Introduction to
Reinforcement Learning

CMPT 419/983
Mo Chen

SFU Computing Science
30/10/2019

Outline for the week

e Basic ideas in RL

e Value functions and value iteration
* Policy evaluation and policy improvement

* Model-free RL
* Monte-Carlo and temporal differencing policy evaluation
* e-greedy policy improvement

* Function Approximation
* Adaptation of supervised learning to reinforcement learning

* Policy Gradient

Reinforcement Learning

* Humans can learn without imitation
* Given goal/task
* Try an initial strategy
* See how well the task is performed
e Adjust strategy next time

* Reinforcement learning agent
* Given goal/task in the form of reward function r(s, a)
« Start with initial policy mg(a|s); execute policy
* Obtain sum of rewards,)., 7(s¢, a;)
* Improve policy by updating 8, based on rewards

Reinforcement Learning Objective

* Given: an MDP with state space &, action space A, transition probabilities
T, and reward function r(s, a)

* Objective: Maximize expected discounted sum of rewards (“return”)
0.0)

maximize E) yir(s, a;)
T
0 t=0
* y € (0,1]: discount factor — larger roughly means “far-sighted”
* Prioritizes immediate rewards

* ¥y < 1 avoids infinite rewards; y = 1 is possible if all sequences are finite

e Constraints: now incorporated into the reward function
* Only constraint (usually implicit): subject to transition matrix 7 (system dynamics)

RL vs. Other ML Paradigms

* No supervisor
* But we will often draw inspiration from supervised learning

e Sequential data in time

* Reward feedback is obtained after a long time
* Many actions combined together will receive reward
* Actions are dependent on each other

* In robotics: lack of data

Reinforcement Learning Categories

* Model-based

* Explicitly involves an MDP model

* Model-free
* Does not explicitly involve an MDP model

* Value based
* Learns value function, and derives policy from value function

* Policy based

* Learns policy without value function

* Actor critic
* Incorporates both value function and policy

Value Functions

* “State-value function”: V_(s) -- expected return starting from state s
and following policy

* Vn(s) = Eat~n[2?;o vir(se ag) |sg = s]
* Expectation is on the random sequence {sy, ag, S1, a1, ... }

* “Action-value function”, or “Q function”: Q. (s, a) -- expected return
starting from state s, taking action a, and then following policy

* Qr(s,a) = Eat~n[2§10 vir(se ar) Iso = s,a9 = al

Principal of Optimality Applied to RL _—7;

b «
y Ibya

e Optimal discounted sum of rewards: Jab,,! b2

« Vo (s) = max E[X 2 vir(ss a) |so =] A, Jbsa
ys | ﬂ]Clbz

: : Tp
e Dynamic programming: S

* Vpe(s) = max E[r(s;, ap) + YV (Seaq)|se = s] Jab

* Qn:(s,a) = E[r(se, ar) + yVp(Se+1)|5e = s, a¢ = al

e Actually, recurrence is true even without maximization
* Ve(s) = E[r(ss, ar) + yVe(ser1) st = s]
* Qr(s,a) = E[r(sg, ar) + yVe(Se41)lse = s,a; = aj

Basic Properties of Value Functions

e V_«(s) = max V.(s)
* QTC* (S, Cl) — mTE[lX QTL'(SJ Cl)
* V() = max Qpe (s, @)

* For now, value functions are stored in multi-dimensional arrays

* DP leads to deterministic policies — we will come back to stochastic policies

Optimizing the RL Objective via DP

]abl’

* State-value function
* Vie(s) = max E[r(se ap) + vV (sgq1)lse = s]
* Vo (s) = maxir(s, a) + VE[V (se41)lse = sl}
Ve (s) = max{r(s, @) +7 E,[p(s'ls, @)Vee (5]}
* “Bellman backup”: V(s) « mc?x{r(s, a) +y X lp(s'ls, a)V(S’)]}

* Thisis done foralls
* |terate until convergence

 Optimal policy: a = arg ma}x{r(s, a’) +vyxglp(s’]s, a’)V(S’)]}
a

e Deterministic

Optimizing the RL Objective via DP

e Action-value function

* Q< (s,a) =E [T(St» a;) + yglax Q- (Sts1, A1) |S¢ = 5,0, =
t+1

* Q+(s,a) =r(s,a) + yE [rc?ax Q.+ (Spy1,ap41) |5 = 5,0, = a
t+1

* Qe (s,a) =7(s,a) +y 2ylp(s'|s, a)Vp-(s)]
e “Bellman backup”:
e V(s) « max Q(s,a)

* Q(s,a) «r(s,a) +y Y lp(s'ls,a)V(s)]
e Thisis done for all s and all a
* |terate until convergence

* Optimal policy: a = arg max Q(s,a’)
a

e Deterministic

Approximate Dynamic Programming

» Use a function approximator (eg. neural network) V(s; w), where w
are weights, to approximate V

* VV(s) is no longer stored at every state
* Weights w are updated using Bellman backups

* Basic algorithm: (We will learn about other variants too)
« Sample some states, {s;}

e For each s;, generate V (s;) = max{r(s, a) +)/ZSI[P(S'|St» a)V(s’; W)]}
a

e Using {s;, V(s;)}, update weights w via regression (supervised learning)

Generalized Policy Evaluation and Policy Improvement

 Start with initial policy ™ and value function V or Q

* Use policy T to update V: a = m(s)
. [+ V(s) «r(s,@) +y Lglp(s'ls,)V (s)]

* Q(s,a) «r(s,a) +y Lylp(s'ls,a)V(s’)]
* In general, any

e Use V or Q to update policy m:
& { * Given V(s),m(s) = arg mc?x{r(s, a) +y olp(s']s, a)V(S’)]}
* Given Q(s,a),m(s) = arg max Q(s,a)

* |In general, any

Convergence

* At convergence, the following are simultaneously satisfied:
*V(s) =r(s,a) +y Lylp(s'lsy,)V (s')]
* m(s) = argmaxir(s,a’) +y Xs[p(slse, a)V(s)]}

* This is the principle of optimality

* Therefore, the value function and policy are optimal

Terminology

* “Value iteration”: The process of iteratively updating value function

* With DP, we only need to keep track of value function IV or Q, and the policy @
is implicit — determined from value function

* “Policy iteration”: The process of iteratively updating policy
* This is done implicitly with Bellman backups

* “Greedy policy”: the policy obtained from choosing the best action
based on the current value function

* |f the value function is optimal, the greedy policy is optimal

Towards Model-Free Learning

* Policy evaluation
* Monte-Carlo (MC) Sampling
* Temporal-difference (TD)

* Policy improvement
* e-greedy policies

Monte-Carlo Policy Evaluation

 Start with initial policy ™ and value function V or Q

* Use policy T to update V: a = m(s)
 Apply to obtain trajectory {sq, ag, S1, a4, ... }
« Compute return: R := Yytr(s, a;)
* Repeat for many episodes to obtain empirical mean
» “Episode”: a single “try” that produces a single trajectory

* Use V or Q to update policy T

Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N(s), # of times s is visited for
every state

e Startat N(s) = O forall s
* Note that this means storing N (and S below) at every state

* First-visit MC Policy Evaluation:

* At the first time t that s is visited in an episode,
* Increment N(s) < N(s) + 1
* Record return S(s) « S(s) + Xytr(s; az)
* Repeat for many episodes

S(s)

 Estimate value: V(s) = NG

Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N(s), # of times s is visited for
every state

e Startat N(s) = O forall s
* Note that this means storing N (and S below) at every state

 Every-visit MC Policy Evaluation:

* Every time t that s is visited in an episode,
* Increment N(s) < N(s) + 1
* Record return S(s) « S(s) + Xytr(s; az)

* Repeat for many episodes

 Estimate value: V(s) = %

Incremental Updates

* Instead of estimating V. (s) after many episodes, we can update it
incrementally after every episode after receiving return R

* N(s) <« N(s)+1

e V(s) « V(S)+m(R V(s))

* More generally, we can weight the second term differently
e V(s) «V(s)+ a(R — V(S))

Monte-Carlo Policy Evaluation

 Start with initial policy ™ and value function V or Q

* Use policy T to update V: a = m(s)
* MC policy evaluation provides estimate of V;

* Many episodes are needed to obtain accurate estimate
* Model-free with MC!

e Use V or Q to update policy T
* Greedy policy?

Monte-Carlo Policy Evaluation

 Start with initial policy ™ and value function V or Q

* Use policy T to update V: a = m(s)
* MC policy evaluation provides estimate of V;

* Many episodes are needed to obtain accurate estimate
* Model-free with MC!

e Use V or Q to update policy T
—Greedy-poticy?

* Greedy policy lacks exploration, so I is not estimated at many states

* e-greedy policy

e-Greedy Policy

* Also known as e-greedy exploration

* Choose random action with probability €
e Typically uniformly random
* |f a takes on discrete values, then all actions will be chosen eventually

* Choose action from greedy policy with probability 1 — €
* a =argmax{r(s,a’) +v Ls[p(slse, a)V(s)]}

* Still requires model, p(s|s¢, a)...
* Solution: Q function

Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N (s, a), # of times s is visited for
every state

e Startat N(s,a) = Oforall sand a
* Note that this means N (and S below) must be stored for every s and a

* First-visit MC Policy Evaluation:

* At the first time t that s is visited in an episode,
* Increment N(s,a) « N(s,a) + 1
 Record return S(s,a) « S(s,a) + Yytr(s,, a;)
* Repeat for many episodes

S(s,a)

* Estimate action-value function: Q(s,a) = N(s,a)

Incremental Updates

* Instead of estimating V (s) after many episodes, we can update it
incrementally after every episode after receiving return R

* N(s,a) « N(s,a) +1
* Q(s,a) < Q(s,a) +

1
N(s,a)

(R — Q(s, a))

* More generally, we can weight the second term differently

* Q(s,a) < Q(s,a) + a(R — Q (s, a))

Monte-Carlo Policy Evaluation

 Start with initial policy ™ and value function V or Q

* Use policy T to update Q: a = m(s)
* MC policy evaluation provides estimate of Q

* Many episodes are needed to obtain accurate estimate
* Model-free with MC!

e Use V-o+(Q to update policy T
—Greedy-poticy?

* Greedy policy lacks exploration, so V is not estimated at many states

* e-greedy policy

e-Greedy Policy

* Also known as e-greedy exploration

* Choose random action with probability €

e Typically uniformly random
* If a takes on discrete values, then all actions will be chosen eventually

* Choose action from greedy policy with probability 1 — €

° a = arg mE}X{Q(S; a’)}

* Model-freel

