
Introduction	to	
Reinforcement	Learning

CMPT	419/983
Mo	Chen

SFU	Computing	Science
30/10/2019



Outline	for	the	week

• Basic	ideas	in	RL
• Value	functions	and	value	iteration
• Policy	evaluation	and	policy	improvement

• Model-free	RL
• Monte-Carlo	and	temporal	differencing	policy	evaluation
• 𝜖-greedy	policy	improvement

• Function	Approximation
• Adaptation	of	supervised	learning	to	reinforcement	learning

• Policy	Gradient



Reinforcement	Learning

• Humans	can	learn	without	imitation
• Given	goal/task
• Try	an	initial	strategy
• See	how	well	the	task	is	performed
• Adjust	strategy	next	time

• Reinforcement	learning	agent
• Given	goal/task	in	the	form	of	reward	function	𝑟 𝑠, 𝑎
• Start	with	initial	policy	𝜋' 𝑎 𝑠 ;	execute	policy
• Obtain	sum	of	rewards,	∑ 𝑟 𝑠), 𝑎))
• Improve	policy	by	updating	𝜃,	based	on	rewards



Reinforcement	Learning	Objective

• Given:	an	MDP	with	state	space	𝒮,	action	space	𝒜,	transition	probabilities	
𝒯,	and	reward	function	𝑟 𝑠, 𝑎

• Objective:	Maximize	expected	discounted	sum	of	rewards	(“return”)

maximize
45

𝔼7𝛾)𝑟 𝑠), 𝑎)

9

):;
• 𝛾 ∈ 0,1 :	discount	factor	– larger	roughly	means	“far-sighted”

• Prioritizes	immediate	rewards
• 𝛾 < 1 avoids	infinite	rewards;	𝛾 = 1 is	possible	if	all	sequences	are	finite

• Constraints:	now	incorporated	into	the	reward	function
• Only	constraint	(usually	implicit):	subject	to	transition	matrix	𝒯 (system	dynamics)



RL	vs.	Other	ML	Paradigms

• No	supervisor
• But	we	will	often	draw	inspiration	from	supervised	learning

• Sequential	data	in	time

• Reward	feedback	is	obtained	after	a	long	time
• Many	actions	combined	together	will	receive	reward
• Actions	are	dependent	on	each	other

• In	robotics:	lack	of	data



Reinforcement	Learning	Categories

• Model-based
• Explicitly	involves	an	MDP	model

• Model-free
• Does	not	explicitly	involve	an	MDP	model

• Value	based
• Learns	value	function,	and	derives	policy	from	value	function

• Policy	based
• Learns	policy	without	value	function

• Actor	critic
• Incorporates	both	value	function	and	policy



Value	Functions

• “State-value	function”:	𝑉4 𝑠 -- expected	return	starting	from	state	𝑠
and	following	policy	𝜋
• 𝑉4 𝑠 = 𝔼BC~4 ∑ 𝛾)𝑟 𝑠), 𝑎)9

):; |𝑠; = 𝑠
• Expectation	is	on	the	random	sequence	 𝑠;, 𝑎;, 𝑠F, 𝑎F, …

• “Action-value	function”,	or	“𝑸 function”:	𝑄4 𝑠, 𝑎 -- expected	return	
starting	from	state	𝑠,	taking	action	𝑎,	and	then	following	policy	𝜋
• 𝑄4 𝑠, 𝑎 = 𝔼BC~4 ∑ 𝛾)𝑟 𝑠), 𝑎)9

):; |𝑠; = 𝑠, 𝑎; = 𝑎



• Optimal	discounted	sum	of	rewards:	
• 𝑉4∗ 𝑠 = max

4
𝔼 ∑ 𝛾)𝑟 𝑠), 𝑎)9

):; |𝑠; = 𝑠

• Dynamic	programming:	
• 𝑉4∗ 𝑠 = max

BC
𝔼 𝑟 𝑠), 𝑎) + 𝛾𝑉4∗ 𝑠)LF |𝑠) = 𝑠

• 𝑄4∗ 𝑠, 𝑎 = 𝔼 𝑟 𝑠), 𝑎) + 𝛾𝑉4∗ 𝑠)LF |𝑠) = 𝑠, 𝑎) = 𝑎

• Actually,	recurrence	is	true	even	without	maximization
• 𝑉4 𝑠 = 𝔼 𝑟 𝑠), 𝑎) + 𝛾𝑉4 𝑠)LF |𝑠) = 𝑠
• 𝑄4 𝑠, 𝑎 = 𝔼 𝑟 𝑠), 𝑎) + 𝛾𝑉4 𝑠)LF |𝑠) = 𝑠, 𝑎) = 𝑎

𝑏F
𝑏N

𝑏O

𝐽QBRS

𝐽QBRT

𝐽QBRU

𝐽RUV
∗

𝐽RTV
∗

𝐽RSV
∗Principal	of	Optimality	Applied	to	RL



Basic	Properties	of	Value	Functions

• 𝑉4∗ 𝑠 = max
4

𝑉4 𝑠

• 𝑄4∗ 𝑠, 𝑎 = max
4

𝑄4 𝑠, 𝑎

• 𝑉4∗ 𝑠 = max
B
𝑄4∗ 𝑠, 𝑎

• For	now,	value	functions	are	stored	in	multi-dimensional	arrays

• DP	leads	to	deterministic	policies	– we	will	come	back	to	stochastic	policies



• State-value	function
• 𝑉4∗ 𝑠 = max

BC
𝔼 𝑟 𝑠), 𝑎) + 𝛾𝑉 𝑠)LF |𝑠) = 𝑠

• 𝑉4∗ 𝑠 = max
B

𝑟 𝑠, 𝑎 + 𝛾𝔼 𝑉 𝑠)LF |𝑠) = 𝑠

• 𝑉4∗ 𝑠 = max
B

𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠, 𝑎 𝑉4∗ 𝑠XYZ

• “Bellman	backup”:	𝑉 𝑠 ← max
B

𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠, 𝑎 𝑉 𝑠XYZ

• This	is	done	for	all	𝑠
• Iterate	until	convergence

• Optimal	policy:	𝑎 = argmax
BZ

𝑟 𝑠, 𝑎X + 𝛾 ∑ 𝑝 𝑠X|𝑠, 𝑎X 𝑉 𝑠XYZ

• Deterministic

𝑏F
𝑏N

𝑏O

𝐽QBRS

𝐽QBRT

𝐽QBRU

𝐽RUV
∗

𝐽RTV
∗

𝐽RSV
∗

Optimizing	the	RL	Objective	via	DP



• Action-value	function
• 𝑄4∗ 𝑠, 𝑎 = 𝔼 𝑟 𝑠), 𝑎) + 𝛾max

BC^S
𝑄4∗ 𝑠)LF, 𝑎)LF |𝑠) = 𝑠, 𝑎) = 𝑎

• 𝑄4∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼 max
BC^S

𝑄4∗ 𝑠)LF, 𝑎)LF |𝑠) = 𝑠, 𝑎) = 𝑎

• 𝑄4∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠, 𝑎 𝑉4∗ 𝑠XYZ
• “Bellman	backup”:

• 𝑉 𝑠 ← max
B
𝑄 𝑠, 𝑎

• 𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠, 𝑎 𝑉 𝑠XYZ
• This	is	done	for	all	𝑠 and	all	𝑎
• Iterate	until	convergence

• Optimal	policy:	𝑎 = argmax
BZ

𝑄 𝑠, 𝑎X

• Deterministic

𝑏F
𝑏N

𝑏O

𝐽QBRS

𝐽QBRT

𝐽QBRU

𝐽RUV
∗

𝐽RTV
∗

𝐽RSV
∗

Optimizing	the	RL	Objective	via	DP



Approximate	Dynamic	Programming

• Use	a	function	approximator	(eg. neural	network)	𝑉_ 𝑠;𝑤 ,	where	𝑤
are	weights,	to	approximate	𝑉
• 𝑉 𝑠 is	no	longer	stored	at	every	state
• Weights	𝑤 are	updated	using	Bellman	backups

• Basic	algorithm:	(We	will	learn	about	other	variants	too)
• Sample	some	states,	 𝑠b
• For	each	𝑠b,	generate	𝑉c 𝑠b = max

B
𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠), 𝑎 𝑉_ 𝑠X; 𝑤YZ

• Using	 𝑠b, 𝑉c 𝑠b ,	update	weights	𝑤 via	regression	(supervised	learning)



Generalized	Policy	Evaluation	and	Policy	Improvement

• Start	with	initial	policy	𝜋 and	value	function	𝑉 or	𝑄
• Use	policy	𝜋 to	update	𝑉:	𝑎 = 𝜋 𝑠
• 𝑉 𝑠 ← 𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠, 𝑎 𝑉 𝑠XYZ
• 𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠, 𝑎 𝑉 𝑠XYZ
• In	general,	any	policy	evaluation	algorithm

• Use	𝑉 or	𝑄 to	update	policy	𝜋:	
• Given	𝑉 s , 𝜋 𝑠 = argmax

B
𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠, 𝑎 𝑉 𝑠XYZ

• Given	𝑄 𝑠, 𝑎 , 𝜋 𝑠 = argmax
B
𝑄 𝑠, 𝑎

• In	general,	any	policy	improvement	algorithm

𝜋 𝑄

policy	improvement	algorithm

policy	evaluation	algorithm

DP

DP



Convergence

• At	convergence,	the	following	are	simultaneously	satisfied:
• 𝑉 𝑠 = 𝑟 𝑠, 𝑎 + 𝛾 ∑ 𝑝 𝑠X|𝑠), 𝑎 𝑉 𝑠XYZ
• 𝜋 𝑠 = argmax

BZ
𝑟 𝑠, 𝑎X + 𝛾 ∑ 𝑝 𝑠|𝑠), 𝑎X 𝑉 𝑠Y

• This	is	the	principle	of	optimality

• Therefore,	the	value	function	and	policy	are	optimal

𝜋 𝑄

policy	improvement	algorithm

policy	evaluation	algorithm



Terminology

• “Value	iteration”:	The	process	of	iteratively	updating	value	function
• With	DP,	we	only	need	to	keep	track	of	value	function	𝑉 or	𝑄,	and	the	policy	𝜋
is	implicit	– determined	from	value	function

• “Policy	iteration”:	The	process	of	iteratively	updating	policy	
• This	is	done	implicitly	with	Bellman	backups

• “Greedy	policy”:	the	policy	obtained	from	choosing	the	best	action	
based	on	the	current	value	function
• If	the	value	function	is	optimal,	the	greedy	policy	is	optimal



Towards	Model-Free	Learning

• Policy	evaluation
• Monte-Carlo	(MC)	Sampling
• Temporal-difference	(TD)

• Policy	improvement
• 𝜖-greedy	policies



Monte-Carlo	Policy	Evaluation

• Start	with	initial	policy	𝜋 and	value	function	𝑉 or	𝑄
• Use	policy	𝜋 to	update	𝑉:	𝑎 = 𝜋 𝑠
• Apply	𝜋 to	obtain	trajectory	 𝑠;, 𝑎;, 𝑠F, 𝑎F, …
• Compute	return:	𝑅 ≔ ∑𝛾)𝑟 𝑠), 𝑎)
• Repeat	for	many	episodes	to	obtain	empirical	mean

• “Episode”:	a	single	“try”	that	produces	a	single	trajectory

• Use	𝑉 or	𝑄 to	update	policy	𝜋

𝜋 𝑄

policy	improvement	algorithm

policy	evaluation	algorithm



Monte-Carlo	Policy	Evaluation

• To	obtain	empirical	mean,	we	record	𝑁 𝑠 ,	#	of	times	𝑠 is	visited	for	
every	state
• Start	at	𝑁 𝑠 = 0 for	all	𝑠
• Note	that	this	means	storing	𝑁 (and	𝑆 below)	at	every	state

• First-visit	MC	Policy	Evaluation:
• At	the	first	time	𝑡 that	𝑠 is	visited	in	an	episode,	

• Increment	𝑁 𝑠 ← 𝑁 𝑠 + 1
• Record	return	𝑆 𝑠 ← 𝑆 𝑠 + ∑𝛾)𝑟 𝑠), 𝑎)
• Repeat	for	many	episodes

• Estimate	value:	𝑉 𝑠 = j Y
k Y



Monte-Carlo	Policy	Evaluation

• To	obtain	empirical	mean,	we	record	𝑁 𝑠 ,	#	of	times	𝑠 is	visited	for	
every	state
• Start	at	𝑁 𝑠 = 0 for	all	𝑠
• Note	that	this	means	storing	𝑁 (and	𝑆 below)	at	every	state

• Every-visit	MC	Policy	Evaluation:
• Every time	𝑡 that	𝑠 is	visited	in	an	episode,	

• Increment	𝑁 𝑠 ← 𝑁 𝑠 + 1
• Record	return	𝑆 𝑠 ← 𝑆 𝑠 + ∑𝛾)𝑟 𝑠), 𝑎)
• Repeat	for	many	episodes

• Estimate	value:	𝑉 𝑠 ≈ j Y
k Y



Incremental	Updates

• Instead	of	estimating	𝑉4 𝑠 after	many	episodes,	we	can	update	it	
incrementally	after	every	episode	after	receiving	return	𝑅
• 𝑁 𝑠 ← 𝑁 𝑠 + 1
• 𝑉 𝑠 ← 𝑉 𝑠 + F

k Y 𝑅 − 𝑉 𝑠

• More	generally,	we	can	weight	the	second	term	differently
• 𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝑅 − 𝑉 𝑠



Monte-Carlo	Policy	Evaluation

• Start	with	initial	policy	𝜋 and	value	function	𝑉 or	𝑄
• Use	policy	𝜋 to	update	𝑉:	𝑎 = 𝜋 𝑠
• MC	policy	evaluation	provides	estimate	of	𝑉4
• Many	episodes	are	needed	to	obtain	accurate	estimate
• Model-free	with	MC!

• Use	𝑉 or	𝑄 to	update	policy	𝜋
• Greedy	policy?

𝜋 𝑄

policy	improvement	algorithm

policy	evaluation	algorithm



Monte-Carlo	Policy	Evaluation

• Start	with	initial	policy	𝜋 and	value	function	𝑉 or	𝑄
• Use	policy	𝜋 to	update	𝑉:	𝑎 = 𝜋 𝑠
• MC	policy	evaluation	provides	estimate	of	𝑉4
• Many	episodes	are	needed	to	obtain	accurate	estimate
• Model-free	with	MC!

• Use	𝑉 or	𝑄 to	update	policy	𝜋
• Greedy	policy?

• Greedy	policy	lacks	exploration,	so	𝑉4 is	not	estimated	at	many	states
• 𝜖-greedy	policy

𝜋 𝑄

policy	improvement	algorithm

policy	evaluation	algorithm



𝜖-Greedy	Policy

• Also	known	as	𝜖-greedy	exploration

• Choose	random	action	with	probability	𝜖
• Typically	uniformly	random
• If	𝑎 takes	on	discrete	values,	then	all	actions	will	be	chosen	eventually

• Choose	action	from	greedy	policy	with	probability	1 − 𝜖
• 𝑎 = argmax

BZ
𝑟 𝑠, 𝑎X + 𝛾 ∑ 𝑝 𝑠|𝑠), 𝑎X 𝑉 𝑠Y

• Still	requires	model,	𝑝 𝑠|𝑠), 𝑎 …
• Solution:	𝑄 function



Monte-Carlo	Policy	Evaluation

• To	obtain	empirical	mean,	we	record	𝑁 𝑠, 𝑎 ,	#	of	times	𝑠 is	visited	for	
every	state
• Start	at	𝑁 𝑠, 𝑎 = 0 for	all	𝑠 and	𝑎
• Note	that	this	means	𝑁 (and	𝑆 below)	must	be	stored	for	every	𝑠 and	𝑎

• First-visit	MC	Policy	Evaluation:
• At	the	first	time	𝑡 that	𝑠 is	visited	in	an	episode,	

• Increment	𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
• Record	return	𝑆 𝑠, 𝑎 ← 𝑆 𝑠, 𝑎 + ∑𝛾)𝑟 𝑠), 𝑎)
• Repeat	for	many	episodes

• Estimate	action-value	function:	𝑄 𝑠, 𝑎 = j Y,B
k Y,B



Incremental	Updates

• Instead	of	estimating	𝑉 𝑠 after	many	episodes,	we	can	update	it	
incrementally	after	every	episode	after	receiving	return	𝑅
• 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + F

k Y,B 𝑅 − 𝑄 𝑠, 𝑎

• More	generally,	we	can	weight	the	second	term	differently
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 − 𝑄 𝑠, 𝑎



Monte-Carlo	Policy	Evaluation

• Start	with	initial	policy	𝜋 and	value	function	𝑉 or	𝑄
• Use	policy	𝜋 to	update	𝑄:	𝑎 = 𝜋 𝑠
• MC	policy	evaluation	provides	estimate	of	𝑄4
• Many	episodes	are	needed	to	obtain	accurate	estimate
• Model-free	with	MC!

• Use	𝑉 or	𝑄 to	update	policy	𝜋
• Greedy	policy?

• Greedy	policy	lacks	exploration,	so	𝑉 is	not	estimated	at	many	states
• 𝜖-greedy	policy

𝜋 𝑄

policy	improvement	algorithm

policy	evaluation	algorithm



𝜖-Greedy	Policy

• Also	known	as	𝜖-greedy	exploration

• Choose	random	action	with	probability	𝜖
• Typically	uniformly	random
• If	𝑎 takes	on	discrete	values,	then	all	actions	will	be	chosen	eventually

• Choose	action	from	greedy	policy	with	probability	1 − 𝜖
• 𝑎 = argmax

BZ
𝑄 𝑠, 𝑎X

• Model-free!


