Announcements

* Assignment 1 posted, due Sept. 30
 Office hours this week: Today 13:00-14:30

 Office hours after this week: Mondays 14:00-15:30



Nonlinear Systems

CMPT 419/983
11/9/2019



Nonlinear Systems Roadmap

* Introduction
* Analysis
e Control

* Numerical solutions



Nonlinear Systems Roadmap: Today

* Feature of nonlinear systems
* Linearization
e Stability via linearization

* Phase portraits



Nonlinear systems

*x = f(x,u)
* State: x(t) € R™, x(ty) = x,
* Control: u(t) € U

 Differential equations generally do not have closed-form solutions
* Numerical methods can be used to obtain approximate solutions
* Other analysis techniques offer insight into the solutions

* Existence and uniqueness of solutions
* fis a nonlinear function
* Lipschitz continuous in x
AL > 0,Vuy, ||f (g, w) — f(x, W < Llloxg — x|
* u(-) is piecewise continuous



Study of Nonlinear Systems

* In general, no closed form solutions

* Numerical approximations of solutions can be helpful
* Widely used for simulations to predict system behaviour

* Analysis involves studying
e equilibrium points
* stability
* limit cycles
* bifurcations



Features of nonlinear systems

* Almost all real-world robots are modelled by nonlinear systems



Examples of Nonlinear Systems

* Dubins Car * Inverted pendulum
X =1 C0SH §—Zsing =0
y = vsin8 l
6 =u X, =0
xZ — H

5C1=x2

Xy = Tsin X1
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Examples of Nonlinear Systems

* Bicycle

X =0,
Uy = WUy + Uy

y =7y

2
Uy = —wly + -~ (Fc,f cosu, + FC’,,)

=I (lfFCf l FCT)

X =v,cosyp — vy siny
Y = v, siny + vy, cosy
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Features of Nonlinear Systems

* Almost all real-world robots are modelled by nonlinear systems

* Closed orbits and limit cycles



Predator-Prey Model

* Predator-prey model: x is number of preys, y is number of predators

X = ax —

Bxy

y = oxy—vyy

e a: prey natural growth rate

* [: prey decline rate due to interaction with predator
* §: predator growth rate due to interaction with prey

* y: prey natural decline rate
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Van der Pol Oscillator

* Model for several natural phenomena
* Neuron action potentials
* Geological fault
* Heart beat

velocity

* Limit cycle
* No matter the initial state, trajectories

converge to the cycle &
position




Features of Nonlinear Systems

* Almost all real-world robots are modelled by nonlinear systems
* Closed orbits and limit cycles

* Multiple isolated equilibrium points



Duffing’s Equation

* More complex model of oscillators compared to the
simple harmonic oscillator, which is a linear system

* No damping and no forcing:

X =y
y=x—x3




Linearization

* Local behaviour of nonlinear system x = f(x, u) at operating point
(x,u) = (X, u)
* At the operating point, x = f (X, %)
* Define new variablesx =x —x, i =u—u

* Taylor approximation:
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Linearization
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Linearization

* Inverted pendulum

X T
* Newton’s laws: 86 = —

g .
—> t7sind

: T .
e letx, =0,x, = 0,u = — (“normalized control”)
1 2 mlz
5(1 = xz

Xy = %sinxl +u

e Linearizearound 8 = x;, = 0,0 =x, = 0,u =0



X1 = X3

Linearization x2=§sinx1+u
* Linearize around 8 = x; = 0,9 =x,=0,u=0
. Of . . 9f N
* X == X+ ==
ox (%,70) ou (%,7)
0f1 0K
L of _oxs o, B 0 1 10
axl=n |8 0f = 1Zcosx; 0 =<
(x,u) Y2 Yi2 1 0,0) I
_axl axz (0,0) !
0f1
U —|ou _ [0]
oulgwy |91z 1
_au (0’0)

[0 1 0 X1 = X
-Soxz% Ox+[1]u = . Y



LTI System: Stability of x = Ax | /

e Equilibrium point of x = f(x) is where f(x) =0
* For x = Ax, in general 0,, is an equilibrium point: x, = 0,
* Also, x, € N(A)

* Stable: x(t) is bounded for all t > 0, for all initial conditions x
* Asymptotically stable: x(t) - x, ast - o
* Exponentially stable: 3M, a > 0 such that [|x(t)]| < Me~%t|x,||

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(4;) < 0



Equilibrium Points and Stability: Nonlinear Systems

* 1D: Determine stability pictorially
* In general: eigenvalues of linearization around equilibrium point

1 ——— 1
* Example: ]
. 06 1 osf
* X = ax 04f 1 oaf
. - . f(X) 02} 1 o2t 1
Linearization: I - < ....... .< ......................... > ...... > ............. i S > ..... > ............................. .< ....... < ......
02f 1 o2t 1
i —q 04t 1 04f
ax 06 1 osf
af 08} 1 -08
a =a 08 06 w04 w02 0 02 04 06 o8 1 T 08 06 w04 02 0 02 04 06 08 1
x=0 X X

a > 0: unstable a < 0: stable



Equilibrium Points and Stability: Nonlinear
Systems

* 1D: Determine stability pictorially
* In general: eigenvalues of linearization around equilibrium point

* Examples: L f@=x L f@=—t
c X =0 ! |
k= n |
Linearization: oo SN
af 02} |
a = i3x2
of

=0

0x
x=0



Duffing’s Equation

* Damped and no forcing:
X=y

y=x—y—x3
e Equilibrium points:
x=0=>y=0

y=0=>x—y—x3=0

>x(1—-x%)=0

=»>x=-10,1
* Linearization:
af _ [ 0 1 ]
d(x,y) 11-3x* -1

af
a(x,y)

Eigenvalues:

s+s+2=0
—-1++v1-8

N 2

* Complex conjugate pairs

* Negative real part

0 1]

(+1,0) 2 1

S

af 0 1
d(x,y) _[1 —1]

(0,0)
Eigenvalues:A///

st+s—-1=0
—1+v1+4
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* Real and opposite sign

 “Saddle”

S:

« “Stable focus”




Phase Portraits

* Phase portraits: Graphs of y(t) vs. x(t) for 2D systems
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Phase Portraits

* Phase portraits: Graphs of y(t) vs. x(t) for 2D systems

Stable node Unstable node
* Both eigenvalues\\ /g——- \ ﬂ——— * Both eigenvalues Saddle

real and negative i real and positive * Real eigenvalues with

ZAN

7& opposite signs
Stable focus Unstable focus ~
* Complex * Complex ~ ’_.
eigenvalues pairs - ;
e Positive real part \

eigenvalues pairs
* Negative real part



