Neural Networks and Markov Decision Processes

CMPT 419/983
Mo Chen
SFU Computing Science
24/10/2019
Outline

• Neural networks
 • Forward and backward propagation
 • Typical structures

• Markov Decision Processes
 • Definitions
 • Example
 • Objective in reinforcement learning
Neural Networks

- Regression: Choose \(\theta \) such that \(y \approx f_\theta(x) \)
 - Neural Network: A specific form of \(f_\theta(x) \)

- Forward propagation
 - Evaluation of \(f_\theta(x) \)

- Backpropagation
 - Computation of \(\frac{\partial l}{\partial \theta} \), where \(l \) is the loss function
Neural Networks

• A specific form of $f_\theta(x)$

\[y_1 = f(x^T w_1 + b_1) \]
\[y_2 = f(x^T w_2 + b_2) \]
\[y_3 = f(x^T w_3 + b_3) \]
\[y_4 = f(x^T w_4 + b_4) \]

\[y = f(x^T W + b) \]

• Parameters θ are W and b

• “Weights”
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$

\[
h = f_1(x^TW_1 + b_1) \quad y = f_2(h^TW_2 + b_2)
\]
Neural Networks

• Regression: Choose θ such that $y \approx f_\theta(x)$
 • Neural Network: A specific form of $f_\theta(x)$
 • Parameters θ are the weights W_i and biases b_i

• f_1, f_2, f_3 are nonlinear
 • Otherwise f would just be a single linear function:
 $$y = ((x^T W_1 + b_1) W_2 + b_2) W_3 + b_3$$
 $$= x^T W_1 W_2 W_3 + b_1 W_2 W_3 + b_2 W_3 + b_3$$
 • “Activation functions”
Neural Networks

- Regression: Choose θ such that $y \approx f_\theta(x)$
 - Neural Network: A specific form of $f_\theta(x)$

- Neural Network:
 \[
 h_1 = f_1(x^T W_1 + b_1) \\
 h_2 = f_2(h_1 W_2 + b_2) \\
 y = f_3(h_2 W_3 + b_3)
 \]

- Common choices of activation functions
 - Sigmoid:
 \[
 \frac{1}{1 + e^{-x}}
 \]
 - Softplus:
 \[
 \log(1 + e^x)
 \]
 - Hyperbolic tangent:
 \[
 \tanh x
 \]
 - Rectified linear unit (ReLU):
 \[
 \max(0, x)
 \]

- Key feature: easy to differentiate
Training Neural Networks and Backpropagation

- **Regression**: Choose \(\theta \) such that \(y \approx f_\theta(x) \)
 - **Neural Network**: A specific form of \(f_\theta(x) \)

- **Given current \(\theta, X, Y \), compute \(f_\theta(X) \) to then obtain loss, \(l(\theta; X, Y) \)
 - \(l(\theta; X, Y) \) compares \(f_\theta(X) \) with ground truth \(Y \)
 - Evaluation of \(f \): “Forward propagation”

- **Minimize \(l(\theta; X, Y) \)**
 - Stochastic gradient descent
 - Evaluation of \(\frac{\partial l}{\partial W} \): “Backpropagation”
 - Example: \(\frac{\partial y}{\partial w_1} = \frac{\partial y}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial w_1} \)
 - Just the chain rule
 - Software like TensorFlow performs this (and other operations common in machine learning) efficiently
Common Operations

- Fully connected (dot product)

- Convolution
 - Translationally invariant
 - Controls overfitting

- Pooling (fixed function)
 - Down-sampling
 - Controls overfitting

- Nonlinearity layer (fixed function)
 - Activation functions, e.g. ReLU
Example: Small VGG Net From Stanford CS231n
Neural Network Architectures

• Convolutional neural network (CNN)
 • Has translational invariance properties from convolution
 • Common used for computer vision

• Recurrent neural network RNN
 • Has feedback loops to capture temporal or sequential information
 • Useful for handwriting recognition, speech recognition, reinforcement learning
 • Long short-term memory (LSTM): special type of RNN with advantages in numerical properties

• Others
 • General feedforward networks, variational autoencoders (VAEs), conditional VAEs
Training Neural Networks

- Data preprocessing
 - Removing bad data
 - Transform input data (e.g. rotating, stretching, adding noise)

- Training process (optimization algorithm)
 - Choice of loss function (e.g. L1 and L2 regularization)
 - Dropout: randomly set neurons to zero in each training iteration
 - **Learning rate** (step size) and other hyperparameter tuning

- Software packages: efficient gradient computation
 - Caffe, Torch, Theano, TensorFlow
Outline

• Neural networks
 • Forward and backward propagation
 • Typical structures

• Markov Decision Processes
 • Definitions
 • Example
 • Objective in reinforcement learning
Markov Decision Process

- Probabilistic model of robots and other systems
- State: $s \in S$, discrete or continuous
- Action (control): $a \in A$, discrete or continuous
- Transition operator (dynamics): T
 - $T_{ijk} = p(s_{t+1} = i | s_t = j, a_t = k) \leftarrow$ a tensor (multidimensional array)
State in MDPs and Reinforcement Learning

• In optimal control, state usually represents internal states of a robot

• In RL, state includes the internal states of a robot, but often also include
 • State of other robots
 • State of the environment
 • Sensor measurements

• Distinction between state and observation can be blurred

• In general, the state contains all variables other than actions that determine the next state through the transition probability $p(s_{t+1}|s_t, a_t)$
Policy and Reward

• Control policy (feedback control): $\pi(a|s)$
 - Parametrized by some parameters $\theta: \pi_\theta(a|s) := p(a|s)$
 - Can be stochastic: probability of applying action a at state s

\[r_s W \cdot a W \]

- Reward received for being at state s and applying action a_W.
Policy and Reward

• Control policy (feedback control): $\pi(a|s)$
 - Parametrized by some parameters
 $\theta: \pi_{\theta}(a|s) := p(a|s)$
 - Can be stochastic: probability of applying action a at state s

• Reward function: $r(s_t, a_t)$
 - Reward received for being at state s_t and applying action a_t
 - Analogous to the cost in optimal control
Markov Decision Process

- An MDP with a particular policy results in a Markov chain: \(p(s_{t+1} | s_t, a_t), a_t \sim \pi_\theta(a_t | s_t) \)

State space includes:
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities:
\[
T = \begin{bmatrix}
0.1 & 0.9 \\
0.2 & 0.8 & 0.5 & 0.5 & 1 & 0.1 & 1
\end{bmatrix}
\]
Extensions of Problem Setup

• Partially observability
 • Partially Observable Markov Decision Process (POMDP)
 • State not fully known; instead, act based on observations

• Policy: $\pi_\theta(a|o)$
• In this class, state s will be synonymous with observation o.
Reinforcement Learning Objective

• Given: an MDP with state space S, action space A, transition probabilities T, and reward function $r(s, a)$

• Objective: Maximize discounted sum of rewards (“return”)

$$\max_{\pi_\theta} \mathbb{E} \sum_{t} \gamma^k r(s_t, a_t)$$

• $\gamma \in (0, 1]$: discount factor – larger roughly means “far-sighted”
 • Prioritizes immediate rewards
 • $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite

• Constraints: often implicit, and part of the objective
 • Subject to transition matrix T (system dynamics)
Markov Decision Process

- An MDP with a particular policy results in a Markov chain: \(p(s_{t+1} | s_t, a_t), a_t \sim \pi_\theta(a_t | s_t) \)

Reward function: \(r(s) \)
- In general, also depends on action

State space includes
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities
\[
\mathcal{T} = \begin{bmatrix}
0.1 & 0.9 \\
0.1 & 0.9 \\
0.2 & 0.8 \\
0.5 & 0.5 \\
0.9 & 1 \\
1 & 1
\end{bmatrix}
\]
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: \(p(s_{t+1} | s_t, a_t), a_t \sim \pi(\theta | s_t) \)

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Transition probabilities
\[
T = \begin{bmatrix}
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.1 & 0.1 & 0.1 & 1 \\
0.9 & 0.9 & 0.9 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

Reward function: \(r(s) \)
• In general, also depends on action
• Better policy \(\rightarrow \) different Markov chain
\(\rightarrow \) different reward
Reinforcement Learning vs. Optimal Control

- Reinforcement Learning
 \[\text{maximize } \mathbb{E} \sum_{t} \gamma^{k} r(s_t, a_t) \]

 - Dynamics constraint is implicit
 - And not necessary needed
 - Typically, no other explicit constraints
 - Problem set up captured entirely in the reward
 - Probabilistic

- Optimal control
 \[\text{minimize } \int_{0}^{T} c(t, x(t), u(t), \cdot) dt \]
 \[\text{subject to } \dot{x}(t) = f(x(t), u(t)) \]
 \[g(x(t), u(t)) \geq 0 \]
 \[x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0 \]

 - Explicit constraints
 - Can be continuous time
 - Not necessarily probabilistic