
Announcements

• Course website: https://coursys.sfu.ca/2019fa-cmpt-419-x1/pages/

• Instructor office hours, TASC 1 8225
• This week: 13:00 – 14:30
• In the future: Mondays 14:00 – 15:30

• TA (Shubam Sachdeva) office hours, ASB 9808 
• Thursdays 12:00 – 13:00
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References for Linear Systems

• F. Callier & C. A. Desoer, Linear System Theory, Springer-Verlag, 1991. 

• W. J. Rugh, Linear System Theory, Prentice-Hall, 1996. 



Differential Equations

• Continuous time model of robotic systems
• In general, nonlinear systems
• One may construct discrete time models from continuous time models

• Dynamics:
• Specifies how the robot state or configuration changes over time
• In some ways, the most “natural” model, since 
• Defining , we have



Differential Equations

• State:
• Contains all information needed to specify the configuration of the robot
• Most common: position, velocity, angular position, angular velocity

• Control:
• Examples: steering, accelerating, decelerating
• Usually constrained to be within some set

• Disturbance:
• Examples: wind, input noise, another agent

acceleration

turn rate

𝒰



Linear Systems

• Differential equations generally do not have closed-form solutions
• Numerical methods can be used to obtain approximate solutions
• Other analysis techniques offer insight into the solutions

• Linear time-invariant (LTI) systems: 
• Damped mass spring systems
• Circuits involving resistors, capacitors, inductors
• Approximations of nonlinear systems



Linear Systems

Hu et al., 2018

(If flying near hover, and slowly)
Bouffard, 2012



Road Map

• Basic properties and closed form solution

• Stability

• Linear state feedback control



LTI Systems

• Linear time-invariant (LTI) systems: 

𝐴

𝐵 +𝑢 ∫
𝑥�̇�



LTI Systems: Closed Form Solution

•
•

• Zero input solution: 
•
• Define 
• Solution in terms of : 

•

Matlab: expm



Solution to LTI System: Proof

• If then 

• Initial conditions:
•

• Differentiate:
•

•

•

𝑑

𝑑𝑡
𝑔 𝜏 𝑑𝜏 = 𝑔 𝑡

𝑑

𝑑𝑡
𝑒 𝐵𝑢 𝜏 𝑑𝜏 =

𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

=
𝑑

𝑑𝑡
𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏

= 𝐴𝑒 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝑒 𝑒 𝐵𝑢 𝑡

= 𝐴 𝑒 𝐵𝑢 𝜏 𝑑𝜏 + 𝐵𝑢 𝑡



Matrix Exponential Properties

• If then
• (follows from the above)
•

•

• if and only if 
•

• So 

•

• From definition: 
! !

𝑥 𝑠
𝑒 “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴
• State transition matrix

𝑒

𝑡 = 0𝑡 = 5



LTI System: Stability of 

• Equilibrium point of is where  
• For in general is an equilibrium point: 
• Also, the nullspace of 

• Stable: is bounded for all , for all initial conditions 
• Asymptotically stable: as 
• Exponentially stable: such that 

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 



• Eigenvalues:
• If there is some vector and scalar such that , then is called the 

eigenvector corresponding to eigenvalue of the matrix 

• Example: 

•

•

• When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors



Eigenvalues and Eigenvectors

• Define 

• Then, , where 

• . This is a similarity transform.
• Define , and we have 

• In the coordinate system obtained from applying transformation 𝑇, the map 𝐴 is 
diagonal

• To obtain the result of applying 𝐴 in the original coordinate system, transform back with 
𝑇



Obtaining Eigenvalues and Eigenvectors

• Hand calculation: 
• Eigenvalues

• Eigenvectors

• Matlab: eig(A)

𝐴𝑒 = 𝜆𝑒

𝐴𝑒 − 𝜆𝐼𝑒 = 0

(𝐴 − 𝜆𝐼)𝑒 = 0

This means the matrix 𝐴 − 𝜆𝐼
has an eigenvalue of 0

Solve for 𝜆 in det 𝐴 − 𝜆𝐼 = 0

det
2 − 𝜆 −3

−3 2 − 𝜆
= 2 − 𝜆 2 − 𝜆 − 9 = 0

2 − 𝜆 = ±3

𝜆 = 2 ± 3 = −1,5

𝜆 = −1:
3 −3

−3 3
𝑒 = 0 ⇒ 𝑒 =

1
1

𝜆 = 5:
−3 −3
−3 −3

𝑒 = 0 ⇒ 𝑒 =
1

−1



Jordan Form

• Not all matrices are diagonalizable

• This is the matrix structure for one eigenvalue
• There may be more than one such blocks in general

• All matrices can be put into Jordan form
• Matlab: jordan(A)
• Note that the eigenvalues of are the same as those of 

𝐴𝑒 = 𝜆𝑒
𝐴𝑒 = 𝜆𝑒
𝐴𝑒 = 𝜆𝑒

𝐴𝑣 = 𝜆𝑣 + 𝑒
𝐴𝑣 = 𝜆𝑣 + 𝑒

𝐴𝑤 = 𝜆𝑤 + 𝑣
𝐽 = 𝑇𝐴𝑇 =

𝜆 1 0
0 𝜆 1
0 0 𝜆

𝜆 1
0 𝜆

𝜆

𝑇 = 𝑒 𝑣 𝑤 𝑒 𝑣 𝑒

Imagine det 𝐽 − 𝑠𝐼 = 0



Functions of Matrices

• Consider a polynomial of a matrix, 
• … 
• Adjacent matrices and inverse cancel!

• This motivates general functions of matrices, like or 
, defined through Taylor series

•
! ! !

•
! !



Functions of Matrices

• Suppose 

• Then, 
!

• And , where 
• Spectral theorem: the eigenvalues of are , where are eigenvalues 

of 

𝑛

𝑛

Imagine det 𝑓 𝐽 − 𝑠𝐼 = 0



LTI System: Stability of 

• Equilibrium point of is where  
• For in general is an equilibrium point: 
• Also, the nullspace of 

• Stable: is bounded for all , for all initial conditions 
• Asymptotically stable: as 
• Exponentially stable: such that 

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 



LTI System: Stability

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. 

•

•

• If , , so 

• If , stays bounded only if has Jordan block of 
size 1

Eigenvalue with largest real part



LTI System: Stability

• If , stays bounded only if has Jordan block of 
size 1

• When …



LTI System: Stability

• If , stays bounded only if has Jordan block of 
size 1

• When …
• Not stable!



State Feedback Control

• Suppose , can we design to make stable?

• Try linear state feedback: 
• Define , and we have 
• We can try to choose the elements of , such that the eigenvalues of are in 

the left half-plane



State Feedback

• System: 
• Open-loop control: 
• Closed-loop (linear state feedback) control: 

•
•
• , where 

𝐴

𝐵 +𝑢 ∫
𝑥�̇�

𝐴

𝐵 + ∫
𝑥�̇�

−𝐾
�̅�

+ ∫
𝑥�̇�



Stabilization by State Feedback

• Suppose , where 
• Is the system stable when ? No!

• 𝐴𝑥 = 𝜆𝑥 ⇒ 𝐴 − 𝜆𝐼 𝑥 = 0

• det
2 − 𝜆 1

0 2 − 𝜆
= 0 ⇒ 𝜆 = 2,2

• Choose so that stabilizes the system.

• Let 𝐾 = 𝑘 𝑘 , then �̅� ≔ 𝐴 − 𝐵𝐾 =
2 − 𝑘 2 − 𝑘

−𝑘 2 − 𝑘
• det �̅� − 𝜆𝐼 = 2 − 𝑘 − 𝜆 2 − 𝑘 − 𝜆 + 2 − 𝑘 𝑘

• Choose 𝑘 , 𝑘 such that det �̅� − 𝜆𝐼 = 0 gives 𝜆 in the open left half plane



Stabilization by State Feedback

• Choose so that stabilizes the system.

• Let 𝐾 = 𝑘 𝑘 , then �̅� ≔ 𝐴 − 𝐵𝐾 =
2 − 𝑘 1 − 𝑘
1 − 𝑘 2 − 𝑘

• 0 = 2 − 𝑘 − 𝜆 2 − 𝑘 − 𝜆 + 2 − 𝑘 𝑘

• 0 = 𝜆 + 𝑘 + 𝑘 − 4 𝜆 + 2 − 𝑘 2 − 𝑘 + 2 − 𝑘 𝑘

• 0 = 𝜆 + 𝑘 + 𝑘 − 4 𝜆 + 4 − 2𝑘 − 2𝑘 + 𝑘 𝑘 + 2𝑘 − 𝑘 𝑘

• 0 = 𝜆 + 𝑘 + 𝑘 − 4 𝜆 + 4 − 2𝑘

• One choice: 
• 0 = 𝜆 + 2 𝜆 + 2 = 𝜆 + 4𝜆 + 4

• 𝑘 = 0, 𝑘 = 8



State Feedback Control

• Suppose , can we design to make stable?

• Try linear state feedback: 
• Define , and we have 
• We can try to choose the elements of , such that the eigenvalues of are in 

the left half-plane

• Issues
• Controller saturation
• Full state information required


