CMPT 419/983

Robotic Autonomy: Algorithms and Computation

Mo Chen

https://www.sfu.ca/~mochen

Course Outline

- Overview of algorithms used for robotic decision making
 - Theory-focused
 - Fundamentals for doing many areas of robotics research
- Dynamical systems
- Optimization and optimal control
- Machine learning in robotics
- Localization and mapping

Logistics

- Academic Quadrangle 5601,
 - Mondays 10:30-12:20
 - Wednesdays 10:30-11:20
- Office hour: Wednesdays 13:00-14:30, TASC 1 8225
- Course website: https://coursys.sfu.ca/2019fa-cmpt-419-x1/pages/
- Contact:
 - mochen@cs.sfu.ca
 - <u>shubams@sfu.ca</u>

Caveats

- This class is in "experimental mode"
- Slight changes are expected
- Some things may not be super polished
- Please provide feedback and comments

Grading

- 40% Homework
 - 3 assignments
- 60% Project

Project suggestions

- Thoroughly understand and critically evaluate 3 to 5 papers in an area covered in this course
- Reproduce the results of 1 to 2 papers in an area covered in this course, and suggest or make improvements
- Mini Research project related to an area covered in this course
- Other: Please consult instructor

Project timeline

- Proposal (1-2 paragraphs)
 - Due Oct. 7
- Poster session
 - Last lecture of the term, Dec. 2
- Report (6 pages maximum)
 - Due Dec. 2

Recommended textbooks

- R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous Mobile Robots. The MIT Press, 2011, 9780262015356.
- S. M. LaValle, *Planning Algorithms*. Cambridge University Press, 2006, 9780521862059.
- S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2008, 9780521833783.
- D. P. Bertsekas, *Dynamic Programming and Optimal Control*. Athena Scientific, 2017, 1886529434.
- R. S. Sutton and A. G. Barto, *Reinforcement Learning: An Introduction*, 1998, 9780262257053.

Dynamical systems

- Mathematical models of robotic systems
 - Deterministic vs. stochastic
 - Continuous vs. discrete time
- Configuration of system described by the state, often denoted x
 - State changes, or evolves, according to the model
- Deterministic, continuous time
 - $\frac{dx}{dt} = \dot{x}(t) = f(x, u)$
- Stochastic, discrete time
 - x_{k+1} obtained from the probability distribution $p(x_{k+1}|x_k, u_k)$

System State

- Defined in terms of any variables of interest
 - Often denoted x(t) or x_k
- Position
- Heading
- Velocity
- Angular velocity
- Voltages, concentrations of chemicals
- Human comfort, degree of trust

Control and disturbance

- Control/action : usually used to achieve a desired goal
 - Usually denoted u(t) or u_k
 - Acceleration
 - Turn rate
 - Gas throttle
 - Steering wheel angle
- Disturbance
 - Usually denoted d(t) or d_k
 - Bumps on the road
 - Input noise

Examples of Robotic Systems

Models

- All models are wrong; some are useful
- Definition of "useful" depends on situation
 - Simulation
 - Analysis and control
 - Verification
- Considerations
 - Does the model capture the desired system behaviours
 - Is the model amenable to tractable computation

Nonlinear Optimization

Choose x to minimize some cost, subject to constraints

minimize f(x)subject to $g_i(x) \le 0, i = 1, ..., n$ $h_j(x) = 0, j = 1, ..., m$ Fuel cost, distance to obstacles, distance from goal, prediction error in machine learning

System dynamics, obstacle avoidance, goal reaching

- Equivalently, maximize -f(x): Maximize reward, maximize profit
- Robotics spans many fields
 - Many conventions
 - Many notations clashes

Nonlinear Optimization

- A very difficult problem in general for $x \in \mathbb{R}^n$ where n is large
 - Calculus facts: necessary and sufficient conditions
 - Rely on gradients (if possible)
- Sometimes, some components of x may be integers
 - Can we do better than brute force?
- Simpler cases
 - Differentiable functions
 - Linear, convex, quasiconvex
 - Unconstrained problems

Nonlinear Optimization

minimize f(x)subject to $g_i(x) \le 0, i = 1, ..., n$ $h_j(x) = 0, j = 1, ..., m$

- Nonlinear optimization:
 - Decision variable is $x \in \mathbb{R}^n$

• Nonlinear optimization:

• Optimal control:

• Decision variable is $x \in \mathbb{R}^n$

• Decision variable is a function $u(\cdot)$

Robotic Safety

Verification methods

- Considers all possible system behaviours, given assumptions
- Can be written as an optimal control problem

Reachability Analysis

Machine Learning

- Application of nonlinear optimization
 - Takes advantage of available data
- Supervised learning
 - Regression
 - Classification
- Unsupervised learning
 - Clustering
 - Reinforcement learning

Machine Learning

- Very scalable with additional data
- Requires a lot of data
- Computer vision
- Natural language processing
- Game playing
- Simulated robotics
- Physical robotics?

Localization and Mapping

- Localization
 - Given a map, figure out where the robot is (with respect to the map) using sensor information
 - Continuously do this while moving around in the environment
- Simultaneous localization and mapping
 - Figure out the map and localize at the same time
- Probabilistic models
 - of how the robot moves
 - of how the robot senses the environment

Sample of MARS Research

- https://sfumars.com
- Control algorithms
- Computational complexity
- Reinforcement learning
- Human intent inference
- Theory
- Computation
- Experiments

Safety: A Crucial Perspective in Automation

Challenges in Safety-Critical Systems

- Account for all possible system behaviours
- Complex systems
- Complex environment
 - Weather conditions
 - Other robots

Reachability Analysis

Research Directions

Dimensionality reduction

Self-Contained Subsystems

• Motivating example: Dubins Car

• Subsystems are coupled through state and control

- Many systems have states that are not directly coupled to each other
 - Most common in vehicle dynamics

Research Directions

Dimensionality reduction

Parallel computing

Perception systems

Research Directions

Human intent understanding

Proactive Human Intent Understanding

Multi-Modal Human Intent Understanding

Motion

Emotion

Engagement

Audio

Research Directions

Human intent understanding

Robotic learning

Curriculum Reinforcement Learning

Curriculum Reinforcement Learning

Reachability-based curriculum Random curriculum Without curriculum Distance-based reward shaping -250 -250 -500 -500 -750 -750

Task performance

Curriculum performance