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Extensions of Problem Setup

* Partially observability
 Partially Observable Markov Decision Process (POMDP)
 State not fully known; instead, act based on observations
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* Policy: mg(alo)
* In this class, state s will be synonymous with observation o.




Reinforcement Learning Objective

* Given: an MDP with state space §, action space A, transition
probabilities T, and reward function r(s, a)

* Objective: Maximize sum of rewards (“return”)
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Reinforcement Learning Objective

* Given: an MDP with state space §, action space A, transition
probabilities T, and reward function r(s, a)

* Objective: Maximize discounted sum of rewards (“return”)
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Reinforcement Learning Objective

* Given: an MDP with state space §, action space A, transition
probabilities T, and reward function r(s, a)

* Objective: Maximize expected discounted sum of rewards (“return”)
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Reinforcement Learning Objective

* Given: an MDP with state space &, action space A, transition probabilities
T, and reward function r(s, a)

* Objective: Maximize expected discounted sum of rewards (“return”)
0.0)

maximize E ) yir(s, a;)
T
0 t=0
* y € (0,1]: discount factor — larger roughly means “far-sighted”
* Prioritizes immediate rewards

* ¥y < 1 avoids infinite rewards; y = 1 is possible if all sequences are finite

e Constraints: now incorporated into the reward function
* Only constraint (usually implicit): subject to transition matrix 7 (system dynamics)
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Markov Decision Process

State space includes
Reading paper
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Reinforcement Learning and Optimal Control

* Reinforcement Learning
00

maximize E ) y'r(s;, a;)
Ttg
t=0

Dynamics constraint is implicit
* And not necessary needed

Typically, no other explicit
constraints

Problem set up captured entirely
in the reward

Probabilistic

* Optimal control ‘.
mln%mlze l(x(tf) tf) +f c(x(t),u(t), t)dt

subject to x(t) = f(x(t) u(t))
g(x(@®),u(®)) =0
x(t) € R u(t) € R™ x(0) = xq

* Explicit constraints
* Can be continuous time
* Not necessarily probabilistic




Imitation Learning

* Collect data through expert demonstration — sequence of states and
actions, {sy, g, S1, A1, -+, SN—1, AN—1, SN }
* Note: Expert may not be solving maximize E[Y.72, v r(ss, at)]
T

P

* Learn my(a,|s;) from data via regression
* Minimize E[X|la; — mg(as|se)|l]
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Imitation Learning

 Collect data through expert demonstration — sequence of states and
actions, {sy, g, S1, A1, -+, SN—1, AN—1, SN }
* Note: Expert may not be solving maximize E[Y.72, v r(ss, at)]
T

* Learn my(a,|s;) from data via regression
* Minimize EQX|la; — mg(a¢|se))

e Usually doesn’t work due to “drift”: small mistakes add up, and takes
the system far from trained states

* Sometimes, there can be “tricks” to make imitation learning work!




Autonomous Driving Through Imitation




Recorded

Training: steering
wheel angle

-

> Adjust for shift

and rotation

Desired steering command

Left camera

s N

4>

Center camera

J

/ A

Right camera

\ vy

Testing:

Random shift
and rotation

r:

-

Center camera

|-

CNN

Network
computed

steering
command

!

Back propagation
weight adjustment

Network
computed
steering
command

Bojarski ‘16. “End to End Learning for Self-Driving Cars,” CVPR 2016

L

Drive by wire
interface




Dataset Aggregation

* Imitation learning drawback:

 Distribution of observations in training is different from distribution of
observations during test

* Some states have never been seen during demonstration

N

* How to make the distributions equal?
* Train perfect policy
* Change data set > DAgger (Dataset Aggregation)




Dataset Aggregation (DAgger) Algorithm

1. Train policy from some initial data, D; =
{SO' Ao, 51,41, -, SN-1, AN -1, SN}

2. Run policy to obtain new observations {Sy 11, Sny+2, = SN+ M)
* Note: time indices and states here may not continue from initial data

3. Use humans to label data by providing actions for new

observations, {ay i1, - Ansp—1)
* This creates another data set, D; =
{SN+1 Ant1, SN+2) ANt2 ) ANt M—1) SN+ M)
4. Combine two datasets, D; « D; U D;
* Go back to first step




Challenges

 Non-Markovian behaviour
* Perhaps augment state/observation space to include some history
* Use neural networks that implicitly capture time series data: RNNs/LSTMs

e Unnatural data collection

 Humans are probably not very good at collecting correction data in this
manner

* |nconsistencies in human action




Addressing Drift

* Main goal: Teach system to correct errors

 Explicitly demonstrate corrections (DAgger)

* During demonstration, add noise to “force” mistakes, and see how humans
correct them

* Ask humans to intentionally make mistakes

* Prior knowledge and heuristics
 Example: Learn from stabilizing controller




Imitation Learning Tricks

e Common neural network architectures

* LSTM —since we have time-series data
 CNN —usually in combination with LSTM, if the observations are images

e Simplify action space:
* Driving example: action space simplified to {left, centre, right}
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* Inverse reinforcement learning Rightcamera
* Learn goal, instead of policy, from data
* Use reinforcement learning to learn to achieve the same goal
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Imitation Learning Drawbacks

* Very small amount of data — challenging for training deep neural
networks

* Humans are not very good at providing some kinds of actions

* Quadrotor motor speed
* Non-humanoid machines

* Hard to perform better at tasks humans are not very good at




Reinforcement Learning

* Humans can learn without imitation
* Given goal/task
* Try an initial strategy
* See how well the task is performed
e Adjust strategy next time

* Reinforcement learning agent
* Given goal/task in the form of reward function r(s, a)
« Start with initial policy mg(a|s); execute policy
* Obtain sum of rewards, )., 7(s¢, a;)
* Improve policy by updating 8, based on rewards




RL vs. Other ML Paradigms

* No supervisor

e Sequential data in time

* Reward feedback is obtained after a long time
* Many actions combined together will receive reward
* Actions are dependent on each other

* In robotics: lack of data




