Neural Networks and
Markov Decision Processes

CMPT 419/983
Mo Chen

SFU Computing Science
24/10/2019

Outline

* Neural networks
* Forward and backward propagation
e Typical structures

* Markov Decision Processes
» Definitions
* Example
* Objective in reinforcement learning

Neural Networks

* Regression: Choose 0 such that y = f5(x)
* Neural Network: A specific form of f5(x)

* Forward propagation
* Evaluation of fg(x)

* Backpropagation

: dl : :
e Computation of PYL where [is the loss function

Neural Networks

* A specific form of f5(x)

e Parameters 8@ are W and b
 “Weights”

Neural Networks

* Regression: Choose 0 such thaty = f5(x)

* Neural Network: A specifiyc form of fg(x)

X h

input layer hidden layer

output layer

h=filx™Wy+b) y=fo(h"W,+ by)

Neural Networks

* Regression: Choose 8 such that y = fy(x)

* Neural Network: A specific form of fo(x) * Parameters 0 are the weights W/,
h, and biases b;

* f1, f2, f3 are nonlinear

* Otherwise f would just be a single
linear function:
output layer y = ((xTWy + bW, + b,)W5 + bs
Y = fs(haW3 + b3) = x TW,WoWs5 + byWyWs + byWs + by

input layer hidden layer 1 _ I _ ¢ _ .
[J
h, = f,(x"W, + b,) Mddenlayer2 Activation functions

h, = fz(h1W2 + bz)

Neural Networks e Common choices of activation

* Regression: Choose 8 such that y = fy(x) functions

* Neural Network: A specific form of f(x) * Sigmoid:)

1+e*

* Softplus:
log(1 + e*)

* Hyperbolic tangent:
output layer tanh x

y = f3(h,W3 + b3)

* Rectified linear unit (ReLU): -
max(0, x) ’

input layer hidden layer 2

hidden layer 2
h) = f1(XTW1 + by)
h, = f,(h,W; + by)

* Key feature: easy to differentiate

Training Neural Networks and Backpropagation

* Regression: Choose 8 such that y = fy(x)

* Neural Network: A specific form of fg(x) * Given current 8,X,Y, compute fg(X) to
h, then obtain loss, [(8; X,Y)
* 1(6;X,Y) compares fy(X) with ground truth Y
 Evaluation of f: “Forward propagation”

* Minimize [(6; X,Y)

e Stochastic gradient descent

output layer o1
y = f3(h,W5 + b3) * Evaluation of P “Backpropagation”
owq B Ohy Ohq1 0W1
hidden layer 2 * Just the chain rule
h, = f,(hyW, + b,) » Software like TensorFlow performs this (and
other operations common in machine learning)
efficiently

_ * Example:
input layer hidden layer 2

hy = f1(xTW1 + b,)

Source pixel

Common Operations

Fully connected (dot product)

Convolution
* Translationally invariant
* Controls overfitting

Destination pixel

towarddatascience.com

Pooling (fixed function)
* Down-sampling
* Controls overfitting

and stride 2

/‘

AV WA WA

AR

A\

A

AN

A

L
L
L
L
|~

max pool with 2x2 filters

Nonlinearity layer (fixed function)
* Activation functions, e.g. RelLU

>
>

Stanford CS231n

RELU RELU
lCONV

e dl VAR EAREAD

CONV

RELU RELU

RELU RELU

CONV

— VT BT RN ,QE

-
—
o
@\
)
O
O

S

O
(€l

-

(O
4+
)

-

O

S
L
4+

)
=
O
),
=
©

-
)
@

Q.

-

(O

pad
LL]

e
BRE
ooy

gt

Neural Network Architectures

/

7 \
\

;\\\

AR

WAV VV VNV

AN

A

ANV AV VNV e

* Convolutional neural network (CNN)

* Has translational invariance properties from
convolution

 Common used for computer vision

e Recurrent neural network RNN

* Has feedback loops to capture temporal or
sequential information

* Useful for handwriting recognition, speech
recognition, reinforcement learning

* Long short-term memory (LSTM): special type of
RNN with advantages in numerical properties

e Others

* General feedforward networks, variational
autoencoders (VAEs), conditional VAEs

AN

=

>
~
B
)

—_—

Training Neural Networks

* Data preprocessing
 Removing bad data
* Transform input data (e.g. rotating, stretching, adding noise)

* Training process (optimization algorithm)
* Choice of loss function (eg. L1 and L2 regularization)
* Dropout: randomly set neurons to zero in each training iteration
* Learning rate (step size) and other hyperparameter tuning

» Software packages: efficient gradient computation
e Caffe, Torch, Theano, TensorFlow

Outline

* Neural networks
* Forward and backward propagation
e Typical structures

* Markov Decision Processes
» Definitions
* Example
* Objective in reinforcement learning

Markov Decision Process

* Probabilistic model of robots and other systems
e State: s € §, discrete or continuous
e Action (control): a € A, discrete or continuous

* Transition operator (dynamics): I
* Tijk = p(St41 = i|s¢ = j, a; = k) € atensor (multidimensional array)

At At+1

P(&ﬂ%‘ p(5t+1l%

St " St+1 " St+2

State in MDPs and Reinforcement Learning

* |[n optimal control, state usually represents internal states of a robot

* In RL, state includes the internal states of a robot, but often also include

e State of other robots
e State of the environment
* Sensor measurements

e Distinction between state and observation can be blurred

* |[n general, the state contains all variables other than actions that
determine the next state through the transition probability p(s;,1|s a;)

Policy and Reward

* Control policy (feedback control): m(als)
* Parametrized by some parameters

0:mg(als) = p(als)

* Can be stochastic: probability of applying action a at
state s

Policy and Reward

* Control policy (feedback control): m(als)
* Parametrized by some parameters

0:mg(als) = p(als)

* Can be stochastic: probability of applying action a at
state s

* Reward function: r (s, a;)

* Reward received for being at state s; and applying
action ay

* Analogous to the cost in optimal control

Markov Decision Process

State space includes
* Reading paper

_ .) i * Doing math
* An MDP with a particular policy resultsina . coding

Markov Chain: p(5t+1 |St' at)' atNT[H (at |St) Doing robotic experiments
* Watching YouTube
Writing paper
read robot \ 0.5 _ write Sleeping
paper expt. paper

Transition probabilities
0.9 0.8 :) 0.1
0.9 '
0.1
YouTube _ 0.2

0.96 m

sleep

0.1

——>0'1 math — code) 02 £
0

Extensions of Problem Setup

* Partially observability
 Partially Observable Markov Decision Process (POMDP)
 State not fully known; instead, act based on observations

O¢ " Qg Oty+1 — " Qt+1

T P(SmmT p(stm%

St "St+1 " St42

* Policy: mg(alo)
* In this class, state s will be synonymous with observation o.

Reinforcement Learning Objective

* Given: an MDP with state space §, action space A, transition
probabilities T, and reward function r(s, a)

* Objective: Maximize discounted sum of rewards (“return”)

maximize E) y*r(s,, a;)
Tg
t
* y € (0,1]: discount factor — larger roughly means “far-sighted”

* Prioritizes immediate rewards
* ¥ < 1 avoids infinite rewards; y = 1 is possible if all sequences are finite

* Constraints: often implicit, and part of the objective
* Subject to transition matrix I (system dynamics)

Markov Decision Process

State space includes
* Reading paper
. . . . * Doing math
* An MDP with a particular policy resultsina . coding

Markov chain: p(s;;1|S¢, a;), ar~mg(a;|s;) Doing robotic experiments
* Watching YouTube

Writing paper
4 0.5 |, 10 Sleeping

1 0.1 2 0.1 2 0.2
Transition probabilities
5 0.9 0.8 0. - 0.1
' 0.1
_5 B 0.2

Reward function: r(s) Q \
* Ingeneral, also depends 0.9 0.1 .

on action

Markov Decision Process

State space includes
Reading paper

. .)) Doing math
* An MDP with a particular policy results in a Coding

Markov chain: p(s;4+1[S¢, a;), ar~mg(a;|s;) Doing robotic experiments
Watching YouTube
Writing paper

Sleeping

Transition probabilities
0.5
0.5
0.5

Reward function: r(s)

* In general, also depends
on action
Better policy 2
different Markov chain
- different reward

Reinforcement Learning vs. Optimal Control

* Reinforcement Learning

maximize E) y*r(s;, a;)
Ttg
;

Dynamics constraint is implicit
* And not necessary needed

Typically, no other explicit
constraints

Problem set up captured entirely
in the reward

Probabilistic

* Optimal control .
minmize 1(7,x(1) + | et x(0),u(0),)dt

subject to £(t) = F(x(6), u(®))
g(x(t),u(t)) >0
x(t) € R u(t) € R™ x(0) = xq

* Explicit constraints
* Can be continuous time
* Not necessarily probabilistic

