Numerical Solutions to ODEs
Part I

CMPT 419/983
16/09/2019
Numerical Solutions of ODEs

• In general, $\dot{x} = f(x, u)$ does not have a closed-form solution
 • Instead, we usually compute numerical approximations to simulate system behaviour
 • Done through discretization: $t^k = kh, \ u^k := u(t^k)$
 • h represents size of time step
 • Goal: compute $y^k \approx x(t^k)$

• Key considerations
 • Consistency: Does the approximation satisfy the ODE as $h \to 0$?
 • Accuracy: How fast does the solution converge?
 • Stability: Do approximation error remain bounded over time?
 • Convergence: Does the approximate solution converge to the true solution as $h \to 0$?
Euler Methods

- ODE: $\dot{x} = f(x,u), \ x(0) = x_0$
 - Discretization: $t^k = kh, \ u^k := u(t^k)$
 - Want: Approximate solution: $y^k \approx x(kh)$

- Forward Euler
 - Most naïve method; explicit method
 \[
 \frac{y^{k+1} - y^k}{h} = f(y^k, u^k) \Rightarrow y^{k+1} = y^k + hf(y^k, u^k)
 \]

- Backward Euler
 - Most basic implicit method
 \[
 \frac{y^{k+1} - y^k}{h} = f(y^{k+1}, u^k) \Rightarrow \text{solve for } y^{k+1} \text{ implicitly}
 \]
Visualizing Euler Methods

- Main consideration: what slope to use?
 - Forward Euler: slope at beginning
 \[y^{k+1} = y^k + hf(y^k, u^k) \]
 - Backward Euler: slope at the end
 \[y^{k+1} = y^k + hf(y^{k+1}, u^k) \]
Example

• \(\dot{x} = ax, \ x(0) = x_0 \)
 - Analytic solution: \(x(t) = x_0 e^{at} \)

• Forward Euler
 - \(y^{k+1} = y^k + hf(y^k, u^k) \)
 - \(y^{k+1} = y^k + ha y^k \)
 - \(y^{k+1} = (1 + ha)y^k \)
Example

%% Problem setup
x0 = 1;
a = -1;
h = 0.1;
T = 5;
tau = 0:h:T;

%% Exact solution
x_exact = @(t) exp(a*t);

figure
plot(tau, x_exact(tau), 'b.-')
Example

%% Forward Euler
f = @(x) a*x;
y_approx = -ones(size(tau));
y_approx(1) = x0;

% Initialize vector
for i = 2:length(tau)
 y_approx(i) = y_approx(i-1)*(1+h*a);
end

hold on
plot(tau, y_approx, 'r.-')
title(sprintf('a = %.1f', a))
legend('Exact', 'Approx.')
Example

• \(\dot{x} = ax, \ x(0) = x_0 \)
 • Analytic solution: \(x(t) = x_0 e^{at} \)

• Backward Euler
 • \(y^{k+1} = y^k + hf(y^{k+1}) \)
 • \(y^{k+1} = y^k + hax^{k+1} \)
 • \(y^{k+1} - hay^{k+1} = y^k \)
 • \((1 - ha)y^{k+1} = y^k \)
 • \(y^{k+1} = \frac{y^k}{1 - ha} \)
Numerical Consistency: Forward Euler

• **Consistency**: ODE is satisfied as $h \to 0$

 • Forward Euler: $y^{k+1} = y^k + hf(y^k, u^k)$

 $\frac{y^{k+1} - y^k}{h} = f(y^k, u^k)$

• **Local truncation error**: Consistency requires $\frac{\|e^k\|}{h} \to 0$ as $h \to 0$

 • $\|e^k\|$: Error induced during one step, assuming perfect previous information

 • Forward Euler approximate solution:
 $$y^{k+1} = x(t^k) + hf(x(t^k), u^k)$$

• True solution:
 $$x(t^{k+1}) = x(t^k + h) = x(t^k) + h \frac{dx}{dt}(t^k) + \frac{h^2}{2} \frac{d^2x}{dt^2}(t^k) + O(h^3)$$

 $$= x(t^k) + hf(x(t^k), u^k) + \frac{h^2}{2} \frac{d^2x}{dt^2}(t^k) + O(h^3)$$
Numerical Consistency: Forward Euler

- Local truncation error:
 \[e^k = x(t^{k+1}) - y^{k+1} \]
 \[= x(t^k) + hf(x(t^k), u^k) + \frac{h^2}{2} \frac{d^2x}{dx^2}(t^k) + O(h^3) - \left(x(t^k) + hf(x(t^k), u^k)\right) \]
 \[= \frac{h^2}{2} \frac{d^2x}{dx^2}(t^k) + O(h^3) \]
 \[= O(h^2) \]

- Consistency requires \(\frac{\|e^k\|}{h} \to 0 \) as \(h \to 0 \)
 \[\frac{\|e^k\|}{h} = \left| \frac{h^2}{2} \frac{d^2x}{dx^2}(t^k) + O(h^3) \right| = \left| \frac{hd^2x}{2} \frac{d^2x}{dx^2}(t^k) + O(h^2) \right| \to 0 \]

- If \(\frac{\|e^k\|}{h} = O(h^p) \), then the numerical method is “order p”.
 - Forward Euler is an order 1 method, or first order method
Numerical Consistency

• More generally: $y^{k+1} = \sum_{n=k_1}^{k} \alpha_i y^i + h \sum_{n=k_2}^{k} \beta_i f(y^i, u^i)$

• Truncation error:

 $e^k := x(t^{k+1}) - \sum_{n=k_1}^{k} \alpha_n x(nh) - h \sum_{n=k_2}^{k} \beta_i f(x(nh), u^i)$

• Consistency requires $\frac{\|e^k\|}{h} \to 0$ as $h \to 0$

• If $\frac{\|e^k\|}{h} = O(h^p)$, then the numerical method is “order p”.
Numerical Stability: Forward Euler

• \(y^{k+1} = y^k + hf(y^k, u^k) \)
 • A map from \(y^k \) to \(y^{k+1} \)
 • Stability means \(y^k \) does not “blow up” when the true solution \(x(t^k) \) is bounded
 • Usually, stability requires that the time step \(h \) cannot be too large

• Example: \(\dot{x} = ax, a < 0 \)
 • \(y^{k+1} = (1 + ah)y^k \)
 • Stability requires \(|1 + ah| \leq 1 \iff -ah \leq 2 \)
 • For \(a = -10 \), we have \(|1 - 10h| \leq 1 \iff h \leq 0.2 \)
Numerical Stability: Backward Euler

- $y^{k+1} = y^k + hf(y^{k+1}, u^k)$
 - A map from y^k to y^{k+1}
 - Stability means y^k does not “blow up” when the true solution $x(t^k)$ is bounded
 - Usually, stability requires that the time step h cannot be too large

- Example: $\dot{x} = ax, a < 0$
 - $y^{k+1} = \frac{y^k}{1-ah}$
 - Stability requires $\left|\frac{1}{1-ah}\right| \leq 1$
 - No restrictions on h, for any a!
Numerical Stability

• Example: $\dot{x} = ax$ with forward Euler
 • If $a = -10$, $h \leq 0.2$ is required for stability

• Example 2: $\dot{x} = ax$ with backward Euler
 • No restrictions on h, for any a
Numerical Stability

• More generally: \(y^{k+1} = \sum_{n=k_1}^{k} \alpha_i y^i + h \sum_{n=k_2}^{k} \beta_i f(y^i, u^i) \)

 • Desired property: the approximation \(y^k \) does not “blow up” when the true solution \(x(t^k) \) is bounded

 • Usually, this means time step \(h \) cannot be too large

• Specifically, one typically considers \(\dot{x} = ax, a < 0 \).

 • A stable numerical approximation to \(\dot{x} = ax, a < 0 \) has the property that \(y^k \to 0 \)
Numerical Convergence

• **Convergence:** \(\max_k \| x(t^k) - y^k \| \to 0 \) as \(h \to 0 \)

 • Maximum error goes to zero as time step goes to 0

• Dahlquist Equivalence Theorem

 • Consistency + stability \(\iff \) convergence

• Convergence rate

 • For order \(p \) methods: \(\max_k \| x(t^k) - y^k \| = O(h^p) \)

 • Forward and backward Euler: \(p = 1 \)

 • It takes \(\frac{t-t_0}{h} \), or \(O(\frac{1}{h}) \) steps, each incurring \(O(h^2) \) error

 • If we half \(h \), then the error also halves
Numerical Convergence

- Visualize convergence rate with Max error vs. h plot

- Forward and backward Euler are both 1st order
 - Half the size of h leads to half the error

- Usually, log-log plots are used to show a wide range of errors and h
 - Order p method has a slope of p (approximately).
Stiff equations

• ODEs with components that have very fast rates of change
 • Usually requires very small step sizes for stability

• Example: $\dot{x}_1 = ax_1$ with forward Euler
 • Stability requires $|1 + ha| \leq 1$
 • For $a = -100$, we have $|1 - 100h| \leq 1 \Leftrightarrow h \leq 0.02$

• Small step size is required even if there are other slower changing components like $\dot{x}_2 = x_1 - x_2$
 • Implicit methods (eg. backward Euler) are useful here

$$\begin{align*}
\dot{x}_1 &= -100x_1 \\
\dot{x}_2 &= x_1 - x_2 \\
\dot{x} &= \begin{bmatrix} -100 & 0 \\ 1 & -1 \end{bmatrix} x
\end{align*}$$