Mixed-Integer Linear Programming

CMPT 419/983
Mo Chen
SFU Computing Science
30/09/2019

Linear Programming

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq b
\end{aligned}
$$

- Convex program
- Feasible set is a convex polytype
- Optimal point is at vertex of feasible set (if the problem is feasible)
- Many mature solution methods
- Simplex method
- Interior point methods
- MATLAB: linprog

Mixed-Integer Linear Programming (MILP)

$$
\begin{array}{cc}
\text { minimize } & c^{\top} x+d^{\top} y \\
\text { subject to } & A x+B y \leq b \\
& x, y \geq 0 \\
& x \in \mathbb{Z}
\end{array}
$$

- Almost same as linear program, except x must be an integer
- Very useful in many applications
- Captures logic
- Nonconvex! \rightarrow much more difficult than linear programming, or even convex programming

Integer Variables

- Binary choices
- Logical constraints
- Restricted range of values

Binary Choices

- Binary choice: $x_{i} \in\{0,1\}$
- Encode choice between two alternatives
- Example: Load n items with weights w_{i} onto a drone with maximum weight capacity W

$$
\sum_{i=1}^{n} w_{i} x_{i} \leq W
$$

Logical Constraints

- Suppose $x_{1}, x_{2} \in\{0,1\}$, where 0 represents false and 1 represent true
- x_{1} OR x_{2} must be true $\rightarrow x_{1}+x_{2} \geq 1$
- x_{1} AND x_{2} must be false $\rightarrow x_{1}+x_{2} \leq 1$
- Big-M method
- Suppose we want $a^{\top} x \leq b$ OR $c^{\top} x \leq d$

$$
\begin{gathered}
a^{\top} x \leq b+M y_{1} \\
c^{\top} x \leq d+M y_{2} \\
y_{1}+y_{2} \leq 1 \\
y_{1}, y_{2} \in\{0,1\}
\end{gathered}
$$

- M is chosen to be very large

Restricted Range of Values

- Binary variables can be used to restrict another variable to a finite set of values
- The following are equivalent

```
x\in{\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{m}{}}
```

$$
\begin{aligned}
x & =\sum_{i=1}^{m} a_{i} y_{i} \\
\sum_{i=1}^{m} y_{i} & =1 \\
y_{i} & \in\{0,1\}
\end{aligned}
$$

Multi-Vehicle Collision Avoidance

- Given: algorithm for avoiding collision with another plane, despite worst-case behaviour of the other plane
- Problem: coordinate to avoid collision when there are three or more vehicles

Chen, Shih, Tomlin (2016). Multi-vehicle collision avoidance via Hamilton-Jacobi reachability and mixed integer programming.

Example: Multi-Vehicle Collision Avoidance

- Only pairwise collision avoidance is tractable
- Higher level logic is needed to guarantee collision avoidance
- Constraints
- Vehicle j is free to avoid another vehicle
- Vehicle i must only choose a single vehicle to avoid

Vehicle k K
- Objective
- Resolve as many conflicts as possible

MVCA: Constraint Design

- Control logic: $\hat{u}_{i j}$, boolean variable; $\hat{u}_{i j}=1$ if vehicle i should avoid j

$$
\hat{u}_{i j} \in\{0,1\}
$$

- If vehicle i avoids j, then j does not need to avoid vehicle i

$$
\hat{u}_{i j}+\hat{u}_{j i} \leq 1
$$

Vehicle j

Vehicle k

- Each vehicle i can only be guaranteed to avoid one other vehicle j

$$
\sum_{j} \widehat{u}_{i j} \leq 1
$$

Vehicle i
Vehicle j

Chen, Shih, Tomlin (2016). Multi-vehicle collision avoidance via Hamilton-Jacobi reachability and mixed integer programming.

MVCA: Integer Program

Maximize

$$
\text { Subject to } \quad \hat{u}_{i j}+\hat{u}_{j i} \leq 1
$$

$$
\begin{array}{cc}
\sum_{i, j} c_{i j} \hat{u}_{i j} & \\
\hat{u}_{i j}+\hat{u}_{j i} \leq 1 & \\
\sum_{j} \hat{u}_{i j} \leq 1 & \text { (No "redundant avoidance") } \\
\hat{u}_{i j} \in\{0,1\} & \text { (Guaranteed pairwise avoidance) }
\end{array}
$$

- Reward coefficient $c_{i j}$: Large $c_{i j}$ encourages $\hat{u}_{i j}$ to be 1
- How to design $c_{i j}$ to guarantee 3-vehicle collision avoidance?
- Chen, Shih., Tomlin (2016). Multi-vehicle collision avoidance via HamiltonJacobi reachability and mixed integer programming.

Comparison with baseline: 3 vehicles

3 vehicles

8 vehicles

Chen, Shih, Tomlin (2016). Multi-vehicle collision avoidance via Hamilton-Jacobi reachability and mixed integer programming.

Example: Obstacle Avoidance

- Avoiding a box:
- $x \leq x_{l}$ OR $x \geq x_{u}$ OR $y \leq y_{l}$ OR $y \geq y_{u}$

- Using big-M formulation:

$$
\begin{aligned}
x & \leq x_{l}+M z_{1} \\
x & \geq x_{u}-M z_{2} \\
y & \leq y_{l}+M z_{3} \\
y & \geq y_{u}-M z_{4} \\
z_{1}+z_{2}+z_{3}+z_{4} & \leq 3 \\
z_{1}, z_{2}, z_{3}, z_{4} & \in\{0,1\}
\end{aligned}
$$

Reach-Avoid Games

- Reach a goal while avoiding an adversary

Lorenzetti, Chen, Landry, Pavone (2018). Reach-Avoid Games Via Mixed-Integer Second-Order Cone Programming.

Reach-Avoid Games

- Reach a goal while avoiding an adversary

MILP Modeling

- Examples presented are not exhaustive
- Usually, there are multiple ways of modeling the same problem
- Pick formulations that have fewer variables and constraints
- The big-M method is very popular and general, but can be hard to optimize

Solving MILPs

- Brute force approach: try all possibilities
- Branch \& bound
- Divide and conquer approach
- Puts bound on optimal cost to eliminate possibilities quickly

Branch \& Bound: Key Idea \#1

- Consider the optimization

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & x \in F
\end{array}
$$

- Partition feasible set F into subsets $\left\{F_{1}, F_{2}, \ldots, F_{k}\right\}$
- Resulting subproblems:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & x \in F_{i}
\end{array}
$$

- Solve all subproblems, and the optimal solution to the original problem should come from one of the subproblems

Branch \& Bound: Key Idea \#2

- There is an easy way to obtain a lower bound to subproblems

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & x \in F_{i}
\end{array}
$$

- Let $b\left(F_{i}\right)$ be the lower bound

$$
b\left(F_{i}\right) \leq \min _{x \in F_{i}} c^{\top} x
$$

- For example, solve the optimization without the integer constraint

Branch \& Bound: Key Idea \#3

- Maintain an upper bound U on the optimal cost of the problem.

$$
U \geq \min _{x \in F} c^{\top} x
$$

- If $b\left(F_{i}\right) \geq U$, then there is no need to consider the subproblem with feasible set F_{i}
- U can be initialized to a very large number

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

Branch \& Bound Algorithm

$$
U=\infty
$$

- Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
2. If infeasible, delete it

Branch \& Bound Algorithm

$$
U=\infty
$$

- Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
2. If infeasible, delete it

3. Otherwise, compute lower bound $b\left(F_{i}\right)$

Branch \& Bound Algorithm

$$
U=\infty
$$

- Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $b\left(F_{i}\right)$

Optimal value: 10
Optimal solution: x_{2}^{*}
2. If $b\left(F_{i}\right)<U$, then two options:

1. Solve the subproblem

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

$$
U=10
$$

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $b\left(F_{i}\right)$

Optimal value: 10
Optimal solution: x_{2}^{*}
2. If $b\left(F_{i}\right)<U$, then two options:

1. Solve the subproblem

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

$$
U=10
$$

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $\boldsymbol{b}\left(\boldsymbol{F}_{\boldsymbol{i}}\right)$
4. If $b\left(F_{i}\right)<U$, then two options: $B\left(F_{5}\right)=4$
5. Solve the subproblem
6. Break the subproblem into further subproblems and add them to the list of active subproblems

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

$$
U=10
$$

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $b\left(F_{i}\right)$
4. If $\boldsymbol{b}\left(\boldsymbol{F}_{\boldsymbol{i}}\right)<\boldsymbol{U}$, then two options:
5. Solve the subproblem

Optimal value: 5 Optimal solution: x_{5}^{*}
2. Break the subproblem into further subproblems and add them to the list of active subproblems

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $b\left(F_{i}\right)$
4. If $\boldsymbol{b}\left(\boldsymbol{F}_{\boldsymbol{i}}\right)<\boldsymbol{U}$, then two options:
5. Solve the subproblem

Optimal value: 5 Optimal solution: x_{5}^{*}
2. Break the subproblem into further subproblems and add them to the list of active subproblems

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

$$
\begin{aligned}
U & =5 \\
x^{*} & =x_{5}^{*}
\end{aligned}
$$

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $\boldsymbol{b}\left(\boldsymbol{F}_{\boldsymbol{i}}\right)$
4. If $b\left(F_{i}\right)<U$, then two options:

5. Solve the subproblem
6. Break the subproblem into further subproblems and add them to the list of active subproblems

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $b\left(F_{i}\right)$
4. If $\boldsymbol{b}\left(\boldsymbol{F}_{\boldsymbol{i}}\right)<\boldsymbol{U}$, then two options:
5. Solve the subproblem

Optimal value: 6
Optimal solution: x_{6}^{*}
2. Break the subproblem into further subproblems and add them to the list of active subproblems

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

$$
\begin{aligned}
U & =5 \\
x^{*} & =x_{5}^{*}
\end{aligned}
$$

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $b\left(F_{i}\right)$
4. If $b\left(F_{i}\right)<U$, then two options:

5. Solve the subproblem
6. Break the subproblem into further subproblems and add them to the list of active subproblems
7. Otherwise, delete the subproblem

Branch \& Bound Algorithm

- Initialize an upper bound U, and divide F into subproblems

$$
\begin{aligned}
U & =5 \\
x^{*} & =x_{5}^{*}
\end{aligned}
$$

1. Select an active problem
2. If infeasible, delete it
3. Otherwise, compute lower bound $b\left(F_{i}\right)$

4. If $b\left(F_{i}\right)<U$, then two options:
5. Solve the subproblem
6. Break the subproblem into further subproblems and add them to the list of active subproblems
7. Otherwise, delete the subproblem

Branch \& Bound Tuning Parameters

- Choice of subproblems
- Depth first vs. breadth first
- Different methods for obtaining lower bounds $b\left(F_{i}\right)$
- Different ways of breaking larger (sub)problems into smaller subproblems

Tools for Solving MILPs

- Solvers
- CPLEX: https://www.ibm.com/analytics/cplex-optimizer
- GLPK: https://www.gnu.org/software/glpk/
- Gurobi: https://www.gurobi.com
- MOSEK: https://www.mosek.com/
- Interfaces
- Python
- MATLAB
- AMPL

Implementation Example

- Gurobi in Python
- Instructions if you use Anaconda: https://www.gurobi.com/documentation/8.1/quickstart windows/in stalling the anaconda py.html\#section:Anaconda

Toy Example

- Examples/mip1.py

$$
\begin{aligned}
\text { maximize } & x+y+2 z \\
\text { subject to } & x+2 y+3 z \leq 4 \\
& x+y \geq 1 \\
& x, y, z \in\{0,1\}
\end{aligned}
$$

```
# Create a new model
```


Create a new model

m = Model("mip1")
m = Model("mip1")

Create variables

Create variables

x = m.addVar(vtype=GRB.BINARY, name="x")
x = m.addVar(vtype=GRB.BINARY, name="x")
y = m.addVar(vtype=GRB.BINARY, name="y")
y = m.addVar(vtype=GRB.BINARY, name="y")
z = m.addVar(vtype=GRB.BINARY, name="z")
z = m.addVar(vtype=GRB.BINARY, name="z")

Set objective

Set objective

m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)
m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

Add constraint: }x+2y+3z<=

Add constraint: }x+2y+3z<=

m.addConstr(x + 2* y + 3*z<= 4, "c0")
m.addConstr(x + 2* y + 3*z<= 4, "c0")

Add constraint: }x+y>=

Add constraint: }x+y>=

m.addConstr(x + y >= 1, "c1")
m.addConstr(x + y >= 1, "c1")
m.optimize()
m.optimize()
for v in m.getVars():
for v in m.getVars():
print('%s %g' % (v.varName, v.x))
print('%s %g' % (v.varName, v.x))
print('Obj: %g' % m.objVal)

```
print('Obj: %g' % m.objVal)
```


Other Examples

- Tour of examples
- https://www.gurobi.com/documentation/8.1/examples/example tour.html
- Some interesting ones:
- sudoku.py (impress your friends with this)
- piecewise.py (piecewise linear objective)
- portfolio.py (financial portfolio optimization)

