Numerical Solutions to ODEs
Part |

CMPT 419/983
16/09/2019

Numerical Solutions of ODEs

* In general, x = f(x,u) does not have a closed-form solution
* Instead, we usually compute numerical approximations to simulate system behaviour
* Done through discretization: th = kh, uk := u(tk)
* h represents size of time step
* Goal: compute y* ~ x(t¥)

* Key considerations
» Consistency: Does the approximation satisfy the ODE as h — 0?
* Accuracy: How fast does the solution converge?
 Stability: Do approximation error remain bounded over time?
» Convergence: Does the approximate solution converge to the true solutionas h = 0?

Euler Methods

* ODE: x = f(x,u),x(0) = %o ~
« Discretization: t* = kh, u¥ := u(t"‘) x(tk+1) 9;(—tk}3(x ,u)
» Want: Approximate solution: y* ~ x(kh) ~ F(x(t5),uk)
- yk+1 — yk)
* Forward Euler DI J

* Most naive method; explicit method

yk+1 yk =

—— = f) =yt =y rf(ye k)

* Backward Euler

* Most basic implicit method
yk+1_

—— = f(y**",u’) = solve for y**! implicitly

Visualizing Euler Methods »

* Main consideration: what slope to use? ¥ =xx(0)=05
x(t) = 0.5ef 7

1
3 T T / T T |:
1

* Forward Euler: slope at beginning
yk+1 — yk 1 hf(yk,uk)

* Backward Euler: slope at the end
yk+1 — yk + hf(yk“,u"‘)

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
th th + h

Example

e x =ax, x(0) = x,
* Analytic solution: x(t) = x,e®t

* Forward Euler
o yk+1 — yk + hf(yk,uk)
o yHH1 = yk 4 payk
o y*1 = (1 + ha)y*

0.3

0.2

-1.0

Example

%% Problem setup

X0 = 1;

a = -1;

h =0.1;

T =5;

tau = 0:h:T;

%% Exact solution
x_exact = @(t) exp(a*t);

figure
plot(tau, x_exact(tau), 'b.-")

09 ¢

0.8

0.7

0.6

0.5

0.4

031

0.2

Example

%% Forward Euler

f = @(x) a*x;

y _approx = -ones(size(tau));
y _approx(1l) = x0;

% Initialize vector
for i = 2:1ength(tau)

y approx(i) = y_approx(i-1)*(1+h*a);
end

hold on

plot(tau, y_approx, 'r.-")
title(sprintf('a = %.1f", a))
legend('Exact', 'Approx.")

0.9

0.8

0.7

0.6

05

0.4

0.3

0.2

a=-1.0

Example

e x =ax, x(0) = x,
* Analytic solution: x(t) = x,e®t

 Backward Euler
o yk+1 — yk + hf(yk+1)

. yk'l']_ — yk + hayk+1
. yk+1 _ hayk+1 — yk
* (1 - ha)y"*t = y¥
o K+l _ yk

y " 1-ha

0.9

0.8

0.7

06

0.5}

0.4+

0.3

0.2

Numerical Consistency: Forward Euler

* Consistency: ODE is satisfiedas h — 0

* Forward Euler: yk*+1 = yk 4 hf(yk,uk) . 4 = f(y*,uk)

k
. . . e
* Local truncation error: Consistency requires "—h" —-0ash—-0

e"”: Error induced during one step, assuming perfect previous information
* Forward Euler approximate solution:

YEHL = x(t9) + hf (x(e9),u¥)

h? d?x
x(t*1) = x(tk + h) —x(tk)+h—()+ — wr 2(t"‘)+0(h3)

* True solution:

232

— x(¢5) + R ((t), uk) + 222

() + o)

Numerical Consistency: Forward Euler

* Local truncation error: ¥ = x(tF+1) — yk+ _—
= x(69) 4 R Ge(t),) 4 S5 (6 4 00h®) = (x(e5) + hf (x(e),u5))

h? d?x
_ -tk 3
> dxz(t)+ 0(h?)
= 0(h?)
* Consistency requires”e—k|| —-0ash—-0 h? d?x ¢ x 3
h ||ek|| T dx = (t¥) + 0(h®) hd?x
h = [+ 00| o

k
o If—— ”e I - = 0(hP), then the numerical method is “order p”.
. Forward Euler is an order 1 method, or first order method

Numerical Consistency
* More generally: y*t1 = ,’izkl a;yt + hZ,"I’:kz ﬁif(yi,ui)

* Truncation error:

k k
ek — x(tk+1) — z anx(nh) —h z ﬁlf(X(nh),ul)

n=k1 n=k2

k
||—>Oash—>0

le

* Consistency requires

le¥

— = O(hP), then the numerical method is “order p”.

o |If

Numerical Stability: Forward Euler

. yk+1 — yk 4 hf(yk,uk)
A map from y* to y*t1

» Stability means y* does not “blow up” when the true solution x(t*) is
bounded

* Usually, stability requires that the time step h cannot be too large

* Example: x = ax,a <0
« yk¥1 = (1 + ah)y*
* Stability requires |1+ ah| <1 & —ah < 2
e Fora=—10,wehave |1 —10h| <1 h<0.2

Numerical Stability: Backward Euler

. yk+1 — yk 4 hf(yk“,uk)
« A map from y* to y*+1

« Stability means y* does not “blow up” when the true solution x(t*) is
bounded

* Usually, stability requires that the time step h cannot be too large

* Example: x = ax,a <0

k
. yk+1 _ Y

" 1-ah {
. . : <
Stability requires ‘—1_ah‘ <1

* No restrictions on h, for any a!

30

25 F a = —10,h = 0.25

Exact

Numerical Stability

* Example: x = ax with forward Euler
e Ifa =—10, h < 0.2 is required for stability

* Example 2: x = ax with backward Euler
* No restrictions on h, for any a

Numerical Stability

o . oyk+1l _ VK L k L 0
More generally: y*** = Y7 _. a;y' + hXq-k, Bif (¥ ut)
* Desired property: the approximation y"" does not “blow up” when the true
solution x(t¥) is bounded
* Usually, this means time step h cannot be too large

* Specifically, one typically considers x = ax,a < 0.

* A stable numerical approximation to x = ax,a < 0 has the property that
k
y* =0

Numerical Convergence

« Convergence: mgx”x(tk) —y*|| > 0ash -0

* Maximum error goes to zero as time step goes to 0

* Dahlquist Equivalence Theorem
* Consistency + stability & convergence

* Convergence rate
* For order p methods: m]éax”x(t") —y¥|| = 0(nP)
* Forward and backward Euler:p =1
* It takes t_hf“
* If we half h, then the error also halves

,or0 (%) steps, each incurring O (h?) error

Numerical Convergence

* Visualize convergence rate with Max
error vs. h plot

 Forward and backward Euler are both
15t order

* Half the size of h leads to half the error

 Usually, log-log plots are used to
show a wide range of errors and h

* Order p method has a slope of p
(approximately).

max error

1072 ¢

10

10

10

10

107

10°

max error

a=-1.0

10 ¢

1076

107

1072

10°

Stiff equations

* ODEs with components that have very fast rates of change
* Usually requires very small step sizes for stability

* Example: x; = ax; with forward Euler
* Stability requires |1 + hal| < 1
* Fora = —100, we have |1 — 100h| <1 © h < 0.02

* Small step size is required even if there are other slower changing
components like X, = x; — x5

561 = —100.7(,'1
* Implicit methods (eg. backward Euler) are useful here

i'zle—xZ

e=[100 01,

