
Mixed-Integer	Linear	
Programming

CMPT	419/983
Mo	Chen

SFU	Computing	Science
30/09/2019



Linear	Programming

• Convex	program
• Feasible	set	is	a	convex	polytype
• Optimal	point	is	at	vertex	of	feasible	set	(if	the	problem	is	feasible)

• Many	mature	solution	methods
• Simplex	method
• Interior	point	methods

• MATLAB:	linprog

minimize 𝑐'𝑥
subject to 𝐴𝑥 ≤ 𝑏



Mixed-Integer	Linear	Programming	(MILP)

• Almost	same	as	linear	program,	except	𝑥 must	be	an	integer

• Very	useful	in	many	applications
• Captures	logic

• Nonconvex!	àmuch	more	difficult	than	linear	programming,	or	even	
convex	programming

minimize 𝑐'𝑥 + 𝑑'𝑦
subject to 𝐴𝑥 + 𝐵𝑦 ≤ 𝑏

𝑥, 𝑦 ≥ 0
𝑥 ∈ ℤ



Integer	Variables

• Binary	choices

• Logical	constraints

• Restricted	range	of	values



Binary	Choices

• Binary	choice:	𝑥= ∈ 0,1

• Encode	choice	between	two	alternatives
• Example:	Load	𝑛 items	with	weights	𝑤= onto	a	drone	with	maximum	weight	
capacity	𝑊

B 𝑤=𝑥=

C

=DE

≤ 𝑊



Logical	Constraints

• Suppose	𝑥E, 𝑥F ∈ 0,1 ,	where	0 represents	false	and	1 represent	true
• 𝑥E OR	𝑥F must	be	true	à 𝑥E + 𝑥F ≥ 1
• 𝑥E AND	𝑥F must	be	false	à 𝑥E + 𝑥F ≤ 1

• Big-M	method
• Suppose	we	want	𝑎'𝑥 ≤ 𝑏 OR	𝑐'𝑥 ≤ 𝑑

𝑎'𝑥 ≤ 𝑏 + 𝑀𝑦E
𝑐'𝑥 ≤ 𝑑 + 𝑀𝑦F

𝑦E + 𝑦F ≤ 1
𝑦E, 𝑦F ∈ 0,1

• 𝑀 is	chosen	to	be	very	large



Restricted	Range	of	Values

• Binary	variables	can	be	used	to	restrict	another	variable	to	a	finite	set	
of	values

• The	following	are	equivalent

𝑥 ∈ 𝑎E, … , 𝑎J
𝑥 = B 𝑎=𝑦=

J

=DE
B 𝑦=

J

=DE

= 1

𝑦= ∈ 0,1



Multi-Vehicle	Collision	Avoidance

• Given:	algorithm	for	avoiding	collision	with	another	plane,	despite	
worst-case	behaviour	of	the	other	plane

• Problem:	coordinate	to	avoid	collision	when	there	are	three	or	more	
vehicles

another	plane
plane

Chen,	Shih,	Tomlin	(2016).	Multi-vehicle	collision	avoidance	via	Hamilton-Jacobi	reachability	and	mixed	integer	programming.



Example:	Multi-Vehicle	Collision	Avoidance

• Only	pairwise	collision	avoidance	is	tractable
• Higher	level	logic	is	needed	to	guarantee	collision	avoidance

• Constraints
• Vehicle	𝑗 is	free	to	avoid	another	vehicle
• Vehicle	𝑖 must	only	choose	a	single	vehicle	to	avoid

• Objective
• Resolve	as	many	conflicts	as	possible

9

Vehicle	𝑖
Vehicle	𝑗

Vehicle	𝑖 Vehicle	𝑗

Vehicle	𝑘

Chen,	Shih,	Tomlin	(2016).	Multi-vehicle	collision	avoidance	via	Hamilton-Jacobi	reachability	and	mixed	integer	programming.



MVCA:	Constraint	Design

• Control	logic: 𝑢P=Q, boolean	variable;	𝑢P=Q = 1 if	vehicle	𝑖
should	avoid	𝑗

𝑢P=Q ∈ 0,1

• If	vehicle	𝑖 avoids	𝑗,	then	𝑗 does	not	need	to	avoid	
vehicle	𝑖

𝑢P=Q + 𝑢PQ= ≤ 1

• Each	vehicle	𝑖 can	only	be	guaranteed	to	avoid	one	other	
vehicle	𝑗

B 𝑢P=Q ≤ 1
Q

Vehicle	𝑖
Vehicle	𝑗

Vehicle	𝑖 Vehicle	𝑗

Vehicle	𝑘

10

Chen,	Shih,	Tomlin	(2016).	Multi-vehicle	collision	avoidance	via	Hamilton-Jacobi	reachability	and	mixed	integer	programming.



MVCA:	Integer	Program

B 𝑐=Q𝑢P=Q
=,Q

𝑢P=Q + 𝑢PQ= ≤ 1

B 𝑢P=Q ≤ 1
Q

𝑢P=Q ∈ 0,1
• Reward	coefficient 𝑐=Q: Large	𝑐=Q encourages	𝑢P=Q to	be	1
• How	to	design	𝑐=Q to	guarantee	3-vehicle	collision	avoidance?
• Chen,	Shih.,	Tomlin	(2016).	Multi-vehicle	collision	avoidance	via	Hamilton-
Jacobi	reachability	and	mixed	integer	programming.

Maximize

Subject	to

(No	“redundant	avoidance”)

(Guaranteed	pairwise	avoidance)

11



Comparison	with	baseline:	3	vehicles
3	vehicles 8	vehicles

12

Chen,	Shih,	Tomlin	(2016).	Multi-vehicle	collision	avoidance	via	Hamilton-Jacobi	reachability	and	mixed	integer	programming.



Example:	Obstacle	Avoidance

• Avoiding	a	box:
• 𝑥 ≤ 𝑥S OR	𝑥 ≥ 𝑥T OR	𝑦 ≤ 𝑦S OR	𝑦 ≥ 𝑦T

• Using	big-M	formulation:

𝑥 ≤ 𝑥S + 𝑀𝑧E
𝑥 ≥ 𝑥T − 𝑀𝑧F
𝑦 ≤ 𝑦S + 𝑀𝑧W
𝑦 ≥ 𝑦T − 𝑀𝑧X

𝑧E + 𝑧F + 𝑧W + 𝑧X ≤ 3
𝑧E, 𝑧F, 𝑧W, 𝑧X ∈ 0,1



Reach-Avoid	Games

• Reach	a	goal	while	avoiding	an	adversary

Lorenzetti,	Chen,	Landry,	Pavone (2018).	Reach-Avoid	Games	Via	Mixed-Integer	Second-Order	Cone	Programming.	



Reach-Avoid	Games

• Reach	a	goal	while	avoiding	an	adversary



MILP	Modeling

• Examples	presented	are	not	exhaustive

• Usually,	there	are	multiple	ways	of	modeling	the	same	problem
• Pick	formulations	that	have	fewer	variables	and	constraints

• The	big-M	method	is	very	popular	and	general,	but	can	be	hard	to	
optimize



Solving	MILPs

• Brute	force	approach:	try	all	possibilities

• Branch	&	bound
• Divide	and	conquer	approach
• Puts	bound	on	optimal	cost	to	eliminate	possibilities	quickly



Branch	&	Bound:	Key	Idea	#1

• Consider	the	optimization

• Partition	feasible	set	𝐹 into	subsets	 𝐹E, 𝐹F, … , 𝐹[
• Resulting	subproblems:

• Solve	all	subproblems,	and	the	optimal	solution	to	the	original	problem	
should	come	from	one	of	the	subproblems

minimize 𝑐'𝑥
subject to 𝑥 ∈ 𝐹

minimize 𝑐'𝑥
subject to 𝑥 ∈ 𝐹=



Branch	&	Bound:	Key	Idea	#2

• There	is	an	easy	way	to	obtain	a	lower	bound	to	subproblems

• Let	𝑏 𝐹= be	the	lower	bound
𝑏 𝐹= ≤ min

\∈]^
𝑐'𝑥

• For	example,	solve	the	optimization	without	the	integer	constraint

minimize 𝑐'𝑥
subject to 𝑥 ∈ 𝐹=



Branch	&	Bound:	Key	Idea	#3

• Maintain	an	upper	bound	𝑈 on	the	optimal	cost	of	the	problem.
𝑈 ≥ min

\∈]
𝑐'𝑥

• If	𝑏 𝐹= ≥ 𝑈,	then	there	is	no	need	to	consider	the	subproblem	with	feasible	
set	𝐹=

• 𝑈 can	be	initialized	to	a	very	large	number



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = ∞



Branch	&	Bound	Algorithm

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = ∞

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem



• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

Branch	&	Bound	Algorithm

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = ∞

𝑏 𝐹F = 8



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = ∞

Optimal	value:	10
Optimal	solution:	𝑥F

∗



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = 10
𝑥∗ = 𝑥F

∗

Optimal	value:	10
Optimal	solution:	𝑥F

∗



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝒃 𝑭𝒊

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹g 𝐹h

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = 10
𝑥∗ = 𝑥F

∗

𝐵 𝐹g = 4



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝒃 𝑭𝒊 < 𝑼,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹g 𝐹h

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = 10
𝑥∗ = 𝑥F

∗

Optimal	value:	5
Optimal	solution:	𝑥g

∗



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝒃 𝑭𝒊 < 𝑼,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹g 𝐹h

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = 5
𝑥∗ = 𝑥g

∗

Optimal	value:	5
Optimal	solution:	𝑥g

∗



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝒃 𝑭𝒊

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹g 𝐹h

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = 5
𝑥∗ = 𝑥g

∗

𝐵 𝐹h = 3



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝒃 𝑭𝒊 < 𝑼,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹g 𝐹h

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = 5
𝑥∗ = 𝑥g

∗

Optimal	value:	6
Optimal	solution:	𝑥h

∗



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹g 𝐹h

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = 5
𝑥∗ = 𝑥g

∗

𝐵 𝐹X = 6



Branch	&	Bound	Algorithm

• Initialize	an	upper	bound	𝑈,	and	divide	𝐹 into	subproblems

1. Select	an	active	problem
1. If	infeasible,	delete	it
2. Otherwise,	compute	lower	bound	𝑏 𝐹=

2. If	𝑏 𝐹= < 𝑈,	then	two	options:
1. Solve	the	subproblem
2. Break	the	subproblem	into	further	subproblems	and	add	them	

to	the	list	of	active	subproblems

3. Otherwise,	delete	the	subproblem

𝐹g 𝐹h

𝐹

𝐹E 𝐹F 𝐹W 𝐹X

𝑈 = 5
𝑥∗ = 𝑥g

∗



Branch	&	Bound	Tuning	Parameters

• Choice	of	subproblems
• Depth	first	vs.	breadth	first

• Different	methods	for	obtaining	lower	bounds	𝑏 𝐹=

• Different	ways	of	breaking	larger	(sub)problems	into	smaller	
subproblems



Tools	for	Solving	MILPs

• Solvers
• CPLEX:	https://www.ibm.com/analytics/cplex-optimizer
• GLPK:	https://www.gnu.org/software/glpk/
• Gurobi:	https://www.gurobi.com
• MOSEK:	https://www.mosek.com/

• Interfaces
• Python
• MATLAB	
• AMPL



Implementation	Example

• Gurobi in	Python

• Instructions	if	you	use	Anaconda:	
https://www.gurobi.com/documentation/8.1/quickstart_windows/in
stalling_the_anaconda_py.html#section:Anaconda



Toy	Example

• Examples/mip1.py

maximize 𝑥 + 𝑦 + 2𝑧
subject to 𝑥 + 2𝑦 + 3𝑧 ≤ 4

𝑥 + 𝑦 ≥ 1
𝑥, 𝑦, 𝑧 ∈ 0,1



Other	Examples

• Tour	of	examples
• https://www.gurobi.com/documentation/8.1/examples/example_tour.html

• Some	interesting	ones:
• sudoku.py	(impress	your	friends	with	this)
• piecewise.py	(piecewise	linear	objective)
• portfolio.py	(financial	portfolio	optimization)


