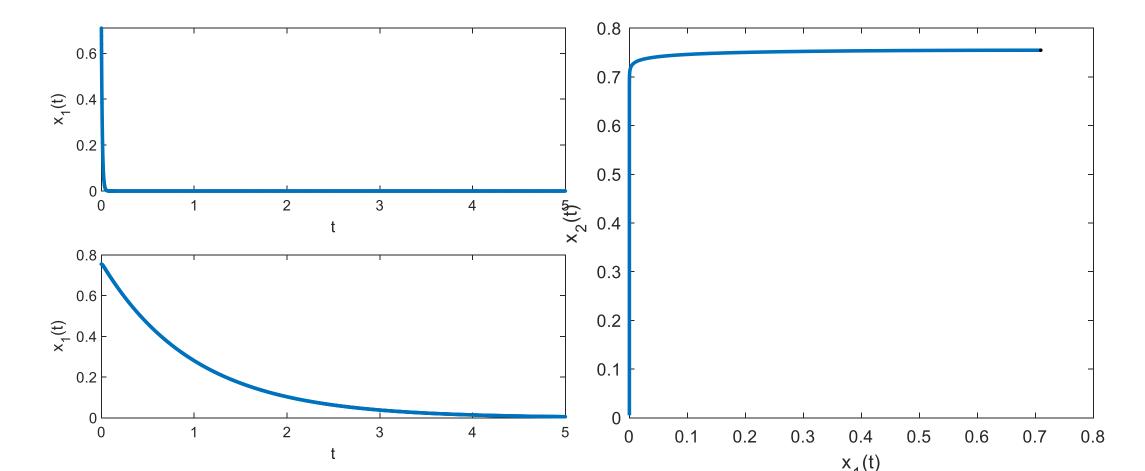


Forward Euler, h = 0.025



Matlab's ode45 Solver (Explicit Method)

• Automatically chosen variable time steps: $h \approx 0.002$ to $h \approx 0.008$

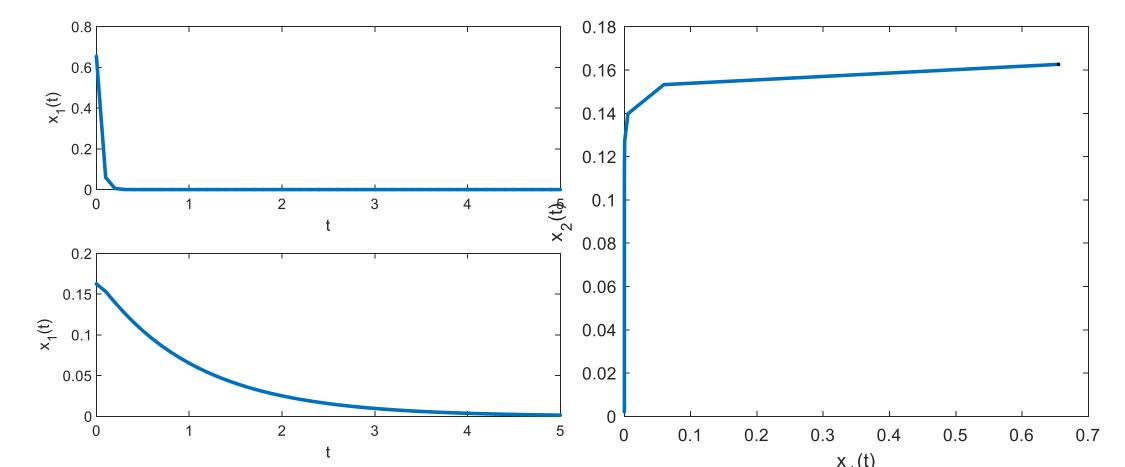


Backward Euler, h = 0.01

- Our system: $\dot{x} = Ax$
- Backward Euler:
 - $y^{k+1} = y^k + hf(y^{k+1})$
 - $\bullet \ y^{k+1} = y^k + hAy^{k+1}$
 - $\bullet (I hA)y^{k+1} = y^k$
 - $y^{k+1} = (I hA)^{-1}y^k$
 - Eigenvalues of $(I hA)^{-1}$ are $(1 h\sigma(A))^{-1}$
 - ullet No restrictions on h if eigenvalues of A have negative real part

Backward Euler, h = 0.1

- Not super accurate, but stable
- Relatively slow for the same h due to inverse: $y^{k+1} = (I hA)^{-1}y^k$

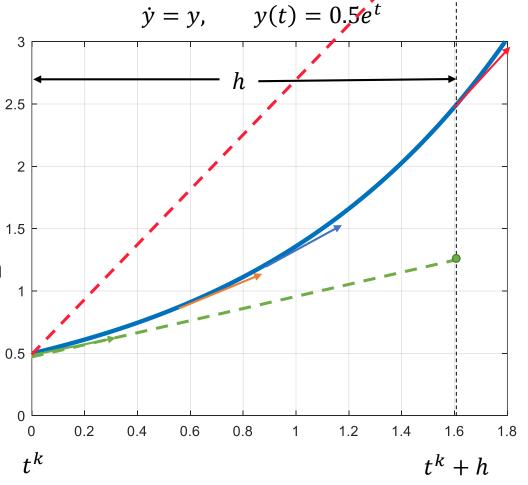


Numerical Solutions of ODEs

- In general, $\dot{x} = f(x, u)$ does not have a closed-form solution
 - Instead, we usually compute numerical approximations to simulate system behaviour
 - Done through discretization: $t^k = kh$, $u^k := u(t^k)$
 - *h* represents size of time step
 - Goal: compute $y^k \approx x(t^k)$
- Key considerations
 - Consistency: Does the approximation satisfy the ODE as $h \to 0$?
 - Accuracy: How fast does the solution converge?
 - Stability: Do approximation error remain bounded over time?
 - Convergence: Does the solution converge the true solution as $h \to 0$?

Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Forward Euler: slope at beginning $y^{k+1} = y^k + hf(y^k, u^k)$
 - Backward Euler: slope at the end $y^{k+1} = y^k + hf(y^{k+1}, u^k)$
 - In general, we can use anything between t^k and t^{k+1}
 - Classical Runge-Kutta: weighted average



Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

•
$$y^{k+1} = y^k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

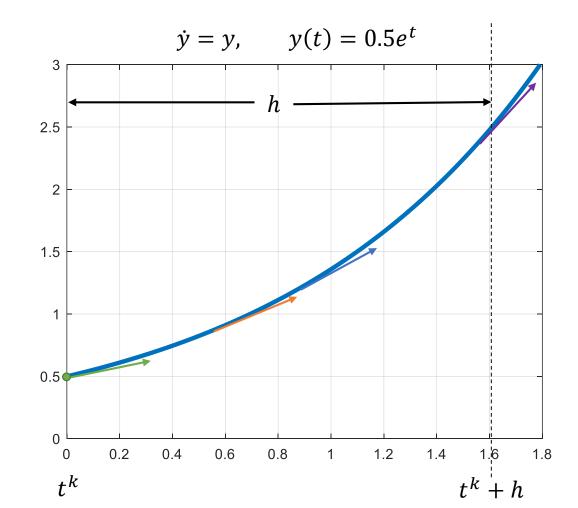
•
$$k_1 = hf(t^k, y^k)$$

•
$$k_2 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right)$$

•
$$k_3 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}\right)$$

•
$$k_4 = hf(t^k + h, y^k + k_3)$$

- Properties
 - Equivalent to Simpson's rule
 - 4th order accuracy



Classical Runge-Kutta Method (RK4)

- One of the most widely used methods
 - $y^{k+1} = y^k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
 - $k_1 = hf(t^k, y^k)$
 - $k_2 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right)$
 - $k_3 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}\right)$
 - $k_4 = hf(t^k + h, y^k + k_3)$
- Intuitively: estimate y^{k+1} using weighted average of slopes
- Mathematically: can show Consistency: $\frac{\|e^k\|}{h} \to \text{as } h \to 0$
 - Stability for small enough h
 - Consistency + stability \Leftrightarrow convergence (4th order)

Numerical Solutions: Discussion

- Stiff equations
- Approximation errors
 - Typically cannot be used to prove system properties
- Simulations cannot capture all system behaviours
- Libraries:
 - Matlab: ode → ode45, ode113, etc. (ode __s for stiff equations)
 - Python: scipy.integrate.odeint
 - C++: odeint