CMPT 419/983

Mo Chen

SFU Computing Science

28/10/2019

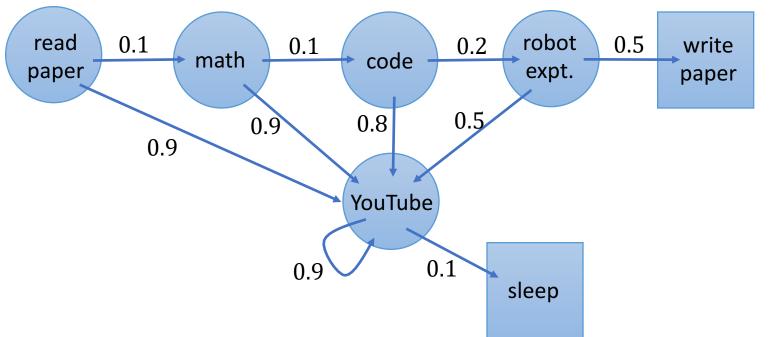
Outline

Markov Decision Process

• Imitation Learning

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t,a_t)$, $a_t \sim \pi_{\theta}(a_t|s_t)$



State space includes

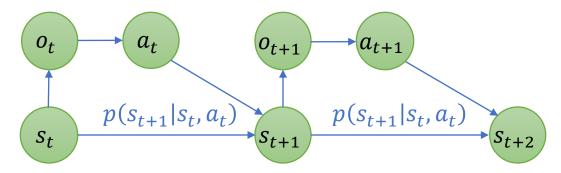
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

$$\mathcal{T} = \begin{bmatrix} & 0.1 & & 0.9 & \\ & 0.1 & & 0.9 & \\ & & 0.2 & 0.8 & \\ & & & 0.5 & 0.5 & \\ & & & 0.9 & & 0.1 \\ & & & & 1 & \\ & & & & 1 \end{bmatrix}$$

Extensions of Problem Setup

- Partially observability
 - Partially Observable Markov Decision Process (POMDP)
 - State not fully known; instead, act based on observations



- Policy: $\pi_{\theta}(a|o)$
- In this class, state s will be synonymous with observation o.

• Given: an MDP with state space S, action space \mathcal{A} , transition probabilities \mathcal{T} , and reward function r(s,a)

• Objective: Maximize $\sum_{\pi_{\theta}}^{\infty} sum \ of \ rewards \ ("return")$

• Given: an MDP with state space S, action space A, transition probabilities T, and reward function r(s,a)

• Objective: Maximize $\operatorname{discounted sum of rewards}$ ("return")

$$\underset{\pi_{\theta}}{\text{maximize}} \quad \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

- Given: an MDP with state space S, action space \mathcal{A} , transition probabilities \mathcal{T} , and reward function r(s,a)
- Objective: Maximize expected discounted sum of rewards ("return")

$$\underset{\pi_{\theta}}{\text{maximize }} \mathbb{E} \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

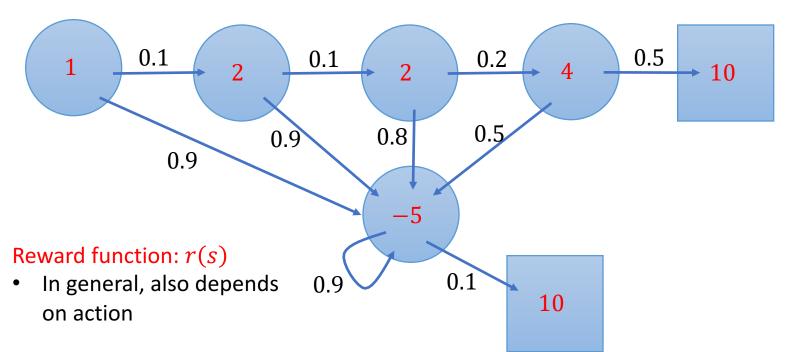
- Given: an MDP with state space S, action space A, transition probabilities T, and reward function r(s,a)
- Objective: Maximize expected discounted sum of rewards ("return")

$$\underset{\pi_{\theta}}{\text{maximize }} \mathbb{E} \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

- $\gamma \in (0,1]$: discount factor larger roughly means "far-sighted"
 - Prioritizes immediate rewards
 - $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite
- Constraints: now incorporated into the reward function
 - Only constraint (usually implicit): subject to transition matrix \mathcal{T} (system dynamics)

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t,a_t)$, $a_t \sim \pi_{\theta}(a_t|s_t)$



State space includes

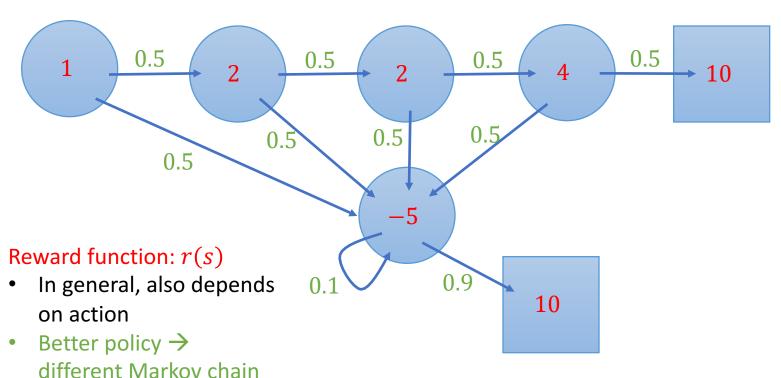
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

$$\mathcal{T} = \begin{bmatrix} & 0.1 & & 0.9 & \\ & 0.1 & & 0.9 & \\ & & 0.2 & 0.8 & \\ & & & 0.5 & 0.5 & \\ & & & 0.9 & & 0.1 \\ & & & & 1 & \\ & & & & 1 \end{bmatrix}$$

Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1}|s_t,a_t)$, $a_t \sim \pi_{\theta}(a_t|s_t)$



→ different reward

State space includes

- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities

$$\mathcal{T} = \begin{bmatrix} & 0.5 & & & 0.5 & & \\ & & 0.5 & & 0.5 & & \\ & & & 0.5 & 0.5 & & \\ & & & 0.5 & 0.5 & & \\ & & & 0.1 & & 0.9 \\ & & & & 1 & & \\ & & & & 1 \end{bmatrix}$$

Reinforcement Learning and Optimal Control

Reinforcement Learning

$$\underset{\pi_{\theta}}{\text{maximize }} \mathbb{E} \sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t})$$

- Dynamics constraint is implicit
 - And not necessary needed
- Typically, no other explicit constraints
- Problem set up captured entirely in the reward
- Probabilistic

• Optimal control minimize $l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$ subject to $\dot{x}(t) = f(x(t), u(t))$ $g(x(t), u(t)) \ge 0$ $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$

- Explicit constraints
- Can be continuous time
- Not necessarily probabilistic

- Collect data through expert demonstration sequence of states and actions, $\{s_0, a_0, s_1, a_1, \dots, s_{N-1}, a_{N-1}, s_N\}$
 - Note: Expert may not be solving maximize $\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$

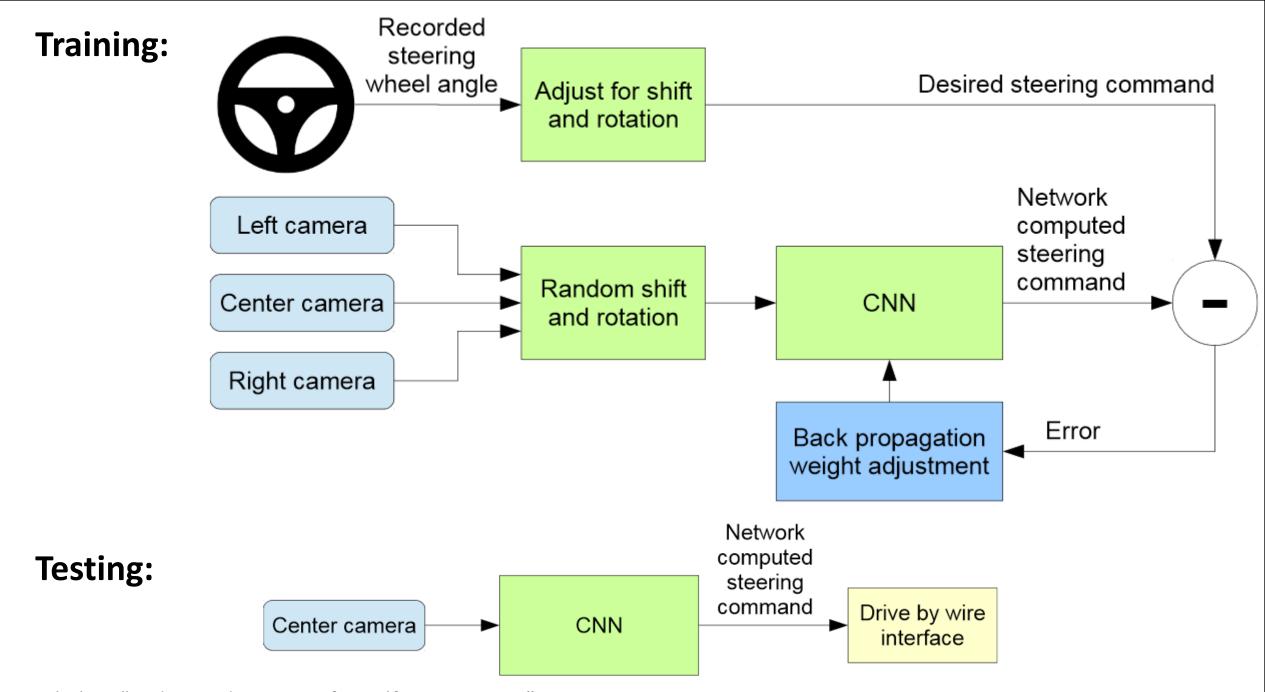
- Learn $\pi_{\theta}(a_t|s_t)$ from data via regression
 - Minimize $\mathbb{E}[\sum ||a_t \pi_{\theta}(a_t|s_t)||]$

- Collect data through expert demonstration sequence of states and actions, $\{s_0, a_0, s_1, a_1, \dots, s_{N-1}, a_{N-1}, s_N\}$
 - Note: Expert may not be solving maximize $\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$

- Learn $\pi_{\theta}(a_t|s_t)$ from data via regression
 - Minimize $\mathbb{E}[\sum ||a_t \pi_{\theta}(a_t|s_t)||]$

- Collect data through expert demonstration sequence of states and actions, $\{s_0, a_0, s_1, a_1, \dots, s_{N-1}, a_{N-1}, s_N\}$
 - Note: Expert may not be solving maximize $\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$
- Learn $\pi_{\theta}(a_t|s_t)$ from data via regression
 - Minimize $\mathbb{E}(\sum ||a_t \pi_{\theta}(a_t|s_t)||)$
- Usually doesn't work due to "drift": small mistakes add up, and takes the system far from trained states
 - Sometimes, there can be "tricks" to make imitation learning work!

Autonomous Driving Through Imitation



Bojarski '16. "End to End Learning for Self-Driving Cars," CVPR 2016

Dataset Aggregation

- Imitation learning drawback:
 - Distribution of observations in training is different from distribution of observations during test
 - Some states have never been seen during demonstration



- How to make the distributions equal?
 - Train perfect policy
 - Change data set → DAgger (Dataset Aggregation)

Dataset Aggregation (DAgger) Algorithm

- 1. Train policy from some initial data, $\mathcal{D}_i = \{s_0, a_0, s_1, a_1, \dots, s_{N-1}, a_{N-1}, s_N\}$
- 2. Run policy to obtain new observations $\{s_{N+1}, s_{N+2}, ..., s_{N+M}\}$
 - Note: time indices and states here may not continue from initial data
- 3. Use humans to label data by providing actions for new observations, $\{a_{N+1}, ..., a_{N+M-1}\}$
 - This creates another data set, $\overline{\mathcal{D}}_i = \{s_{N+1}, a_{N+1}, s_{N+2}, a_{N+2} \dots, a_{N+M-1}, s_{N+M}\}$
- 4. Combine two datasets, $\mathcal{D}_i \leftarrow \mathcal{D}_i \cup \overline{\mathcal{D}}_i$
 - Go back to first step

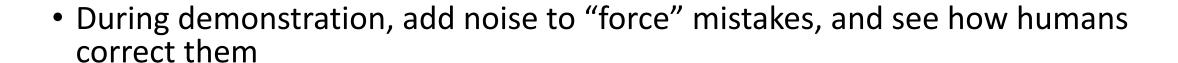
Challenges

- Non-Markovian behaviour
 - Perhaps augment state/observation space to include some history
 - Use neural networks that implicitly capture time series data: RNNs/LSTMs

- Unnatural data collection
 - Humans are probably not very good at collecting correction data in this manner
- Inconsistencies in human action

Addressing Drift

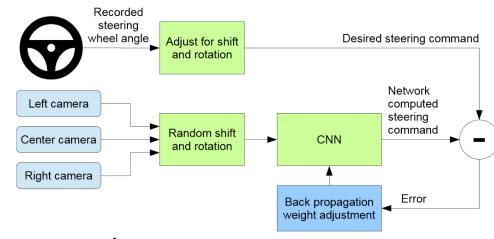
- Main goal: Teach system to correct errors
- Explicitly demonstrate corrections (DAgger)



- Ask humans to intentionally make mistakes
- Prior knowledge and heuristics
 - Example: Learn from stabilizing controller

Imitation Learning Tricks

- Common neural network architectures
 - LSTM since we have time-series data
 - CNN usually in combination with LSTM, if the observations are images
- Simplify action space:
 - Driving example: action space simplified to {left, centre, right}
- Clever data collection
 - Driving example: side cameras
- Inverse reinforcement learning
 - Learn goal, instead of policy, from data
 - Use reinforcement learning to learn to achieve the same goal



Imitation Learning Drawbacks

 Very small amount of data – challenging for training deep neural networks

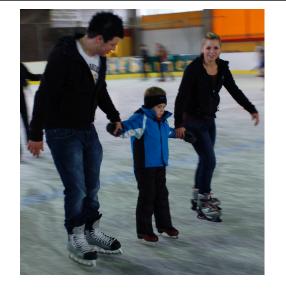
- Humans are not very good at providing some kinds of actions
 - Quadrotor motor speed
 - Non-humanoid machines

Hard to perform better at tasks humans are not very good at

Reinforcement Learning

- Humans can learn without imitation
 - Given goal/task
 - Try an initial strategy
 - See how well the task is performed
 - Adjust strategy next time

- Given goal/task in the form of reward function r(s,a)
- Start with initial policy $\pi_{\theta}(a|s)$; execute policy
- Obtain sum of rewards, $\sum_t r(s_t, a_t)$
- Improve policy by updating θ , based on rewards



RL vs. Other ML Paradigms

No supervisor

Sequential data in time

- Reward feedback is obtained after a long time
 - Many actions combined together will receive reward
 - Actions are dependent on each other

In robotics: lack of data