Mixed-Integer Linear
Programming

CMPT 419/983
Mo Chen

SFU Computing Science
30/09/2019

Linear Programming

minimize c'x
subjectto Ax < b

* Convex program
* Feasible set is a convex polytype
e Optimal point is at vertex of feasible set (if the problem is feasible)

* Many mature solution methods
e Simplex method
* Interior point methods

* MATLAB: 1linprog

Mixed-Integer Linear Programming (MILP)

minimize c'x+d'y
subjectto Ax+ By <b
x,y =0
X € 7
* Almost same as linear program, except x must be an integer

* Very useful in many applications
e Captures logic

* Nonconvex! = much more difficult than linear programming, or even
convex programming

Integer Variables

* Binary choices

* Logical constraints

* Restricted range of values

Binary Choices

* Binary choice: x; € {0,1}

* Encode choice between two alternatives
* Example: Load n items with weights w; onto a drone with maximum weight

capacity W
n
Z Wi X; < W
i=1

Logical Constraints

* Suppose x{,x, € {0,1}, where 0 represents false and 1 represent true

* x4, OR x, must be true 2 x; +x, > 1
* x4 AND x, must be false 2 x; + x, < 1

* Big-M method
* Supposewewanta'x < bORc'x <d

a'x <b+ My,
c'x <d+ My,
ity =1
V1,Y2 € {0,1}
* M is chosen to be very large

Restricted Range of Values

* Binary variables can be used to restrict another variable to a finite set
of values

* The following are equivalent

x €{aq, ..., am}

plane

Multi-Vehicle Collision Avoidance another plane

e Given: algorithm for avoiding collision with another plane, despite
worst-case behaviour of the other plane

* Problem: coordinate to avoid collision when there are three or more
vehicles

Chen, Shih, Tomlin (2016). Multi-vehicle collision avoidance via Hamilton-Jacobi reachability and mixed integer programming.

Example: Multi-Vehicle Collision Avoidance

* Only pairwise collision avoidance is tractable Vehicle i VY

: . . . : Vehicle j
* Higher level logic is needed to guarantee collision avoidance /

* Constraints
* Vehicle j is free to avoid another vehicle

* Vehicle i must only choose a single vehicle to avoid | Vehicle k

Vs

* Objective X

' i icle i Vehicle j
* Resolve as many conflicts as possible Vehicle i J

Chen, Shih, Tomlin (2016). Multi-vehicle collision avoidance via Hamilton-Jacobi reachability and mixed integer programming.

MVCA: Constraint Design

* Control logic: u;;, boolean variable; ii;; = 1 if vehicle Vehicle i o
should avoid j Vehicle j

;; €{0,1}

* If vehicle i avoids j, then j does not need to avoid]
vehicle i

Uy + Uy = 1 Vehicle k

Vs

e Each vehicle i can only be guaranteed to avoid one other]

vehicle j
] Dt
Zﬁij <1 Vehicle i Vehicle j

J _

Chen, Shih, Tomlin (2016). Multi-vehicle collision avoidance via Hamilton-Jacobi reachability and mixed integer programming.

MVCA: Integer Program

Maximize

Subject to

(No “redundant avoidance”)

(Guaranteed pairwise avoidance)

* Reward coefficient c;;: Large ¢;; encourages ii;; to be 1

* How to design ¢;; to guarantee 3-vehicle collision avoidance?

* Chen, Shih., Tomlin (2016). Multi-vehicle collision avoidance via Hamilton-
Jacobi reachability and mixed integer programming.

Comparison with baseline: 3 vehicles

3 vehicles 8 vehicles

O

y

Chen, Shih, Tomlin (2016). Multi-vehicle collision avoidance via Hamilton-Jacobi reachability and mixed integer programming.

Example: Obstacle Avoidance

* Avoiding a box:
* x <x;ORx =2 x, ORy <y, ORy =y,

* Using big-M formulation:

X < Xp +MZ1
X = Xy —M22
y =y + Mz
Y2 Yy — Mz,
Z1t2Zy+23+24, <3
Z1,Zp,23,Z4 € {0,1}

Reach-Avoid Games

e Reach a goal while avoiding an adversary

10

8 |

Lorenzetti, Chen, Landry, Pavone (2018). Reach-Avoid Games Via Mixed-Integer Second-Order Cone Programming.

Reach-Avoid Games

e Reach a goal while avoiding an adversary

MILP Modeling

* Examples presented are not exhaustive

e Usually, there are multiple ways of modeling the same problem
* Pick formulations that have fewer variables and constraints

* The big-M method is very popular and general, but can be hard to
optimize

Solving MILPs

e Brute force approach: try all possibilities

 Branch & bound

* Divide and conquer approach
* Puts bound on optimal cost to eliminate possibilities quickly

Branch & Bound: Key |dea

* Consider the optimization
minimize c¢'x
subjectto x € F

* Partition feasible set F into subsets {F;, F5, ..., F}.}
e Resulting subproblems:

minimize c¢'x

subjectto x € F;

 Solve all subproblems, and the optimal solution to the original problem
should come from one of the subproblems

Branch & Bound: Key |dea #2

* There is an easy way to obtain a lower bound to subproblems
minimize c'x

subjectto x € F;

* Let b(F;) be the lower bound

b(F:) < minc'x
(F}) min

* For example, solve the optimization without the integer constraint

Branch & Bound: Key |dea #3

* Maintain an upper bound U on the optimal cost of the problem.

U > minc'x
X€EF

* If b(F;) = U, then there is no need to consider the subproblem with feasible
set F;

* U can be initialized to a very large number

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
1. |If infeasible, delete it

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
1. |If infeasible, delete it
2. Otherwise, compute lower bound b(F;)

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem Fy F,

1. If infeasible, delete it Optimal value: 10
2. Otherwise, compute lower bound b(F;) Sl el T

2. If b(F;) < U, then two options:
1. Solve the subproblem

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem F

1. If infeasible, delete it Optimal value: 10
2. Otherwise, compute lower bound b(F;) Sl el T

2. If b(F;) < U, then two options:
1. Solve the subproblem

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem F
1. |If infeasible, delete it
2. Otherwise, compute lower bound b(F;)

2. If b(F;) < U, then two options: B(Fs) = 4
1. Solve the subproblem

2. Break the subproblem into further subproblems and add them
to the list of active subproblems

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
1. |If infeasible, delete it
2. Otherwise, compute lower bound b(F;)

2. If b(F;) < U, then two options: Optimal value: 5
1. Solve the subproblem Optimal solution: xs

2. Break the subproblem into further subproblems and add them
to the list of active subproblems

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
1. |If infeasible, delete it
2. Otherwise, compute lower bound b(F;)

2. If b(F;) < U, then two options: Optimal value: 5
1. Solve the subproblem Optimal solution: xs

2. Break the subproblem into further subproblems and add them
to the list of active subproblems

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
1. |If infeasible, delete it
2. Otherwise, compute lower bound b(F;)

2. If b(F;) < U, then two options:

1. Solve the subproblem

2. Break the subproblem into further subproblems and add them
to the list of active subproblems

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
1. |If infeasible, delete it
2. Otherwise, compute lower bound b(F;)

2. If b(F;) < U, then two options: Optimal value: 6

1. Solve the subproblem Optimal solution: x¢

2. Break the subproblem into further subproblems and add them
to the list of active subproblems

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
1. |If infeasible, delete it
2. Otherwise, compute lower bound b(F;)

2. If b(F;) < U, then two options:

1. Solve the subproblem

2. Break the subproblem into further subproblems and add them
to the list of active subproblems

3. Otherwise, delete the subproblem

Branch & Bound Algorithm

* Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
1. |If infeasible, delete it
2. Otherwise, compute lower bound b(F;)

2. If b(F;) < U, then two options:

1. Solve the subproblem

2. Break the subproblem into further subproblems and add them
to the list of active subproblems

3. Otherwise, delete the subproblem

Branch & Bound Tuning Parameters

* Choice of subproblems
e Depth first vs. breadth first

* Different methods for obtaining lower bounds b(F;)

* Different ways of breaking larger (sub)problems into smaller
subproblems

Tools for Solving MILPs

* Solvers
o CPLEX: https://www.ibm.com/analytics/cplex-optimizer
* GLPK: https://www.gnu.org/software/glpk/
e Gurobi: https://www.gurobi.com
 MOSEK: https://www.mosek.com/

* Interfaces
* Python
* MATLAB
 AMPL

Implementation Example

* Gurobi in Python

* Instructions if you use Anaconda:
https://www.gurobi.com/documentation/8.1/quickstart windows/in
stalling the anaconda py.html#section:Anaconda

Toy Example

e Examples/mipl.py

maximize x +y + 2z
subjectto x + 2y + 3z < 4

x+y=1
x,vy,z €{0,1}

Model("mipl™)

= m.addVar(vtype=GRB.BINARY, name="x")
= m.addVar(vtype=GRB.BINARY, name="y")
= m.addVar(vtype=GRB.BINARY, name="z")

.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

.addConstr(x + 2 * y + 3 * z <= 4, "c0")

.addConstr(x + y >= 1, "c1")
m.optimize()

for v in m.getVars():
print('%s %g' % (v.varName, v.x))

print('Obj: %g" % m.objval)

Other Examples

* Tour of examples
* https://www.gurobi.com/documentation/8.1/examples/example tour.html

* Some interesting ones:
e sudoku.py (impress your friends with this)
* piecewise.py (piecewise linear objective)
 portfolio.py (financial portfolio optimization)

