Announcements

e Course website: https://coursys.sfu.ca/2019fa-cmpt-419-x1/pages/

* Instructor office hours, TASC 1 8225
* This week: 13:00 - 14:30
* In the future: Mondays 14:00 - 15:30

* TA (Shubam Sachdeva) office hours, ASB 9808
e Thursdays 12:00 - 13:00
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References for Linear Systems

* F. Callier & C. A. Desoer, Linear System Theory, Springer-Verlag, 1991.

* W. J. Rugh, Linear System Theory, Prentice-Hall, 1996.



Differential Equations

* Continuous time model of robotic systems
* In general, nonlinear systems
* One may construct discrete time models from continuous time models

* Dynamics: x = f(t,x,u,d),x € R", t > t,
» Specifies how the robot state or configuration changes over time
* In some ways, the most “natural” model, since F = ma = mx
* Defining x; = x,x, = x, we have




Differential Equations

e State: x(t) € R™, x(ty) = xg
e Contains all information needed to specify the configuration of the robot
* Most common: position, velocity, angular position, angular velocity

turn rate

* Control: u(t) € U
* Examples: steering, accelerating, decelerating

e Usually constrained to be within some set acceleration

* Disturbance: d(t) € D
* Examples: wind, input noise, another agent



Linear Systems

* Differential equations generally do not have closed-form solutions
* Numerical methods can be used to obtain approximate solutions
* Other analysis techniques offer insight into the solutions

* Linear time-invariant (LTI) systems: x = Ax + Bu
* Damped mass spring systems
e Circuits involving resistors, capacitors, inductors
e Approximations of nonlinear systems




Linear Systems

Hu et al., 2018 NN

(If flying near hover, and slowly)
Bouffard, 2012



Road Map

 Basic properties and closed form solution
e Stability

* Linear state feedback control



LTI Systems

* Linear time-invariant (LTI) systems: x = Ax + Bu




LTI Systems: Closed Form Solution

 x = Ax + Bu, x(0) = x,

e x(t) = eflxy + foteA(t_T)Bu(T)dT -
At  A“t

At _
Matlab: expm e™ =1+ 1! t 21 +




Solution to LTI System: Proof
* If x = Ax + Bu, x(0) = xy, then x(t) = edtx, + foteA(t_T)Bu(T)dT

t
* Initial conditions: %J g(@dr = g(¢)

d<t‘“t') ) d( >
—| | e YBu(r)dr | = | e**e™ Bu(r)dr
* Differentiate: dt fo dt fo

d t
. d d t _ —_ At —A’L’B d
sk =— (edtx,) + — (fo eAlt T)Bu(r)dr) dt <e foe u(® T)

t
« x = Aeflxy + A fot eA=D By (1)dt + Bu(t) ~ AeAtf e ATBu(T)dT + eAte™4 Bu(t)
0

« x = Ax(t) + Bu(t) t
= Af eAt=D By (r)dt + Bu(t)
0



A5

Matrix Exponential Properties - - @

If x = Ax, x(0) = x,, then x(t) = e4tx,

eV = I (follows from the above) \
et “propagates” a state forward

A(t+s) — At _As
*e —e e x(s) by a duration of t, according to
e x(t+s) = eA(t"'S)xO = eAteASxO the system dynamics A

e(A+B)t _ eAteBt if and onIy £ AB = BA * State transition matrix
(eAt)—l — At
e Soedte ™t =]
d
EeAt — AeAt — eAtA
t , A%t?

* From definition: e/t =1 + % 2!

+ ...



LTI System: Stability of x = Ax | /

e Equilibrium point of x = f(x) is where f(x) =0
* For x = Ax, in general 0,, is an equilibrium point: x, = 0,
* Also, x, € the nullspace of A

* Stable: x(t) is bounded for all t > 0, for all initial conditions x
* Asymptotically stable: x(t) - x, ast - o
* Exponentially stable: 3M, a > 0 such that [|x(t)]| < Me~%t|x,||

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(4;) < 0



Eigenvalues and Eigenvectors

* Eigenvalues:

* If there is some vector e and scalar A such that Ae = Ae, then e is called the
eigenvector corresponding to eigenvalue A of the matrix 4

0
e Example: 4 = [ ]
3p0 17 O'21 ‘
.202202=IOZ=30 Tﬂ
JBOOIOTZ 01250 e
0 2111 |2 1.

 When a matrix is applied to eigenvectors, the effect is simple!



Eigenvalues and Eigenvectors

e DefineT 1 =[e1 e - ey]
a _

e Then, AT™1 =T~ 1A, where A = A2

An

« A = T~YAT. This is a similarity transform.
* Define z = Tx, and we have Ax = T 1ATx = T~ 1Az
* In the coordinate system obtained from applying transformation T, the map A4 is
diagonal

* To ?btain the result of applying A in the original coordinate system, transform back with
T-



Obtaining Eigenvalues and Eigenvectors

 Hand calculation: A = [_23 _3]

2
* Eigenvalues Ae = le Solve for Aindet(A —AI) =0
Ae — e =0 2—2  =3N_/_ N o
(A4— e =0 det([ I _/1]) —2-D2-2)=-9=0
— 1=+
This means the matrix A — Al 2-A=143
has an eigenvalue of 0 A=24+3=-15
* Eigenvectors
_ 4.3 =31, _ 11 _e.[3 =31 _ 11
1=-u[5 Fle=ooe=]] 1=5:|Ty Tfe=0=e=[ ]

* Matlab: eig(A)



Jordan Form

* Not all matrices are diagonalizable 61 i <1)
_ -1_]10 0 4
A81 = /161 Av1 = /11)1 + eq AW1 = AW]_ + v, J=TAT = A 1
Aez = /182 sz = /1172 + € 0 A
Ae3 = 183

.. . . T-1=[e; v w;y e, v, e
* This is the matrix structure for one eigenvalue (1 1 w1 e V2 €]

* There may be more than one such blocks in general

 All matrices can be put into Jordan form
* Matlab: jordan(A)
* Note that the eigenvalues of | are the same as those of 4

Imagine det(J —sI) =0




Functions of Matrices

» Consider a polynomial of a matrix, f(4) = A*
« A= (1YY = (Y1) T~YT) (T7YT)... (T~YT) = T~J*T
* Adjacent T matrices and inverse cancel!

* This motivates general functions of matrices, like f(A) = sin 4 or
f(A) = e, defined through Taylor series

i A3 A5 A7
esinA=4A-—+———+--
3! 5! 7!
A%t2

2!

et =1+ 44



Functions of Matrices

n

A 1 t
e Suppose | = A . n
) AR
f@ F@ -
* Then, f(J) = f) -
')
fQ) |

« And f(A) =T f())T,where A =T~ YT

. S?ictral theorem: the eigenvalues of f(A) are {f (1)}, where {1} are eigenvalues
0

Imagine det(f(J) —sI) =0



LTI System: Stability of x = Ax | /

e Equilibrium point of x = f(x) is where f(x) =0
* For x = Ax, in general 0,, is an equilibrium point: x, = 0,
* Also, x, € the nullspace of A

* Stable: x(t) is bounded for all t > 0, for all initial conditions x
* Asymptotically stable: x(t) - x, ast - o
* Exponentially stable: 3M, a > 0 such that [|x(t)]| < Me~%t|x,||

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(4;) < 0



LTI System: Stability

* The system x = Ax is exponentially stable if and only if all eigenvalues
of A are in the open left half plane, i.e. Vk,Re(41;) < 0

cz=Tx > Z=TAT_Z—AZ zog = T'xg \

C[7(0] _ [e’lit ] Z1o A
[Zz (t)] Lo et [ZZO

* If Re(4;) <0, e’lkt — 0,50z (t) = e*klz,y - 0 /)\

* If max Re(A;,) = 0, z(t) stays bounded only if A, has Jordan block of

size 1 \

Eigenvalue with largest real part



LTI System: Stability

* If max Re(A;,) = 0, z(t) stays bounded only if A, has Jordan block of
sizel

ot
it polit
o1t
Jt, — 1
e’"Zy = Z
0 plat  pplat  _2pM5t 0
2
pAat

* When 4; = O



LTI System: Stability

e If max Re(4;) = 0, z(t) stays bounded only if /1k has Jordan block of

size 1 -1
1 t
1
e]tZO = 1 ¢ ltz ZO
1 t
1

* When 4; = 0...
* Not stable!



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

* We can try to choose the elements of K, such that the eigenvalues of 4 are in
the left half-plane



State Feedback u—— B -+ J
e System: x = Ax + Bu
* Open-loop control: u = u(t) B
* Closed-loop (linear state feedback) control: u = —Kx l
 x = Ax — BKx
*x =(A—BK)x . @ X [

e« x = Ax, where A = A — BK ]
X X ‘
+ — f > 4

N




Stabilization by State Feedback

e Suppose x = Ax + Bu, where A = [?) ;],B = [ﬂ
* |s the system stable when u(t) = 0? No!
c Ax=Ax>A-A)x=0
cdet([P0h L ) =0=a=22

* Choose K so that u = —Kx stabilizes the system.

_ o _ _ 2_k1 2_k2
letK = [k; ky] then A := A BK—[_kl 2_k2]

cdettA—AD=Q—-k;—2DQR -k, — 1)+ (2 —ky)k,
* Choose ky, k, such that det(4 — AI) = 0 gives A in the open left half plane



Stabilization by State Feedback

* Choose K so that u = —Kx stabilizes the system.

B - _ . 2—k1 1_k2
Let K = [ky k], thenA:=A BK_[l—kl Z—kzl

c 0=k —NQR =k, —2) + (2 - k)ky
c 0=+ (ki +ky,— DA+ 2 —-k))R2 —ky) + (2 —ky)k,

c 0=2%2+ (ky +ky — DA+ 4—2ky — 2ky + kik, + 2k, — k{k,
c 0=2%2+(ky +k, —4)A + 4 — 2k,

 One choice: A = —2,-2
c 0=(1+2)A1+2)=22+41+4
* k2=0,k1=8



State Feedback Control

* Suppose x = Ax + Bu, can we design u to make x = 0,, stable?

* Try linear state feedback: u = —Kx = x = (A — BK)x
 Define A = A — BK, and we have x = Ax

* We can try to choose the elements of K, such that the eigenvalues of 4 are in
the left half-plane

* |ssues
e Controller saturation
 Full state information required



