
Announcements

• Course website: https://coursys.sfu.ca/2019fa-cmpt-419-x1/pages/

• Instructor office hours, TASC 1 8225
• This week: 13:00 – 14:30
• In the future: Mondays 14:00 – 15:30

• TA (Shubam Sachdeva) office hours, ASB 9808 
• Thursdays 12:00 – 13:00
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References for Linear Systems

• F. Callier & C. A. Desoer, Linear System Theory, Springer-Verlag, 1991. 

• W. J. Rugh, Linear System Theory, Prentice-Hall, 1996. 



Differential Equations

• Continuous time model of robotic systems
• In general, nonlinear systems
• One may construct discrete time models from continuous time models

• Dynamics: ௡
଴

• Specifies how the robot state or configuration changes over time
• In some ways, the most “natural” model, since 
• Defining ଵ ଶ , we have

ଵ

ଶ

ଶ



Differential Equations

• State: ௡
଴ ଴

• Contains all information needed to specify the configuration of the robot
• Most common: position, velocity, angular position, angular velocity

• Control:
• Examples: steering, accelerating, decelerating
• Usually constrained to be within some set

• Disturbance:
• Examples: wind, input noise, another agent

acceleration

turn rate

𝒰



Linear Systems

• Differential equations generally do not have closed-form solutions
• Numerical methods can be used to obtain approximate solutions
• Other analysis techniques offer insight into the solutions

• Linear time-invariant (LTI) systems: 
• Damped mass spring systems
• Circuits involving resistors, capacitors, inductors
• Approximations of nonlinear systems



Linear Systems

Hu et al., 2018

(If flying near hover, and slowly)
Bouffard, 2012



Road Map

• Basic properties and closed form solution

• Stability

• Linear state feedback control



LTI Systems

• Linear time-invariant (LTI) systems: 

𝐴

𝐵 +𝑢 ∫
𝑥𝑥̇



LTI Systems: Closed Form Solution

• ଴

• ஺௧
଴

஺ ௧ିఛ௧

଴

஺௧
ଶ ଶ

• Zero input solution: ஺௧
଴

• ିଵ
଴ ଴

• Define ିଵ

• Solution in terms of : ௃௧
଴

• ଵ

ଶ

ఒభ௧

ఒమ௧

ଵ଴

ଶ଴

Matlab: expm



Solution to LTI System: Proof

• If ଴ then ஺௧
଴

஺ ௧ିఛ௧

଴

• Initial conditions:
• ஺ ଴

଴
஺ ௧ିఛ଴

଴ ଴

• Differentiate:
•

ௗ

ௗ௧
஺௧

଴
ௗ

ௗ௧
஺ ௧ିఛ௧

଴

• ஺௧
଴

஺ ௧ିఛ௧

଴

•

𝑑

𝑑𝑡
න 𝑔 𝜏 𝑑𝜏

௧

௔

= 𝑔 𝑡

𝑑

𝑑𝑡
න 𝑒஺ ௧ିఛ 𝐵𝑢 𝜏 𝑑𝜏

௧

଴

=
𝑑

𝑑𝑡
න 𝑒஺௧𝑒ି஺ 𝐵𝑢 𝜏 𝑑𝜏

௧

଴

=
𝑑

𝑑𝑡
𝑒஺௧ න 𝑒ି஺ఛ𝐵𝑢 𝜏 𝑑𝜏

௧

଴

= 𝐴𝑒஺௧ න 𝑒ି஺ఛ𝐵𝑢 𝜏 𝑑𝜏
௧

଴

+ 𝑒஺௧𝑒ି஺ 𝐵𝑢 𝑡

= 𝐴 න 𝑒஺ ௧ିఛ 𝐵𝑢 𝜏 𝑑𝜏
௧

଴

+ 𝐵𝑢 𝑡



Matrix Exponential Properties

• If ଴ then ஺௧
଴

• ଴ (follows from the above)
• ஺ ௧ା௦ ஺௧ ஺௦

• ஺ ௧ା௦
଴

஺௧ ஺௦
଴

• ஺ା஻ ௧ ஺௧ ஻௧ if and only if 
• ஺௧ ିଵ ି஺௧

• So ஺௧ ି஺௧

•
ௗ

ௗ௧
஺௧ ஺௧ ஺௧

• From definition: ஺௧ ஺௧

ଵ!

஺మ௧మ

ଶ!

𝑥 𝑠
𝑒஺௧ “propagates” a state forward 
by a duration of 𝑡, according to 
the system dynamics 𝐴
• State transition matrix

𝑒஺ହ

𝑡 = 0𝑡 = 5



LTI System: Stability of 

• Equilibrium point of is where  
• For in general ௡ is an equilibrium point: ௘ ௡

• Also, ௘ the nullspace of 

• Stable: is bounded for all , for all initial conditions ଴

• Asymptotically stable: ௘ as 
• Exponentially stable: such that ିఈ௧

଴

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. ௞



• Eigenvalues:
• If there is some vector and scalar such that , then is called the 

eigenvector corresponding to eigenvalue of the matrix 

• Example: 

•

•

• When a matrix is applied to eigenvectors, the effect is simple!

Eigenvalues and Eigenvectors



Eigenvalues and Eigenvectors

• Define ିଵ
ଵ ଶ ௡

• Then, ିଵ ିଵ , where 

ଵ

ଶ

௡

• ିଵ . This is a similarity transform.
• Define , and we have ିଵ ିଵ

• In the coordinate system obtained from applying transformation 𝑇, the map 𝐴 is 
diagonal

• To obtain the result of applying 𝐴 in the original coordinate system, transform back with 
𝑇ିଵ



Obtaining Eigenvalues and Eigenvectors

• Hand calculation: 
• Eigenvalues

• Eigenvectors

• Matlab: eig(A)

𝐴𝑒 = 𝜆𝑒

𝐴𝑒 − 𝜆𝐼𝑒 = 0

(𝐴 − 𝜆𝐼)𝑒 = 0

This means the matrix 𝐴 − 𝜆𝐼
has an eigenvalue of 0

Solve for 𝜆 in det 𝐴 − 𝜆𝐼 = 0

det
2 − 𝜆 −3

−3 2 − 𝜆
= 2 − 𝜆 2 − 𝜆 − 9 = 0

2 − 𝜆 = ±3

𝜆 = 2 ± 3 = −1,5

𝜆 = −1:
3 −3

−3 3
𝑒 = 0 ⇒ 𝑒 =

1
1

𝜆 = 5:
−3 −3
−3 −3

𝑒 = 0 ⇒ 𝑒 =
1

−1



Jordan Form

• Not all matrices are diagonalizable

• This is the matrix structure for one eigenvalue
• There may be more than one such blocks in general

• All matrices can be put into Jordan form
• Matlab: jordan(A)
• Note that the eigenvalues of are the same as those of 

𝐴𝑒ଵ = 𝜆𝑒ଵ

𝐴𝑒ଶ = 𝜆𝑒ଶ

𝐴𝑒ଷ = 𝜆𝑒ଷ

𝐴𝑣ଵ = 𝜆𝑣ଵ + 𝑒ଵ

𝐴𝑣ଶ = 𝜆𝑣ଶ + 𝑒ଶ

𝐴𝑤ଵ = 𝜆𝑤ଵ + 𝑣ଵ
𝐽 = 𝑇𝐴𝑇ିଵ =

𝜆 1 0
0 𝜆 1
0 0 𝜆

𝜆 1
0 𝜆

𝜆

𝑇ିଵ = 𝑒ଵ 𝑣ଵ 𝑤ଵ 𝑒ଶ 𝑣ଶ 𝑒ଷ

Imagine det 𝐽 − 𝑠𝐼 = 0



Functions of Matrices

• Consider a polynomial of a matrix, ௞

• ௞ ିଵ ௞ ିଵ ିଵ ିଵ … ିଵ ିଵ ௞

• Adjacent matrices and inverse cancel!

• This motivates general functions of matrices, like or 
஺௧, defined through Taylor series

•
஺య

ଷ!

஺ఱ

ହ!

஺ళ

଻!

• ஺௧ ஺௧

ଵ!

஺మ௧మ

ଶ!



Functions of Matrices

• Suppose 

• Then, 

ᇱ ௙ ೙షభ ఒ

௡ିଵ !

ᇱ

• And ିଵ , where ିଵ

• Spectral theorem: the eigenvalues of are , where are eigenvalues 
of 

𝑛

𝑛

Imagine det 𝑓 𝐽 − 𝑠𝐼 = 0



LTI System: Stability of 

• Equilibrium point of is where  
• For in general ௡ is an equilibrium point: ௘ ௡

• Also, ௘ the nullspace of 

• Stable: is bounded for all , for all initial conditions ଴

• Asymptotically stable: ௘ as 
• Exponentially stable: such that ିఈ௧

଴

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. ௞



LTI System: Stability

• The system is exponentially stable if and only if all eigenvalues 
of are in the open left half plane, i.e. ௞

• ିଵ
଴ ଴

• ଵ

ଶ

ఒభ௧

ఒమ௧

ଵ଴

ଶ଴

• If ௞ , ఒೖ௧ , so ௞
ఒೖ௧

௞଴

• If ௞ , stays bounded only if ௞ has Jordan block of 
size 1

Eigenvalue with largest real part



LTI System: Stability

• If ௞ , stays bounded only if ௞ has Jordan block of 
size 1

௃௧
଴

ఒభ௧

ఒభ௧ ఒభ௧

ఒభ௧

ఒమ௧ ఒమ௧ ଶ ఒమ௧

ఒమ௧ ఒమ௧

ఒమ௧

଴

• When ௜ …



LTI System: Stability

• If ௞ , stays bounded only if ௞ has Jordan block of 
size 1

௃௧
଴ ଶ ଴

• When ௜ …
• Not stable!



State Feedback Control

• Suppose , can we design to make ௡ stable?

• Try linear state feedback: 
• Define , and we have 
• We can try to choose the elements of , such that the eigenvalues of are in 

the left half-plane



State Feedback

• System: 
• Open-loop control: 
• Closed-loop (linear state feedback) control: 

•
•
• , where 

𝐴

𝐵 +𝑢 ∫
𝑥𝑥̇

𝐴

𝐵 + ∫
𝑥𝑥̇

−𝐾
𝐴̅

+ ∫
𝑥𝑥̇



Stabilization by State Feedback

• Suppose , where 
• Is the system stable when ? No!

• 𝐴𝑥 = 𝜆𝑥 ⇒ 𝐴 − 𝜆𝐼 𝑥 = 0

• det
2 − 𝜆 1

0 2 − 𝜆
= 0 ⇒ 𝜆 = 2,2

• Choose so that stabilizes the system.

• Let 𝐾 = 𝑘ଵ 𝑘ଶ , then 𝐴̅ ≔ 𝐴 − 𝐵𝐾 =
2 − 𝑘ଵ 2 − 𝑘ଶ

−𝑘ଵ 2 − 𝑘ଶ

• det 𝐴̅ − 𝜆𝐼 = 2 − 𝑘ଵ − 𝜆 2 − 𝑘ଶ − 𝜆 + 2 − 𝑘ଶ 𝑘ଵ

• Choose 𝑘ଵ, 𝑘ଶ such that det 𝐴̅ − 𝜆𝐼 = 0 gives 𝜆 in the open left half plane



Stabilization by State Feedback

• Choose so that stabilizes the system.

• Let 𝐾 = 𝑘ଵ 𝑘ଶ , then 𝐴̅ ≔ 𝐴 − 𝐵𝐾 =
2 − 𝑘ଵ 1 − 𝑘ଶ

1 − 𝑘ଵ 2 − 𝑘ଶ

• 0 = 2 − 𝑘ଵ − 𝜆 2 − 𝑘ଶ − 𝜆 + 2 − 𝑘ଶ 𝑘ଵ

• 0 = 𝜆ଶ + 𝑘ଵ + 𝑘ଶ − 4 𝜆 + 2 − 𝑘ଵ 2 − 𝑘ଶ + 2 − 𝑘ଶ 𝑘ଵ

• 0 = 𝜆ଶ + 𝑘ଵ + 𝑘ଶ − 4 𝜆 + 4 − 2𝑘ଵ − 2𝑘ଶ + 𝑘ଵ𝑘ଶ + 2𝑘ଵ − 𝑘ଵ𝑘ଶ

• 0 = 𝜆ଶ + 𝑘ଵ + 𝑘ଶ − 4 𝜆 + 4 − 2𝑘ଶ

• One choice: 
• 0 = 𝜆 + 2 𝜆 + 2 = 𝜆ଶ + 4𝜆 + 4

• 𝑘ଶ = 0, 𝑘ଵ = 8



State Feedback Control

• Suppose , can we design to make ௡ stable?

• Try linear state feedback: 
• Define , and we have 
• We can try to choose the elements of , such that the eigenvalues of are in 

the left half-plane

• Issues
• Controller saturation
• Full state information required


