Neural Networks and Markov Decision Processes

CMPT 419/983
Mo Chen
SFU Computing Science
24/10/2019

Outline

- Neural networks
- Forward and backward propagation
- Typical structures
- Markov Decision Processes
- Definitions
- Example
- Objective in reinforcement learning

Neural Networks

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$
- Forward propagation
- Evaluation of $f_{\theta}(x)$
- Backpropagation
- Computation of $\frac{\partial l}{\partial \theta}$, where l is the loss function

Neural Networks

- A specific form of $f_{\theta}(x)$

- Parameters θ are W and b
- "Weights"

Neural Networks

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$

$$
h=f_{1}\left(x^{\top} W_{1}+b_{1}\right) \quad y=f_{2}\left(h^{\top} W_{2}+b_{2}\right)
$$

Neural Networks

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$ - Parameters θ are the weights W_{i}

$$
h_{1}=f_{1}\left(x^{\top} W_{1}+b_{1}\right) \quad \text { hidden layer } 2
$$ and biases b_{i}

- f_{1}, f_{2}, f_{3} are nonlinear
- Otherwise f would just be a single linear function:

$$
\begin{aligned}
y & =\left(\left(x^{\top} W_{1}+b_{1}\right) W_{2}+b_{2}\right) W_{3}+b_{3} \\
& =x^{\top} W_{1} W_{2} W_{3}+b_{1} W_{2} W_{3}+b_{2} W_{3}+b_{3}
\end{aligned}
$$

- "Activation functions"

Neural Networks

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$

- Common choices of activation functions
- Sigmoid:

$$
\frac{1}{1+e^{-x}}
$$

- Softplus:
$\log \left(1+e^{x}\right)$

- Hyperbolic tangent: $\tanh x$

- Rectified linear unit (ReLU):

$$
\max (0, x)
$$

- Key feature: easy to differentiate

Training Neural Networks and Backpropagation

- Regression: Choose θ such that $y \approx f_{\theta}(x)$
- Neural Network: A specific form of $f_{\theta}(x)$

- Given current θ, X, Y, compute $f_{\theta}(X)$ to then obtain loss, $l(\theta ; X, Y)$
- $l(\theta ; X, Y)$ compares $f_{\theta}(X)$ with ground truth Y
- Evaluation of f : "Forward propagation"
- Minimize $l(\theta ; X, Y)$
- Stochastic gradient descent
- Evaluation of $\frac{\partial l}{\partial W}$: "Backpropagation"
- Example: $\frac{\partial y}{\partial W_{1}}=\frac{\partial y}{\partial h_{2}} \frac{\partial h_{2}}{\partial h_{1}} \frac{\partial h_{1}}{\partial W_{1}}$
- Just the chain rule
- Software like TensorFlow performs this (and other operations common in machine learning) efficiently

Common Operations

- Fully connected (dot product)
- Convolution
- Translationally invariant
- Controls overfitting
- Pooling (fixed function)
towarddatascience.com
- Down-sampling
- Controls overfitting
- Nonlinearity layer (fixed function)
- Activation functions, e.g. ReLU

$\times \xlongequal{|$| 1 | 1 | 2 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |$}$

- Activationfunctions, e.g. Relu
max pool with 2×2 filters
and stride 2

6	8
3	4

Example: Small VGG Net From Stanford CS231n

Neural Network Architectures

- Convolutional neural network (CNN)
- Has translational invariance properties from convolution

- Common used for computer vision
- Recurrent neural network RNN
- Has feedback loops to capture temporal or sequential information
- Useful for handwriting recognition, speech recognition, reinforcement learning
- Long short-term memory (LSTM): special type of RNN with advantages in numerical properties
- Others
- General feedforward networks, variational autoencoders (VAEs), conditional VAEs

Training Neural Networks

- Data preprocessing
- Removing bad data
- Transform input data (e.g. rotating, stretching, adding noise)
- Training process (optimization algorithm)
- Choice of loss function (eg. L1 and L2 regularization)
- Dropout: randomly set neurons to zero in each training iteration
- Learning rate (step size) and other hyperparameter tuning
- Software packages: efficient gradient computation
- Caffe, Torch, Theano, TensorFlow

Outline

- Neural networks
- Forward and backward propagation
- Typical structures
- Markov Decision Processes
- Definitions
- Example
- Objective in reinforcement learning

Markov Decision Process

- Probabilistic model of robots and other systems
- State: $s \in \mathcal{S}$, discrete or continuous
- Action (control): $a \in \mathcal{A}$, discrete or continuous
- Transition operator (dynamics): \mathcal{T}
- $\mathcal{T}_{i j k}=p\left(s_{t+1}=i \mid s_{t}=j, a_{t}=k\right) \leftarrow$ a tensor (multidimensional array)

State in MDPs and Reinforcement Learning

- In optimal control, state usually represents internal states of a robot
- In RL, state includes the internal states of a robot, but often also include
- State of other robots
- State of the environment
- Sensor measurements
- Distinction between state and observation can be blurred
- In general, the state contains all variables other than actions that determine the next state through the transition probability $p\left(s_{t+1} \mid s_{t}, a_{t}\right)$

Policy and Reward

- Control policy (feedback control): $\pi(a \mid s)$
- Parametrized by some parameters

$$
\theta: \pi_{\theta}(a \mid s):=p(a \mid s)
$$

- Can be stochastic: probability of applying action a at state s

Policy and Reward

- Control policy (feedback control): $\pi(a \mid s)$
- Parametrized by some parameters

$$
\theta: \pi_{\theta}(a \mid s):=p(a \mid s)
$$

- Can be stochastic: probability of applying action a at state s
- Reward function: $r\left(s_{t}, a_{t}\right)$
- Reward received for being at state s_{t} and applying action a_{t}
- Analogous to the cost in optimal control

Markov Decision Process

- An MDP with a particular policy results in a Markov chain: $p\left(s_{t+1} \mid s_{t}, a_{t}\right), a_{t} \sim \pi_{\theta}\left(a_{t} \mid s_{t}\right)$

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

Extensions of Problem Setup

- Partially observability
- Partially Observable Markov Decision Process (POMDP)
- State not fully known; instead, act based on observations

- Policy: $\pi_{\theta}(a \mid o)$
- In this class, state s will be synonymous with observation o.

Reinforcement Learning Objective

- Given: an MDP with state space \mathcal{S}, action space \mathcal{A}, transition probabilities \mathcal{T}, and reward function $r(s, a)$
- Objective: Maximize discounted sum of rewards ("return")

- $\gamma \in(0,1]$: discount factor - larger roughly means "far-sighted"
- Prioritizes immediate rewards
- $\gamma<1$ avoids infinite rewards; $\gamma=1$ is possible if all sequences are finite
- Constraints: often implicit, and part of the objective
- Subject to transition matrix \mathcal{T} (system dynamics)

Markov Decision Process

State space includes

- Reading paper
- Doing math
- An MDP with a particular policy results in a Markov chain: $p\left(s_{t+1} \mid s_{t}, a_{t}\right), a_{t} \sim \pi_{\theta}\left(a_{t} \mid s_{t}\right)$
- Coding
- Doing robotic experiments
- Watching YouTube

- Writing paper
- Sleeping

Transition probabilities

Markov Decision Process

State space includes

- Reading paper
- Doing math
- An MDP with a particular policy results in a Markov chain: $p\left(s_{t+1} \mid s_{t}, a_{t}\right), a_{t} \sim \pi_{\theta}\left(a_{t} \mid s_{t}\right)$
- Coding
- Doing robotic experiments
- Watching YouTube

- Writing paper
- Sleeping

Transition probabilities

Reward function: $r(s)$

- In general, also depends on action

10

- Better policy \rightarrow
different Markov chain
\rightarrow different reward

Reinforcement Learning vs. Optimal Control

- Reinforcement Learning

$$
\underset{\pi_{\theta}}{\operatorname{maximize}} \mathbb{E} \sum_{t} \gamma^{k} r\left(s_{t}, a_{t}\right)
$$

- Dynamics constraint is implicit
- And not necessary needed
- Typically, no other explicit constraints
- Problem set up captured entirely in the reward
- Probabilistic
- Optimal control
$\underset{u(\cdot)}{\operatorname{minimize}} l(T, x(T))+\int_{0}^{T} c(t, x(t), u(t)) d$, subject to $\dot{x}(t)=f(x(t), u(t))$
$g(x(t), u(t)) \geq 0$

$$
x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}, x(0)=x_{0}
$$

- Explicit constraints
- Can be continuous time
- Not necessarily probabilistic

