Announcements

- Course website: https://coursys.sfu.ca/2019fa-cmpt-419-x1/pages/
- Instructor office hours, TASC 18225
- This week: 13:00-14:30
- In the future: Mondays 14:00-15:30
- TA (Shubam Sachdeva) office hours, ASB 9808
- Thursdays 12:00-13:00

Linear Systems

CMPT 419/983
09/09/19

References for Linear Systems

- F. Callier \& C. A. Desoer, Linear System Theory, Springer-Verlag, 1991.
- W. J. Rugh, Linear System Theory, Prentice-Hall, 1996.

Differential Equations

- Continuous time model of robotic systems
- In general, nonlinear systems
- One may construct discrete time models from continuous time models
- Dynamics: $\dot{x}=f(t, x, u, d), x \in \mathbb{R}^{n}, t \geq t_{0}$
- Specifies how the robot state or configuration changes over time
- In some ways, the most "natural" model, since $F=m a=m \ddot{x}$
- Defining $x_{1}=x, x_{2}=\dot{x}$, we have

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
\frac{F}{m}
\end{array}\right]
$$

Differential Equations

- State: $x(t) \in \mathbb{R}^{n}, x\left(t_{0}\right)=x_{0}$
- Contains all information needed to specify the configuration of the robot
- Most common: position, velocity, angular position, angular velocity
- Control: $u(t) \in \mathcal{U}$
- Examples: steering, accelerating, decelerating
- Usually constrained to be within some set
- Disturbance: $d(t) \in \mathcal{D}$
- Examples: wind, input noise, another agent

Linear Systems

- Differential equations generally do not have closed-form solutions
- Numerical methods can be used to obtain approximate solutions
- Other analysis techniques offer insight into the solutions
- Linear time-invariant (LTI) systems: $\dot{x}=A x+B u$
- Damped mass spring systems
- Circuits involving resistors, capacitors, inductors

Linear Systems

(If flying near hover, and slowly)
Bouffard, 2012

Road Map

- Basic properties and closed form solution
- Stability
- Linear state feedback control

LTI Systems

- Linear time-invariant (LTI) systems: $\dot{x}=A x+B u$

LTI Systems: Closed Form Solution

- $\dot{x}=A x+B u, x(0)=x_{0}$
- $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$

Matlab: expm

$$
e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots
$$

Solution to LTI System: Proof

- If $\dot{x}=A x+B u, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau$
- Initial conditions:

$$
\frac{d}{d t} \int_{a}^{t} g(\tau) d \tau=g(t)
$$

- $x(0)=e^{A(0)} x_{0}+\int_{0}^{0} e^{A(t-\tau)} B u(\tau) d \tau=x_{0}$
- Differentiate:
- $\dot{x}=\frac{d}{d t}\left(e^{A t} x_{0}\right)+\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)$
- $\dot{x}=A e^{A t} x_{0}+A \int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau+B u(t) \quad=A e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau+e^{A t} e^{-A} B u(t)$
- $\dot{x}=A x(t)+B u(t)$

$$
\begin{array}{r}
\frac{d}{d t}\left(\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau\right)= \\
=\frac{d}{d t}\left(\int_{0}^{t} e^{A t} e^{-A} B u(\tau) d \tau\right) \\
\left.=A e^{A t} \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau\right) \\
=A \int_{0}^{t} e^{-A \tau} B u(\tau) d \tau+e^{A t} e^{-A} B u(t) \\
=A u(\tau) d \tau+B u(t)
\end{array}
$$

Matrix Exponential Properties

- If $\dot{x}=A x, x(0)=x_{0}$, then $x(t)=e^{A t} x_{0}$
- $e^{0}=I$ (follows from the above)
- $e^{A(t+s)}=e^{A t} e^{A s}$
$e^{A t}$ "propagates" a state forward
by a duration of t, according to the system dynamics A
- State transition matrix
- $e^{(A+B) t}=e^{A t} e^{B t}$ if and only if $A B=B A$
- $\left(e^{A t}\right)^{-1}=e^{-A t}$
- So $e^{A t} e^{-A t}=I$
- $\frac{d}{d t} e^{A t}=A e^{A t}=e^{A t} A$
- From definition: $e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots$

LTI System: Stability of $\dot{x}=A x$

- Equilibrium point of $\dot{x}=f(x)$ is where $f(x)=0$
- For $\dot{x}=A x$, in general $\mathbf{0}_{n}$ is an equilibrium point: $x_{e}=0_{n}$

- Also, $x_{e} \in$ the nullspace of A
- Stable: $x(t)$ is bounded for all $t \geq 0$, for all initial conditions x_{0}
- Asymptotically stable: $x(t) \rightarrow x_{e}$ as $t \rightarrow \infty$
- Exponentially stable: $\exists M, \alpha>0$ such that $\|x(t)\| \leq M e^{-\alpha t}\left\|x_{0}\right\|$
- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$

Eigenvalues and Eigenvectors

- Eigenvalues:
- If there is some vector e and scalar λ such that $A e=\lambda e$, then e is called the eigenvector corresponding to eigenvalue λ of the matrix A
- Example: $A=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$
- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]$

- $\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]=2\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors

- Define $T^{-1}=\left[\begin{array}{llll}e_{1} & e_{2} & \cdots & e_{n}\end{array}\right]$
- Then, $A T^{-1}=T^{-1} \Lambda$, where $\Lambda=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$
- $A=T^{-1} \Lambda T$. This is a similarity transform.
- Define $z=T x$, and we have $A x=T^{-1} \Lambda T x=T^{-1} \Lambda z$
- In the coordinate system obtained from applying transformation T, the map A is diagonal
- To obtain the result of applying A in the original coordinate system, transform back with T^{-1}

Obtaining Eigenvalues and Eigenvectors

- Hand calculation: $A=\left[\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right]$
- Eigenvalues

$$
\begin{array}{r}
A e=\lambda e \\
A e-\lambda I e=0 \\
(A-\lambda I) e=0
\end{array}
$$

$$
\text { Solve for } \lambda \text { in } \operatorname{det}(A-\lambda I)=0
$$

This means the matrix $A-\lambda I$

$$
2-\lambda= \pm 3
$$ has an eigenvalue of 0

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -3 \\
-3 & 2-\lambda
\end{array}\right]\right)=(2-\lambda)(2-\lambda)-9=0
$$

$$
\text { has an eigenvalue of } 0
$$

$$
\lambda=2 \pm 3=-1,5
$$

- Eigenvectors

$$
\lambda=-1:\left[\begin{array}{cc}
3 & -3 \\
-3 & 3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$$
\lambda=5:\left[\begin{array}{ll}
-3 & -3 \\
-3 & -3
\end{array}\right] e=0 \Rightarrow e=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

- Matlab: eig(A)

Jordan Form

- Not all matrices are diagonalizable

$$
J=T A T^{-1}=\left[\begin{array}{llllll}
\lambda & 1 & 0 & & & \\
0 & \lambda & 1 & & & \\
0 & 0 & \lambda & & & \\
& & & \lambda & 1 & \\
& & & 0 & \lambda & \\
& & & & & \lambda
\end{array}\right]
$$

- This is the matrix structure for one eigenvalue $\quad T^{-1}=\left[\begin{array}{llllll}e_{1} & v_{1} & w_{1} & e_{2} & v_{2} & e_{3}\end{array}\right]$
- There may be more than one such blocks in general
- All matrices can be put into Jordan form
- Matlab: jordan(A)
- Note that the eigenvalues of J are the same as those of A

$$
\text { Imagine } \operatorname{det}(J-s I)=0
$$

Functions of Matrices

- Consider a polynomial of a matrix, $f(A)=A^{k}$
- $A^{k}=\left(T^{-1} J T\right)^{k}=\left(T^{-1} J T\right)\left(T^{-1} J T\right)\left(T^{-1} J T\right) \ldots\left(T^{-1} J T\right)=T^{-1} J^{k} T$
- Adjacent T matrices and inverse cancel!
- This motivates general functions of matrices, like $f(A)=\sin A$ or $f(A)=e^{A t}$, defined through Taylor series
- $\sin A=A-\frac{A^{3}}{3!}+\frac{A^{5}}{5!}-\frac{A^{7}}{7!}+\cdots$
- $e^{A t}=I+\frac{A t}{1!}+\frac{A^{2} t^{2}}{2!}+\cdots$

Functions of Matrices

- Suppose $J=\left[\begin{array}{|cccc}\lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda\end{array}\right]$
- Then, $f(J)=\left[\begin{array}{cccc}f(\lambda) & f^{\prime}(\lambda) & \cdots & \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\ & f(\lambda) & \ddots & \vdots \\ & & \ddots & f^{\prime}(\lambda) \\ & & & f(\lambda)\end{array}\right]$
- And $f(A)=T^{-1} f(J) T$, where $A=T^{-1} J T$
- Spectral theorem: the eigenvalues of $f(A)$ are $\{f(\lambda)\}$, where $\{\lambda\}$ are eigenvalues of A

$$
\text { Imagine } \operatorname{det}(f(J)-s I)=0
$$

LTI System: Stability of $\dot{x}=A x$

- Equilibrium point of $\dot{x}=f(x)$ is where $f(x)=0$
- For $\dot{x}=A x$, in general $\mathbf{0}_{n}$ is an equilibrium point: $x_{e}=0_{n}$

- Also, $x_{e} \in$ the nullspace of A
- Stable: $x(t)$ is bounded for all $t \geq 0$, for all initial conditions x_{0}
- Asymptotically stable: $x(t) \rightarrow x_{e}$ as $t \rightarrow \infty$
- Exponentially stable: $\exists M, \alpha>0$ such that $\|x(t)\| \leq M e^{-\alpha t}\left\|x_{0}\right\|$
- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$

LTI System: Stability

- The system $\dot{x}=A x$ is exponentially stable if and only if all eigenvalues of A are in the open left half plane, i.e. $\forall k, \operatorname{Re}\left(\lambda_{k}\right)<0$
$\cdot z=T x \Rightarrow \dot{z}=T A T^{-1} z=\Lambda z, z_{0}=T x_{0}$
$\cdot\left[\begin{array}{l}z_{1}(t) \\ z_{2}(t)\end{array}\right]=\left[\begin{array}{cc}e^{\lambda_{1} t} & 0 \\ 0 & e^{\lambda_{2} t}\end{array}\right]\left[\begin{array}{l}z_{10} \\ z_{20}\end{array}\right]$
- If $\operatorname{Re}\left(\lambda_{k}\right)<0, e^{\lambda_{k} t} \rightarrow 0$, so $z_{k}(t)=e^{\lambda_{k} t} z_{k 0} \rightarrow 0$

- If $\max \operatorname{Re}\left(\lambda_{k}\right)=0, z(t)$ stays bounded only if $\bar{\lambda}_{k}$ has Jordan block of size 1

LTI System: Stability

- If $\max \operatorname{Re}\left(\lambda_{k}\right)=0, z(t)$ stays bounded only if $\bar{\lambda}_{k}$ has Jordan block of size 1

$$
e^{J t} Z_{0}=\left[\begin{array}{cccccc}
e^{\lambda_{1} t} & & & & & \\
& e^{\lambda_{1} t} & t e^{\lambda_{1} t} & & & \\
& & e^{\lambda_{1} t} & & & \\
& & & e^{\lambda_{2} t} & t e^{\lambda_{2} t} & \frac{1}{2} t^{2} e^{\lambda_{2} t} \\
& & & & e^{\lambda_{2} t} & t e^{\lambda_{2} t} \\
& & & & & e^{\lambda_{2} t}
\end{array}\right]
$$

- When $\lambda_{i}=0$...

LTI System: Stability

- If $\max \operatorname{Re}\left(\lambda_{k}\right)=0, z(t)$ stays bounded only if $\bar{\lambda}_{k}$ has Jordan block of size 1

$$
e^{J t} z_{0}=\left[\begin{array}{cccccc}
1 & & & & & \\
& 1 & t & & & \\
& & 1 & & & \\
& & & 1 & t & \frac{1}{2} t^{2} \\
& & & & 1 & t \\
& & & & & 1
\end{array}\right] Z_{0}
$$

- When $\lambda_{i}=0$...
- Not stable!

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$
- Define $\bar{A}=A-B K$, and we have $\dot{x}=\bar{A} x$
- We can try to choose the elements of K, such that the eigenvalues of \bar{A} are in the left half-plane

State Feedback

- System: $\dot{x}=A x+B u$
- Open-loop control: $u=u(t)$

- Closed-loop (linear state feedback) control: $u=-K x$
- $\dot{x}=A x-B K x$
- $\dot{x}=(A-B K) x$
- $\dot{x}=\bar{A} x$, where $\bar{A}=A-B K$

Stabilization by State Feedback

- Suppose $\dot{x}=A x+B u$, where $A=\left[\begin{array}{ll}2 & 2 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- Is the system stable when $u(t) \equiv 0$? No!
- $A x=\lambda x \Rightarrow(A-\lambda I) x=0$
- $\operatorname{det}\left(\left[\begin{array}{cc}2-\lambda & 1 \\ 0 & 2-\lambda\end{array}\right]\right)=0 \Rightarrow \lambda=2,2$
- Choose K so that $u=-K x$ stabilizes the system.
- Let $K=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]$, then $\bar{A}:=A-B K=\left[\begin{array}{cc}2-k_{1} & 2-k_{2} \\ -k_{1} & 2-k_{2}\end{array}\right]$
- $\operatorname{det}(\bar{A}-\lambda I)=\left(2-k_{1}-\lambda\right)\left(2-k_{2}-\lambda\right)+\left(2-k_{2}\right) k_{1}$
- Choose k_{1}, k_{2} such that $\operatorname{det}(\bar{A}-\lambda I)=0$ gives λ in the open left half plane

Stabilization by State Feedback

- Choose K so that $u=-K x$ stabilizes the system.
- Let $K=\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]$, then $\bar{A}:=A-B K=\left[\begin{array}{ll}2-k_{1} & 1-k_{2} \\ 1-k_{1} & 2-k_{2}\end{array}\right]$
- $0=\left(2-k_{1}-\lambda\right)\left(2-k_{2}-\lambda\right)+\left(2-k_{2}\right) k_{1}$
- $0=\lambda^{2}+\left(k_{1}+k_{2}-4\right) \lambda+\left(2-k_{1}\right)\left(2-k_{2}\right)+\left(2-k_{2}\right) k_{1}$
- $0=\lambda^{2}+\left(k_{1}+k_{2}-4\right) \lambda+4-2 k_{1}-2 k_{2}+k_{1} k_{2}+2 k_{1}-k_{1} k_{2}$
- $0=\lambda^{2}+\left(k_{1}+k_{2}-4\right) \lambda+4-2 k_{2}$
- One choice: $\lambda=-2,-2$
- $0=(\lambda+2)(\lambda+2)=\lambda^{2}+4 \lambda+4$
- $k_{2}=0, k_{1}=8$

State Feedback Control

- Suppose $\dot{x}=A x+B u$, can we design u to make $x=\mathbf{0}_{n}$ stable?
- Try linear state feedback: $u=-K x \Rightarrow \dot{x}=(A-B K) x$
- Define $\bar{A}=A-B K$, and we have $\dot{x}=\bar{A} x$
- We can try to choose the elements of K, such that the eigenvalues of \bar{A} are in the left half-plane
- Issues
- Controller saturation
- Full state information required

