
Neural	Networks	and	
Markov	Decision	Processes

CMPT	419/983
Mo	Chen

SFU	Computing	Science
24/10/2019

Outline

• Neural	networks
• Forward	and	backward	propagation
• Typical	structures

• Markov	Decision	Processes
• Definitions
• Example
• Objective	in	reinforcement	learning

Neural	Networks

• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓% 𝑥
• Neural	Network:	A	specific	form	of	𝑓% 𝑥

• Forward	propagation
• Evaluation	of	𝑓% 𝑥

• Backpropagation
• Computation	of	'(

'%,	where	𝑙 is	the	loss	function

Neural	Networks

• A	specific	form	of	𝑓% 𝑥
𝑥*

𝑥+

𝑥,

𝑦*

𝑦+

𝑦,

𝑦-

𝑦* = 𝑓 𝑥/𝑤* + 𝑏*

1

𝑦+ = 𝑓 𝑥/𝑤+ + 𝑏+

𝑦, = 𝑓 𝑥/𝑤, + 𝑏,

𝑦- = 𝑓 𝑥/𝑤- + 𝑏-

𝑦 = 𝑓 𝑥/𝑊 + 𝑏
• Parameters	𝜃 are	𝑊 and	𝑏
• “Weights”

Neural	Networks
• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓% 𝑥
• Neural	Network:	A	specific	form	of	𝑓% 𝑥

ℎ = 𝑓* 𝑥/𝑊* + 𝑏*

𝑥 ℎ
𝑦

𝑦 = 𝑓+ ℎ/𝑊+ + 𝑏+

input	layer hidden	layer
output	layer

Neural	Networks

• Parameters	𝜃 are	the	weights	𝑊6
and	biases	𝑏6

• 𝑓*, 𝑓+, 𝑓, are	nonlinear
• Otherwise	𝑓 would	just	be	a	single	
linear	function:

𝑦 = 𝑥/𝑊* + 𝑏* 𝑊+ + 𝑏+ 𝑊, + 𝑏,
 = 𝑥/𝑊*𝑊+𝑊, + 𝑏*𝑊+𝑊, + 𝑏+𝑊, + 𝑏,

• “Activation	functions”ℎ* = 𝑓* 𝑥/𝑊* + 𝑏*

𝑥 ℎ*

ℎ+

ℎ+ = 𝑓+ ℎ*𝑊+ + 𝑏+

input	layer hidden	layer	1

output	layer

𝑦

hidden	layer	2

𝑦 = 𝑓, ℎ+𝑊, + 𝑏,

• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓% 𝑥
• Neural	Network:	A	specific	form	of	𝑓% 𝑥

Neural	Networks • Common	choices	of	activation	
functions
• Sigmoid:	

1
1 + 𝑒:;

• Softplus:
log 1 + 𝑒;

• Hyperbolic	tangent:	
tanh 𝑥

• Rectified	linear	unit	(ReLU):	
max 0, 𝑥

• Key	feature:	easy	to	differentiate

ℎ* = 𝑓* 𝑥/𝑊* + 𝑏*

𝑥 ℎ*

ℎ+

ℎ+ = 𝑓+ ℎ*𝑊+ + 𝑏+

input	layer hidden	layer	2

output	layer

𝑦

hidden	layer	2

𝑦 = 𝑓, ℎ+𝑊, + 𝑏,

• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓% 𝑥
• Neural	Network:	A	specific	form	of	𝑓% 𝑥

• Regression:	Choose	𝜃 such	that	𝑦 ≈ 𝑓% 𝑥
• Neural	Network:	A	specific	form	of	𝑓% 𝑥

Training	Neural	Networks	and	Backpropagation

• Given	current	𝜃, 𝑋, 𝑌,	compute	𝑓% 𝑋 to	
then	obtain	loss,	𝑙 𝜃; 𝑋, 𝑌
• 𝑙 𝜃; 𝑋, 𝑌 compares	𝑓% 𝑋 with	ground	truth	𝑌
• Evaluation	of	𝑓:	“Forward	propagation”

• Minimize	𝑙 𝜃; 𝑋, 𝑌
• Stochastic	gradient	descent

• Evaluation	of	 '(
'I

:	“Backpropagation”

• Example:	 'J
'IK

= 'J
'LM

'LM
'LK

'LK
'IK

• Just	the	chain	rule
• Software	like	TensorFlow	performs	this	(and	
other	operations	common	in	machine	learning)	
efficiently

ℎ* = 𝑓* 𝑥/𝑊* + 𝑏*

𝑥 ℎ*

ℎ+

ℎ+ = 𝑓+ ℎ*𝑊+ + 𝑏+

input	layer hidden	layer	2

output	layer

𝑦

hidden	layer	2

𝑦 = 𝑓, ℎ+𝑊, + 𝑏,

Common	Operations

• Fully	connected	(dot	product)

• Convolution
• Translationally	invariant
• Controls	overfitting

• Pooling	(fixed	function)
• Down-sampling
• Controls	overfitting

• Nonlinearity	layer	(fixed	function)
• Activation	functions,	e.g.	ReLU

Stanford	CS231n

towarddatascience.com

Example:	Small	VGG	Net	From	Stanford	CS231n

Neural	Network	Architectures
• Convolutional	neural	network	(CNN)
• Has	translational	invariance	properties	from	
convolution
• Common	used	for	computer	vision

• Recurrent	neural	network	RNN
• Has	feedback	loops	to	capture	temporal	or	
sequential	information
• Useful	for	handwriting	recognition,	speech	
recognition,	reinforcement	learning
• Long	short-term	memory	(LSTM):	special	type	of	
RNN	with	advantages	in	numerical	properties

• Others
• General	feedforward	networks,	variational	
autoencoders	(VAEs),	conditional	VAEs

Training	Neural	Networks

• Data	preprocessing
• Removing	bad	data
• Transform	input	data	(e.g.	rotating,	stretching,	adding	noise)

• Training	process	(optimization	algorithm)
• Choice	of	loss	function	(eg. L1	and	L2	regularization)
• Dropout:	randomly	set	neurons	to	zero	in	each	training	iteration
• Learning	rate	(step	size)	and	other	hyperparameter	tuning

• Software	packages:	efficient	gradient	computation
• Caffe,	Torch,	Theano,	TensorFlow

Outline

• Neural	networks
• Forward	and	backward	propagation
• Typical	structures

• Markov	Decision	Processes
• Definitions
• Example
• Objective	in	reinforcement	learning

Markov	Decision	Process

• Probabilistic	model	of	robots	and	other	systems
• State:	𝑠 ∈ 𝒮,	discrete	or	continuous
• Action	(control):	𝑎 ∈ 𝒜,	discrete	or	continuous
• Transition	operator	(dynamics):	𝒯
• 𝒯6TU = 𝑝 𝑠WX* = 𝑖|𝑠W = 𝑗, 𝑎W = 𝑘 ß a	tensor	(multidimensional	array)

𝑎W

𝑠W 𝑠WX*
𝑝 𝑠WX* 𝑠W, 𝑎W

𝑠WX+

𝑎WX*

𝑝 𝑠WX* 𝑠W, 𝑎W

State	in	MDPs	and	Reinforcement	Learning

• In	optimal	control,	state	usually	represents	internal	states	of	a	robot

• In	RL,	state	includes	the	internal	states	of	a	robot,	but	often	also	include
• State	of	other	robots
• State	of	the	environment
• Sensor	measurements

• Distinction	between	state	and	observation	can	be	blurred

• In	general,	the	state	contains	all	variables	other	than	actions	that	
determine	the	next	state	through	the	transition	probability	𝑝 𝑠WX*|𝑠W, 𝑎W

Policy	and	Reward

• Control	policy	(feedback	control):	𝜋 𝑎 𝑠
• Parametrized	by	some	parameters	

𝜃:	𝜋% 𝑎 𝑠 ≔ 𝑝 𝑎 𝑠

• Can	be	stochastic:	probability	of	applying	action	𝑎 at	
state	𝑠

• Reward	function:	𝑟 𝑠W, 𝑎W
• Reward	received	for	being	at	state	𝑠W and	applying	
action	𝑎W

𝑎W

𝑠W 𝑠WX*
𝑝 𝑠WX* 𝑠W, 𝑎W

𝑠WX+

𝑎WX*

𝑝 𝑠WX* 𝑠W, 𝑎W

𝜋% 𝑎W 𝑠W 𝜋% 𝑎W 𝑠W

Policy	and	Reward

• Control	policy	(feedback	control):	𝜋 𝑎 𝑠
• Parametrized	by	some	parameters	

𝜃:	𝜋% 𝑎 𝑠 ≔ 𝑝 𝑎 𝑠

• Can	be	stochastic:	probability	of	applying	action	𝑎 at	
state	𝑠

• Reward	function:	𝑟 𝑠W, 𝑎W
• Reward	received	for	being	at	state	𝑠W and	applying	
action	𝑎W
• Analogous	to	the	cost	in	optimal	control

Markov	Decision	Process

• An	MDP	with	a	particular	policy	results	in	a	
Markov	chain:	𝑝 𝑠WX* 𝑠W, 𝑎W , 𝑎W~𝜋% 𝑎W|𝑠W

read	
paper

YouTube

codemath write	
paper

robot	
expt.

sleep

0.1

0.9

0.9 0.1

0.9

0.1 0.2

0.8 0.5

0.5

State	space	includes
• Reading	paper
• Doing	math
• Coding
• Doing	robotic	experiments
• Watching	YouTube
• Writing	paper
• Sleeping

Transition	probabilities

𝒯 =

0.1 0.9
0.1 0.9

0.2 0.8
0.5 0.5
0.9 0.1

1
1

Extensions	of	Problem	Setup

• Partially	observability
• Partially	Observable	Markov	Decision	Process	(POMDP)
• State	not	fully	known;	instead,	act	based	on	observations

• Policy:	𝜋% 𝑎|𝑜
• In	this	class,	state	𝑠 will	be	synonymous	with	observation	𝑜.

𝑎W

𝑠W 𝑠WX*
𝑝 𝑠WX* 𝑠W, 𝑎W 𝑠WX+

𝑎WX*

𝑝 𝑠WX* 𝑠W, 𝑎W

𝑜W 𝑜WX*

Reinforcement	Learning	Objective

• Given:	an	MDP	with	state	space	𝒮,	action	space	𝒜,	transition	
probabilities	𝒯,	and	reward	function	𝑟 𝑠, 𝑎

• Objective:	Maximize	discounted	sum	of	rewards	(“return”)

maximize
jk

𝔼 m 𝛾U𝑟 𝑠W, 𝑎W
W

• 𝛾 ∈ 0,1 :	discount	factor	– larger	roughly	means	“far-sighted”
• Prioritizes	immediate	rewards
• 𝛾 < 1 avoids	infinite	rewards;	𝛾 = 1 is	possible	if	all	sequences	are	finite

• Constraints:	often	implicit,	and	part	of	the	objective
• Subject	to	transition	matrix	𝒯 (system	dynamics)

Markov	Decision	Process

• An	MDP	with	a	particular	policy	results	in	a	
Markov	chain:	𝑝 𝑠WX* 𝑠W, 𝑎W , 𝑎W~𝜋% 𝑎W|𝑠W

1

−5

22 104

10

0.1

0.9

0.9 0.1

0.9

0.1 0.2

0.8 0.5

0.5

Reward	function:	𝑟 𝑠
• In	general,	also	depends	

on	action

State	space	includes
• Reading	paper
• Doing	math
• Coding
• Doing	robotic	experiments
• Watching	YouTube
• Writing	paper
• Sleeping

Transition	probabilities

𝒯 =

0.1 0.9
0.1 0.9

0.2 0.8
0.5 0.5
0.9 0.1

1
1

Markov	Decision	Process

• An	MDP	with	a	particular	policy	results	in	a	
Markov	chain:	𝑝 𝑠WX* 𝑠W, 𝑎W , 𝑎W~𝜋% 𝑎W|𝑠W

1

−5

22 104

10

0.5

0.5

0.1 0.9

0.5

0.5 0.5

0.5 0.5

0.5

Reward	function:	𝑟 𝑠
• In	general,	also	depends	

on	action	
• Better	policy	à

different	Markov	chain	
à different	reward

State	space	includes
• Reading	paper
• Doing	math
• Coding
• Doing	robotic	experiments
• Watching	YouTube
• Writing	paper
• Sleeping

Transition	probabilities

𝒯 =

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5
0.1 0.9

1
1

Reinforcement	Learning	vs.	Optimal	Control

• Reinforcement	Learning
maximize

jk
𝔼 m 𝛾U𝑟 𝑠W, 𝑎W

W

• Dynamics	constraint	is	implicit
• And	not	necessary	needed

• Typically,	no	other	explicit	
constraints
• Problem	set	up	captured	entirely	
in	the	reward
• Probabilistic

• Optimal	control

• Explicit	constraints
• Can	be	continuous	time
• Not	necessarily	probabilistic

minimize 𝑙 𝑇, 𝑥 𝑇 + s 𝑐 𝑡, 𝑥 𝑡 , 𝑢 𝑡 , 𝑑𝑡
x

y
subject to 𝑥̇ 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

𝑥 𝑡 ∈ ℝ�, 𝑢 𝑡 ∈ ℝ�, 𝑥 0 = 𝑥y

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0

