Numerical Solutions to ODEs
Part II
CMPT 419/983
18/09/2019
Stiff Equations

- ODEs with components that have very fast rates of change
 - Usually requires very small step sizes for stability

- Example: $\dot{x}_1 = ax_1$ with forward Euler
 - Stability requires $|1 + ha| \leq 1$
 - For $a = -100$, we have $|1 - 100h| \leq 1 \Leftrightarrow h \leq 0.02$

- Small step size is required even if there are other slower changing components like $\dot{x}_2 = x_1 - x_2$
 - Implicit methods (eg. backward Euler) are useful here

\[
\begin{align*}
\dot{x}_1 &= -100x_1 \\
\dot{x}_2 &= x_1 - x_2 \\
\dot{x} &= \begin{bmatrix} -100 & 0 \\ 1 & -1 \end{bmatrix} x
\end{align*}
\]
Stiff Equations

- Example:
 \[
 \begin{align*}
 \dot{x}_1 &= -100x_1 \\
 \dot{x}_2 &= x_1 - x_2 \\
 \end{align*}
 \]
 \[\dot{x} = Ax = \begin{bmatrix} -100 & 0 \\ 1 & -1 \end{bmatrix} x\]

- Forward Euler:
 \[
 y^{k+1} = y^k + hf(y^k) \\
 = y^k + hAy^k \\
 = (I + hA)y^k
 \]

- Eigenvalues of \(hA\): \(-h, -100h\)
- Eigenvalues of \(I + hA\) are \(\{1 + h\sigma(A)\}: 1 - h\) and \(-100h\)
- So, we need \(|1 - h| < 1\) and \(|1 - 100h| < 100 \Rightarrow h < 0.02\)

Eigenvalues of \(A\) are \(\sigma(A) = \{-1, -100\}\)
Forward Euler, $h = 0.01$

\[
\begin{align*}
\dot{x}_1 &= -100x_1 \\
x_1(t) &= e^{-100t}
\end{align*}
\]

\[
\begin{align*}
\dot{x}_2 &= x_1 - x_2 \\
\dot{x}_2 &\approx -x_2 \\
x_2(t) &\approx e^{-t}
\end{align*}
\]
Forward Euler, $h = 0.025$
Matlab’s ode45 Solver (Explicit Method)

• Automatically chosen variable time steps: $h \approx 0.002$ to $h \approx 0.008$
Backward Euler, $h = 0.01$

- Our system: $\dot{x} = Ax$
- Backward Euler:
 - $y^{k+1} = y^k + hf(y^{k+1})$
 - $y^{k+1} = y^k + hAy^{k+1}$
 - $(I - hA)y^{k+1} = y^k$
 - $y^{k+1} = (I - hA)^{-1}y^k$
 - Eigenvalues of $(I - hA)^{-1}$ are $(1 - h\sigma(A))^{-1}$
 - No restrictions on h if eigenvalues of A have negative real part
Backward Euler, $h = 0.1$

- Not super accurate, but stable
- Relatively slow for the same h due to inverse: $y^{k+1} = (I - hA)^{-1}y^k$
Numerical Solutions of ODEs

• In general, $\dot{x} = f(x, u)$ does not have a closed-form solution
 • Instead, we usually compute numerical approximations to simulate system behaviour
 • Done through discretization: $t^k = kh, \ u^k := u(t^k)$
 • h represents size of time step
 • Goal: compute $y^k \approx x(t^k)$

• Key considerations
 • Consistency: Does the approximation satisfy the ODE as $h \to 0$?
 • Accuracy: How fast does the solution converge?
 • Stability: Do approximation error remain bounded over time?
 • Convergence: Does the solution converge the true solution as $h \to 0$?
Classical Runge-Kutta Method (RK4)

• Main consideration: what slope to use?
 • Forward Euler: slope at beginning
 \[y^{k+1} = y^k + hf(y^k, u^k) \]
 • Backward Euler: slope at the end
 \[y^{k+1} = y^k + hf(y^{k+1}, u^k) \]
 • In general, we can use anything between \(t^k \) and \(t^{k+1} \)
 • Classical Runge-Kutta: weighted average

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

- Main consideration: what slope to use?
 - Weighted average

\[y^{k+1} = y^k + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \]
 - \(k_1 = hf(t^k, y^k) \)
 - \(k_2 = hf(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}) \)
 - \(k_3 = hf(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}) \)
 - \(k_4 = hf(t^k + h, y^k + k_3) \)

- Properties
 - Equivalent to Simpson’s rule
 - 4\(^{th}\) order accuracy

\[\dot{y} = y, \quad y(t) = 0.5e^t \]
Classical Runge-Kutta Method (RK4)

• One of the most widely used methods
 • \(y^{k+1} = y^k + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4) \)
 • \(k_1 = hf(t^k, y^k) \)
 • \(k_2 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_1}{2}\right) \)
 • \(k_3 = hf\left(t^k + \frac{h}{2}, y^k + \frac{k_2}{2}\right) \)
 • \(k_4 = hf\left(t^k + h, y^k + k_3\right) \)

• Intuitively: estimate \(y^{k+1} \) using weighted average of slopes

• Mathematically: can show
 • Consistency: \(\|e^k\| \rightarrow \) as \(h \rightarrow 0 \)
 • Stability for small enough \(h \)
 • Consistency + stability \(\Leftrightarrow \) convergence (4th order)
Numerical Solutions: Discussion

• Stiff equations

• Approximation errors
 • Typically cannot be used to prove system properties

• Simulations cannot capture all system behaviours

• Libraries:
 • Matlab: ode__ \rightarrow \text{ode45, ode113, etc. (ode__s for stiff equations)}
 • Python: scipy.integrate.odeint
 • C++: odeint