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Course Qutline

* Overview of algorithms used for robotic decision making
* Theory-focused
* Fundamentals for doing many areas of robotics research

* Dynamical systems
* Optimization and optimal control
* Machine learning in robotics
* Localization and mapping




Logistics

e Academic Quadrangle 5601,
* Mondays 10:30-12:20
* Wednesdays 10:30-11:20

» Office hour: Wednesdays 13:00-14:30, TASC 1 8225

e Course website: https://coursys.sfu.ca/2019fa-cmpt-419-x1/pages/

* Contact:
* mochen@cs.sfu.ca
* shubams@sfu.ca




Caveats

* This class is in “experimental mode”
* Slight changes are expected
* Some things may not be super polished

* Please provide feedback and comments




Grading

* 40% Homework
* 3 assignments

* 60% Project




Project suggestions

* Thoroughly understand and critically evaluate 3 to 5 papers in an area
covered in this course

* Reproduce the results of 1 to 2 papers in an area covered in this
course, and suggest or make improvements

* Mini Research project related to an area covered in this course

e Other: Please consult instructor




Project timeline

* Proposal (1-2 paragraphs)
* Due Oct. 7

* Poster session
* Last lecture of the term, Dec. 2

* Report (6 pages maximum)
* Due Dec. 2




Recommended textbooks

* R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza,
Introduction to Autonomous Mobile Robots. The MIT
Press, 2011, 9780262015356.

* S. M. LaValle, Planning Algorithms. Cambridge
University Press, 2006, 9780521862059.

* S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2008, 9780521833783.

* D. P. Bertsekas, Dynamic Programming and Optimal
Control. Athena Scientific, 2017, 1886529434.

e R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction, 1998, 9780262257053.

e

-

Stephen Boyd and
Lieven vVandenberghe

Optimization I‘)ynam-ic Programming

Reinforcement
Learning

Steven M. LaValle

PLANNING

L] AUtONOM ALGORITHMS
"Mobile Robot

¥ r ___ [ .-
— S
(S _—

and Op_timal Conqul




Dynamical systems

* Mathematical models of robotic systems
* Deterministic vs. stochastic
e Continuous vs. discrete time

* Configuration of system described by the state, often denoted x
 State changes, or evolves, according to the model

* Deterministic, continuous time
d .
« —=%(t) = flx,u)

» Stochastic, discrete time
* Xj+1 Obtained from the probability distribution p(xj;4+1 | Xk, Uk)




System State

* Defined in terms of any variables of interest
« Often denoted x(t) or xy,

* Position
* Heading

* Velocity
* Angular velocity

* Voltages, concentrations of chemicals
* Human comfort, degree of trust

v




Control and disturbance

 Control/action : usually used to achieve a desired goal §
 Usually denoted u(t) or uy

Acceleration

Turn rate

Gas throttle
Steering wheel angle

* Disturbance
 Usually denoted d(t) or d,
* Bumps on the road
* Input noise




Mathematical models of robotic systems
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Examples of Robotic Systems
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@

X =vcosf
y =vsinf
0=w
@5c=vc059
y =vsinf
6=w
v=a

w=a

Car models

States: (x, y, 8); position and heading
Control: w; turn rate (angular speed)

States: (x,y, 0, v, w);

position, heading, speed, turn rate
Control: (a, @);

acceleration, angular acceleration

@ Bicycle model

X = Uy
Yy =71y
Uy = WUy + Ay

Uy = —WV, + - (Fc,f cos oy + FC,T)

Y =w

.2

w = I_(lfFC:f - lTP(":,T)
Z

X =vycosy —vysiny

Y = v, siny + vy, cosy




Models

* All models are wrong; some are useful

* Definition of “useful” depends on situation
* Simulation
e Analysis and control
* Verification

* Considerations
* Does the model capture the desired system behaviours

* |s the model amenable to tractable computation




Nonlinear Optimization

* Choose x to minimize some cost, subject to constraints

Fuel cost, distance to obstacles, distance from

minimize X
f( ) goal, prediction error in machine learning
subjectto g;(x) <0,i=1,..,n

hj(x) =0,j=1,...,m

System dynamics, obstacle avoidance, goal reaching

* Equivalently, maximize — f(x): Maximize reward, maximize profit

* Robotics spans many fields
* Many conventions
* Many notations clashes




Nonlinear Optimization

* A very difficult problem in general for x € R™ where n is large
 Calculus facts: necessary and sufficient conditions
* Rely on gradients (if possible)

* Sometimes, some components of x may be integer__s__ i
* Can we do better than brute force? R TNy G

.4 Local
Maxirdom .

* Simpler cases
* Differentiable functions
* Linear, convex, quasiconvex
* Unconstrained problems
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Nonlinear Optimization

minimize f(x)

subjectto g;(x) <0,i=1,..,n
hj(x) =0,j=1,...,m

* Nonlinear optimization:
» Decision variable is x € R"

A
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Optimal Control

Running cost

|

[

mlnlmlze l(x(tf) tf) _|_f
0

sub]ect to x(t) = f(x(t),u(t))
g(x(t),u(t)) >0

Ly

\

c(x(t),u(t), t)dt

x(t) € R",u(t) € R™, x(0) = x,

* Nonlinear optimization:
» Decision variable is x € R"

A

* Optimal control:
* Decision variable is a function u(-)

A
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Robotic Safety

e Verification methods

Assumptions

Prove safety
Control policy

* Considers all possible system behaviours, given assumptions

* Can be written as an optimal control problem




Reachability Analysis

Reachable set Unsafe region

A
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Optimal control policy to avoid danger

* Model of robot | >
e Unsafe region

Reachable set (States leading to danger)




Machine Learning

Pattequ i
Classification

* Application of nonlinear
optimization
* Takes advantage of available data

* Supervised learning
* Regression
* Classification

Dim. 2
X

* Unsupervised learning
e Clustering
* Reinforcement learning

—
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Cluster 1 4
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Cluster 3Q

g Dim. 1




Machine Learning

* Very scalable with additional data
* Requires a lot of data

* Computer vision

* Natural language processing
* Game playing

e Simulated robotics

* Physical robotics?




Localization and Mapping

* Localization Y
* Given a map, figure out where the robot is (with respect to the map) using
sensor information

* Continuously do this while moving around in the environment

* Simultaneous localization and mapping
* Figure out the map and localize at the same time

e Probabilistic models
e of how the robot moves
* of how the robot senses the environment




Sample of MARS Research

e https://sfumars.com

e Control algorithms

* Computational complexity
e Reinforcement learning
 Human intent inference

* Theory
* Computation
* Experiments




»

Safety: A Crucial Perspective in Automation

W’ikipedia




Challenges in Safety-Critical Systems

e Account for all possible system behaviours
* Complex systems

* Complex environment
e Weather conditions
e Other robots

Wikipedia

Wikipedia




Reachability Analysis

Reachable set Unsafe region

)

Reachable set (States leading to danger)

e e el ot "

Unsafe region

Optimal control policy to avoid danger
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Main Challenge:

6D:

5D: intractable!

days
gigabytes

Exponential Computational Complexity with DP

Computation time
and RAM usage

‘negligible RAM

O(Nd) time and space complexity!

3D:
minutes
20: tens of megabytes
1D: seconds
<0.1s negligible RAM

4D:.
hours
hundreds of megabytes
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@
number of system dimensions
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Research Directions

Dimensionality reduction

Il Reconstructed BRS
— (x, #) BRS
—(y, 6) BRS
I (%, ¥) BRS back projection
M (v, #) BRS back projection




Self-Contained Subsystems

* Motivating example: Dubins Car

Self-contained
=

subsystem 1

=

T

X =vcoséb
y =vsinf
0=w

e Subsystems are coupled through state and control

__ Self-contained

subsystem 2

* Many systems have states that are not directly coupled to each other
* Most common in vehicle dynamics

33




Research Directions

Dimensionality reduction

Il Reconstructed BRS

= (x, #) BRS

==y, §) BRS

I (x, ¥) BRS back projection
M (v, ¥) BRS back projection

Parallel computing

Perception systems




Research Directions

Human intent understanding




Proactive Human Intent Understanding

2
Is the red car
? T * A pursuer,
? P (=}=->  « Orabenign vehicle?
m.-.‘::: ..... > .L
4

Robot car (green)

[E]{[E] -— RUISHEL proactively changes lanes
[[e=) D)

to determine intent




Multi-Modal Human Intent Understanding
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Research Directions

Human intent understanding  Robotic learning

)A‘-_
Global Robots Ltd.




Curriculum Reinforcement Learning

Without curriculum Distance-based reward shaping  Reachability-based curriculum Random curriculum
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Curriculum Reinforcement Learning

Task performance
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Curriculum performance




