Neural Networks and Markov Decision Processes

CMPT 419/983

Mo Chen

SFU Computing Science

24/10/2019

Outline

- Neural networks
 - Forward and backward propagation
 - Typical structures
- Markov Decision Processes
 - Definitions
 - Example
 - Objective in reinforcement learning

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$
- Forward propagation
 - Evaluation of $f_{\theta}(x)$
- Backpropagation
 - Computation of $\frac{\partial l}{\partial \theta}$, where l is the loss function

• A specific form of $f_{\theta}(x)$

$$y = f(x^{\mathsf{T}}W + b)$$

- Parameters θ are W and b
- "Weights"

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

$$h = f_1(x^T W_1 + b_1)$$
 $y = f_2(h^T W_2 + b_2)$

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$ Parameters θ are the weights W_i

 $h_1 = f_1(x^T W_1 + b_1)$ hidden layer 2 $h_2 = f_2(h_1 W_2 + b_2)$

• Parameters heta are the weights W_i and biases b_i

- f_1 , f_2 , f_3 are nonlinear
 - Otherwise *f* would just be a single linear function:

$$y = ((x^{\mathsf{T}}W_1 + b_1)W_2 + b_2)W_3 + b_3$$

= $x^{\mathsf{T}}W_1W_2W_3 + b_1W_2W_3 + b_2W_3 + b_3$

"Activation functions"

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

Common choices of activation functions

• Sigmoid:

$$\frac{1}{1 + e^{-x}}$$

• Softplus:

$$\log(1+e^x)$$

• Hyperbolic tangent: tanh *x*

Key feature: easy to differentiate

Training Neural Networks and Backpropagation

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
 - Neural Network: A specific form of $f_{\theta}(x)$

- Given current θ, X, Y , compute $f_{\theta}(X)$ to then obtain loss, $l(\theta; X, Y)$
 - $l(\theta; X, Y)$ compares $f_{\theta}(X)$ with ground truth Y
 - Evaluation of f: "Forward propagation"
- Minimize $l(\theta; X, Y)$
 - Stochastic gradient descent
 - Evaluation of $\frac{\partial l}{\partial W}$: "Backpropagation"
 - Example: $\frac{\partial y}{\partial W_1} = \frac{\partial y}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial W_1}$
 - Just the chain rule
 - Software like TensorFlow performs this (and other operations common in machine learning) efficiently

Common Operations

- Fully connected (dot product)
- Convolution
 - Translationally invariant
 - Controls overfitting
- Pooling (fixed function)
 - Down-sampling
 - Controls overfitting
- Nonlinearity layer (fixed function)
 - Activation functions, e.g. ReLU

Example: Small VGG Net From Stanford CS231n

Neural Network Architectures

- Convolutional neural network (CNN)
 - Has translational invariance properties from convolution
 - Common used for computer vision
- Recurrent neural network RNN
 - Has feedback loops to capture temporal or sequential information
 - Useful for handwriting recognition, speech recognition, reinforcement learning
 - Long short-term memory (LSTM): special type of RNN with advantages in numerical properties
- Others
 - General feedforward networks, variational autoencoders (VAEs), conditional VAEs

Training Neural Networks

- Data preprocessing
 - Removing bad data
 - Transform input data (e.g. rotating, stretching, adding noise)
- Training process (optimization algorithm)
 - Choice of loss function (eg. L1 and L2 regularization)
 - Dropout: randomly set neurons to zero in each training iteration
 - Learning rate (step size) and other hyperparameter tuning
- Software packages: efficient gradient computation
 - Caffe, Torch, Theano, TensorFlow

Outline

- Neural networks
 - Forward and backward propagation
 - Typical structures
- Markov Decision Processes
 - Definitions
 - Example
 - Objective in reinforcement learning

Markov Decision Process

- Probabilistic model of robots and other systems
- State: $s \in \mathcal{S}$, discrete or continuous
- Action (control): $a \in \mathcal{A}$, discrete or continuous
- Transition operator (dynamics): \mathcal{T}
 - $T_{ijk} = p(s_{t+1} = i | s_t = j, a_t = k) \leftarrow$ a tensor (multidimensional array)

State in MDPs and Reinforcement Learning

- In optimal control, state usually represents internal states of a robot
- In RL, state includes the internal states of a robot, but often also include
 - State of other robots
 - State of the environment
 - Sensor measurements
- Distinction between state and observation can be blurred
- In general, the state contains all variables other than actions that determine the next state through the transition probability $p(s_{t+1}|s_t,a_t)$

Policy and Reward

- Control policy (feedback control): $\pi(a|s)$
 - Parametrized by some parameters

$$\theta \colon \pi_{\theta}(a|s) \coloneqq p(a|s)$$

• Can be stochastic: probability of applying action \boldsymbol{a} at state \boldsymbol{s}

Policy and Reward

- Control policy (feedback control): $\pi(a|s)$
 - Parametrized by some parameters

$$\theta \colon \pi_{\theta}(a|s) \coloneqq p(a|s)$$

• Can be stochastic: probability of applying action \boldsymbol{a} at state \boldsymbol{s}

- Reward function: $r(s_t, a_t)$
 - Reward received for being at state \boldsymbol{s}_t and applying action \boldsymbol{a}_t
 - Analogous to the cost in optimal control

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t,a_t)$, $a_t \sim \pi_{\theta}(a_t|s_t)$

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

$$\mathcal{T} = \begin{bmatrix} & 0.1 & & 0.9 & \\ & 0.1 & & 0.9 & \\ & & 0.2 & 0.8 & \\ & & & 0.5 & 0.5 & \\ & & & 0.9 & & 0.1 \\ & & & & 1 & \\ & & & & 1 \end{bmatrix}$$

Extensions of Problem Setup

- Partially observability
 - Partially Observable Markov Decision Process (POMDP)
 - State not fully known; instead, act based on observations

- Policy: $\pi_{\theta}(a|o)$
- In this class, state s will be synonymous with observation o.

Reinforcement Learning Objective

- Given: an MDP with state space S, action space \mathcal{A} , transition probabilities \mathcal{T} , and reward function r(s,a)
- Objective: Maximize discounted sum of rewards ("return")

$$\underset{\pi_{\theta}}{\text{maximize}} \mathbb{E} \sum_{t} \gamma^{k} r(s_{t}, a_{t})$$

- $\gamma \in (0,1]$: discount factor larger roughly means "far-sighted"
 - Prioritizes immediate rewards
 - $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite
- Constraints: often implicit, and part of the objective
 - Subject to transition matrix $\mathcal T$ (system dynamics)

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t,a_t)$, $a_t \sim \pi_{\theta}(a_t|s_t)$

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

$$\mathcal{T} = \begin{bmatrix} & 0.1 & & 0.9 & \\ & 0.1 & & 0.9 & \\ & & 0.2 & 0.8 & \\ & & & 0.5 & 0.5 & \\ & & & 0.9 & & 0.1 \\ & & & & 1 & \\ & & & & 1 \end{bmatrix}$$

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t,a_t)$, $a_t \sim \pi_{\theta}(a_t|s_t)$

→ different reward

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

$$\mathcal{T} = \begin{bmatrix} & 0.5 & & & 0.5 & & \\ & & 0.5 & & 0.5 & & \\ & & & 0.5 & 0.5 & & \\ & & & 0.5 & 0.5 & & \\ & & & 0.1 & & 0.9 \\ & & & & 1 & & \\ & & & & 1 \end{bmatrix}$$

Reinforcement Learning vs. Optimal Control

Reinforcement Learning

$$\underset{\pi_{\theta}}{\text{maximize}} \mathbb{E} \sum_{t} \gamma^{k} r(s_{t}, a_{t})$$

- Dynamics constraint is implicit
 - And not necessary needed
- Typically, no other explicit constraints
- Problem set up captured entirely in the reward
- Probabilistic

• Optimal control minimize
$$l(T, x(T)) + \int_0^T c(t, x(t), u(t), dt) dt$$
 subject to $\dot{x}(t) = f(x(t), u(t))$ $g(x(t), u(t)) \ge 0$ $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$

- Explicit constraints
- Can be continuous time
- Not necessarily probabilistic