
Imitation	Learning
CMPT	419/983

Mo	Chen
SFU	Computing	Science

28/10/2019

Outline

• Markov	Decision	Process

• Imitation	Learning

Markov	Decision	Process

• An	MDP	with	a	particular	policy	results	in	a	
Markov	chain:	𝑝 𝑠#$% 𝑠#, 𝑎# , 𝑎#~𝜋* 𝑎#|𝑠#

read	
paper

YouTube

codemath write	
paper

robot	
expt.

sleep

0.1

0.9

0.9 0.1

0.9

0.1 0.2

0.8 0.5

0.5

State	space	includes
• Reading	paper
• Doing	math
• Coding
• Doing	robotic	experiments
• Watching	YouTube
• Writing	paper
• Sleeping

Transition	probabilities

𝒯 =

0.1 0.9
0.1 0.9

0.2 0.8
0.5 0.5
0.9 0.1

1
1

Extensions	of	Problem	Setup

• Partially	observability
• Partially	Observable	Markov	Decision	Process	(POMDP)
• State	not	fully	known;	instead,	act	based	on	observations

• Policy:	𝜋* 𝑎|𝑜
• In	this	class,	state	𝑠 will	be	synonymous	with	observation	𝑜.

𝑎#

𝑠# 𝑠#$%
𝑝 𝑠#$% 𝑠#, 𝑎# 𝑠#$6

𝑎#$%

𝑝 𝑠#$% 𝑠#, 𝑎#

𝑜# 𝑜#$%

Reinforcement	Learning	Objective

• Given:	an	MDP	with	state	space	𝒮,	action	space	𝒜,	transition	
probabilities	𝒯,	and	reward	function	𝑟 𝑠, 𝑎

• Objective:	Maximize	expected	discounted	sum	of	rewards	(“return”)

maximize
@A

𝔼 C 𝛾#𝑟 𝑠#, 𝑎#

E

#FG
• 𝛾 ∈ 0,1 :	discount	factor	– larger	roughly	means	“far-sighted”

• Prioritizes	immediate	rewards
• 𝛾 < 1 avoids	infinite	rewards;	𝛾 = 1 is	possible	if	all	sequences	are	finite

• Constraints:	often	implicit
• Subject	to	transition	matrix	𝒯 (system	dynamics)

Reinforcement	Learning	Objective

• Given:	an	MDP	with	state	space	𝒮,	action	space	𝒜,	transition	
probabilities	𝒯,	and	reward	function	𝑟 𝑠, 𝑎

• Objective:	Maximize	expected	discounted	sum	of	rewards	(“return”)

maximize
@A

𝔼 C 𝛾#𝑟 𝑠#, 𝑎#

E

#FG
• 𝛾 ∈ 0,1 :	discount	factor	– larger	roughly	means	“far-sighted”

• Prioritizes	immediate	rewards
• 𝛾 < 1 avoids	infinite	rewards;	𝛾 = 1 is	possible	if	all	sequences	are	finite

• Constraints:	often	implicit
• Subject	to	transition	matrix	𝒯 (system	dynamics)

Reinforcement	Learning	Objective

• Given:	an	MDP	with	state	space	𝒮,	action	space	𝒜,	transition	
probabilities	𝒯,	and	reward	function	𝑟 𝑠, 𝑎

• Objective:	Maximize	expected	discounted	sum	of	rewards	(“return”)

maximize
@A

𝔼 C 𝛾#𝑟 𝑠#, 𝑎#

E

#FG
• 𝛾 ∈ 0,1 :	discount	factor	– larger	roughly	means	“far-sighted”

• Prioritizes	immediate	rewards
• 𝛾 < 1 avoids	infinite	rewards;	𝛾 = 1 is	possible	if	all	sequences	are	finite

• Constraints:	often	implicit
• Subject	to	transition	matrix	𝒯 (system	dynamics)

Reinforcement	Learning	Objective

• Given:	an	MDP	with	state	space	𝒮,	action	space	𝒜,	transition	probabilities	
𝒯,	and	reward	function	𝑟 𝑠, 𝑎

• Objective:	Maximize	expected	discounted	sum	of	rewards	(“return”)

maximize
@!

𝔼 C 𝛾#𝑟 𝑠#, 𝑎#

E

#FG
• 𝛾 ∈ 0,1 :	discount	factor	– larger	roughly	means	“far-sighted”

• Prioritizes	immediate	rewards
• 𝛾 < 1 avoids	infinite	rewards;	𝛾 = 1 is	possible	if	all	sequences	are	finite

• Constraints:	now	incorporated	into	the	reward	function
• Only	constraint	(usually	implicit):	subject	to	transition	matrix	𝒯 (system	dynamics)

Markov	Decision	Process

• An	MDP	with	a	particular	policy	results	in	a	
Markov	chain:	𝑝 𝑠#$% 𝑠#, 𝑎# , 𝑎#~𝜋* 𝑎#|𝑠#

1

−5

22 104

10

0.1

0.9

0.9 0.1

0.9

0.1 0.2

0.8 0.5

0.5

Reward	function:	𝑟 𝑠
• In	general,	also	depends	

on	action

State	space	includes
• Reading	paper
• Doing	math
• Coding
• Doing	robotic	experiments
• Watching	YouTube
• Writing	paper
• Sleeping

Transition	probabilities

𝒯 =

0.1 0.9
0.1 0.9

0.2 0.8
0.5 0.5
0.9 0.1

1
1

Markov	Decision	Process

• An	MDP	with	a	particular	policy	results	in	a	
Markov	chain:	𝑝 𝑠#$% 𝑠#, 𝑎# , 𝑎#~𝜋* 𝑎#|𝑠#

1

−5

22 104

10

0.5

0.5

0.1 0.9

0.5

0.5 0.5

0.5 0.5

0.5

Reward	function:	𝑟 𝑠
• In	general,	also	depends	

on	action	
• Better	policy	à

different	Markov	chain	
à different	reward

State	space	includes
• Reading	paper
• Doing	math
• Coding
• Doing	robotic	experiments
• Watching	YouTube
• Writing	paper
• Sleeping

Transition	probabilities

𝒯 =

0.5 0.5
0.5 0.5

0.5 0.5
0.5 0.5
0.1 0.9

1
1

Reinforcement	Learning	and	Optimal	Control

• Reinforcement	Learning

maximize
@A

𝔼 C 𝛾#𝑟 𝑠#, 𝑎#

E

#FG

• Dynamics	constraint	is	implicit
• And	not	necessary	needed

• Typically,	no	other	explicit	
constraints
• Problem	set	up	captured	entirely	
in	the	reward
• Probabilistic

• Optimal	control

• Explicit	constraints
• Can	be	continuous	time
• Not	necessarily	probabilistic

minimize 𝑙 𝑥 𝑡P , 𝑡P + R 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
#V

G
subject to 𝑥̇ 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

𝑥 𝑡 ∈ ℝc, 𝑢 𝑡 ∈ ℝd, 𝑥 0 = 𝑥G

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0

Imitation	Learning

• Collect	data	through	expert	demonstration	– sequence	of	states	and	
actions,	 𝑠G, 𝑎G, 𝑠%, 𝑎%, … , 𝑠hi%, 𝑎hi%, 𝑠h
• Note:	Expert	may	not	be	solving	maximize

@
𝔼 ∑ 𝛾#𝑟 𝑠#, 𝑎#

E
#FG

• Learn	𝜋* 𝑎#|𝑠# from	data	via	regression
• Minimize	𝔼 ∑ 𝑎# − 𝜋* 𝑎#|𝑠#

Imitation	Learning

• Collect	data	through	expert	demonstration	– sequence	of	states	and	
actions,	 𝑠G, 𝑎G, 𝑠%, 𝑎%, … , 𝑠hi%, 𝑎hi%, 𝑠h
• Note:	Expert	may	not	be	solving	maximize

@
𝔼 ∑ 𝛾#𝑟 𝑠#, 𝑎#

E
#FG

• Learn	𝜋* 𝑎#|𝑠# from	data	via	regression
• Minimize	𝔼 ∑ 𝑎# − 𝜋* 𝑎#|𝑠#

Imitation	Learning

• Collect	data	through	expert	demonstration	– sequence	of	states	and	
actions,	 𝑠G, 𝑎G, 𝑠%, 𝑎%, … , 𝑠hi%, 𝑎hi%, 𝑠h
• Note:	Expert	may	not	be	solving	maximize

@
𝔼 ∑ 𝛾#𝑟 𝑠#, 𝑎#

E
#FG

• Learn	𝜋* 𝑎#|𝑠# from	data	via	regression
• Minimize	𝔼 ∑ 𝑎# − 𝜋* 𝑎#|𝑠#

• Usually	doesn’t	work	due	to	“drift”:	small	mistakes	add	up,	and	takes	
the	system	far	from	trained	states
• Sometimes,	there	can	be	“tricks”	to	make	imitation	learning	work!

Autonomous	Driving	Through	Imitation

Bojarski	‘16.	“End	to	End	Learning	for	Self-Driving	Cars,”	CVPR	2016

Training:

Testing:

Dataset	Aggregation

• Imitation	learning	drawback:
• Distribution	of	observations	in	training	is	different	from	distribution	of	
observations	during	test
• Some	states	have	never	been	seen	during	demonstration

• How	to	make	the	distributions	equal?
• Train	perfect	policy
• Change	data	set	à DAgger (Dataset	Aggregation)

Dataset	Aggregation	(DAgger)	Algorithm

1. Train	policy	from	some	initial	data,	𝒟l =
𝑠G, 𝑎G, 𝑠%, 𝑎%, … , 𝑠hi%, 𝑎hi%, 𝑠h

2. Run	policy	to	obtain	new	observations	 𝑠h$%, 𝑠h$6, … , 𝑠h$m
• Note:	time	indices	and	states	here	may	not	continue	from	initial	data

3. Use	humans	to	label	data	by	providing	actions	for	new	
observations,	 𝑎h$%, … , 𝑎h$mi%
• This	creates	another	data	set,	𝒟nl =

𝑠h$%, 𝑎h$%, 𝑠h$6, 𝑎h$6 … , 𝑎h$mi%, 𝑠h$m

4. Combine	two	datasets,	𝒟l ← 𝒟l ∪ 𝒟nl
• Go	back	to	first	step

Challenges

• Non-Markovian	behaviour
• Perhaps	augment	state/observation	space	to	include	some	history
• Use	neural	networks	that	implicitly	capture	time	series	data:	RNNs/LSTMs

• Unnatural	data	collection
• Humans	are	probably	not	very	good	at	collecting	correction	data	in	this	
manner

• Inconsistencies	in	human	action

Addressing	Drift

• Main	goal:	Teach	system	to	correct	errors

• Explicitly	demonstrate	corrections	(DAgger)

• During	demonstration,	add	noise	to	“force”	mistakes,	and	see	how	humans	
correct	them

• Ask	humans	to	intentionally	make	mistakes

• Prior	knowledge	and	heuristics
• Example:	Learn	from	stabilizing	controller

yelp

Imitation	Learning	Tricks

• Common	neural	network	architectures
• LSTM	– since	we	have	time-series	data
• CNN	– usually	in	combination	with	LSTM,	if	the	observations	are	images

• Simplify	action	space:
• Driving	example:	action	space	simplified	to	{left,	centre,	right}

• Clever	data	collection
• Driving	example:	side	cameras

• Inverse	reinforcement	learning
• Learn	goal,	instead	of	policy,	from	data
• Use	reinforcement	learning	to	learn	to	achieve	the	same	goal

Imitation	Learning	Drawbacks

• Very	small	amount	of	data	– challenging	for	training	deep	neural	
networks

• Humans	are	not	very	good	at	providing	some	kinds	of	actions
• Quadrotor	motor	speed
• Non-humanoid	machines

• Hard	to	perform	better	at	tasks	humans	are	not	very	good	at

Reinforcement	Learning

• Humans	can	learn	without	imitation
• Given	goal/task
• Try	an	initial	strategy
• See	how	well	the	task	is	performed
• Adjust	strategy	next	time

• Reinforcement	learning	agent
• Given	goal/task	in	the	form	of	reward	function	𝑟 𝑠, 𝑎
• Start	with	initial	policy	𝜋* 𝑎 𝑠 ;	execute	policy
• Obtain	sum	of	rewards,	∑ 𝑟 𝑠#, 𝑎##
• Improve	policy	by	updating	𝜃,	based	on	rewards

RL	vs.	Other	ML	Paradigms

• No	supervisor

• Sequential	data	in	time

• Reward	feedback	is	obtained	after	a	long	time
• Many	actions	combined	together	will	receive	reward
• Actions	are	dependent	on	each	other

• In	robotics:	lack	of	data

