Imitation Learning

CMPT 419/983
Mo Chen
SFU Computing Science
28/10/2019
Outline

• Markov Decision Process

• Imitation Learning
Markov Decision Process

- An MDP with a particular policy results in a Markov chain:
 \[p(s_{t+1} | s_t, a_t), a_t \sim \pi(\theta)(a_t | s_t) \]

State space includes:
- Reading paper
- Doing math
- Coding
- Doing robotic experiments
- Watching YouTube
- Writing paper
- Sleeping

Transition probabilities:
\[
\mathcal{T} = \begin{bmatrix}
0.1 & 0.9 \\
0.1 & 0.9 \\
0.2 & 0.8 \\
0.5 & 0.5 \\
0.9 & 0.1 \\
1 & 1
\end{bmatrix}
\]
Extensions of Problem Setup

• Partially observability
 • Partially Observable Markov Decision Process (POMDP)
 • State not fully known; instead, act based on observations

• Policy: $\pi_\theta(a|\omega)$
• In this class, state s will be synonymous with observation ω.
Reinforcement Learning Objective

• Given: an MDP with state space S, action space A, transition probabilities T, and reward function $r(s, a)$

• Objective: Maximize sum of rewards ("return")

$$\max_{\mathcal{A}} \mathbb{E}_{\gamma} \sum_{t=0}^{\infty} r(s_t, a_t)$$

• Constraints: often implicit

• Subject to transition matrix T (system dynamics)

• Discount factor: larger roughly means "far-sighted"; $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite
Reinforcement Learning Objective

• Given: an MDP with state space \mathcal{S}, action space \mathcal{A}, transition probabilities \mathcal{T}, and reward function $r(s, a)$

• Objective: Maximize discounted sum of rewards ("return")

$$\max_{\pi_\theta} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

• Constraints: often implicit

• Subject to transition matrix \mathcal{T} (system dynamics)
Reinforcement Learning Objective

• Given: an MDP with state space S, action space A, transition probabilities T, and reward function $r(s, a)$

• Objective: Maximize expected discounted sum of rewards ("return")

$$\max_{\pi_\theta} \mathbb{E} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

• $\gamma \in (0, 1]$: discount factor – larger roughly means "far-sighted".

• Prioritizes immediate rewards

• $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite.

• Constraints: often implicit

• Subject to transition matrix T (system dynamics)
Reinforcement Learning Objective

• Given: an MDP with state space S, action space A, transition probabilities T, and reward function $r(s, a)$

• Objective: Maximize expected discounted sum of rewards (“return”)

$$\maximize_{\pi_{\theta}} \mathbb{E} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$$

 • $\gamma \in (0,1]$: discount factor – larger roughly means “far-sighted”
 • Prioritizes immediate rewards
 • $\gamma < 1$ avoids infinite rewards; $\gamma = 1$ is possible if all sequences are finite

• Constraints: now incorporated into the reward function
 • Only constraint (usually implicit): subject to transition matrix T (system dynamics)
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: \(p(s_{t+1} | s_t, a_t), a_t \sim \pi_\theta(a_t | s_t) \)

State space includes
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Reward function: \(r(s) \)
• In general, also depends on action

Transition probabilities
\[
\mathcal{T} = \begin{bmatrix}
0.1 & 0.9 \\
0.1 & 0.9 \\
0.2 & 0.8 \\
0.5 & 0.5 \\
0.9 & 0.1 \\
1 & 1
\end{bmatrix}
\]
Markov Decision Process

• An MDP with a particular policy results in a Markov chain: $p(s_{t+1} | s_t, a_t), a_t \sim \pi_{\theta}(a_t | s_t)$

State space includes:
• Reading paper
• Doing math
• Coding
• Doing robotic experiments
• Watching YouTube
• Writing paper
• Sleeping

Reward function: $r(s)$
• In general, also depends on action
• Better policy \rightarrow different Markov chain \rightarrow different reward

Transition probabilities

$$T = \begin{bmatrix}
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 & 0.9 \\
0.1 & 0.1 & 0.1 & 1 \\
0.9 & 0.9 & 0.9 & 1 \\
\end{bmatrix}$$
Reinforcement Learning and Optimal Control

• Reinforcement Learning
 maximize $\pi_\theta \mathbb{E} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)$

 • Dynamics constraint is implicit
 • And not necessary needed
 • Typically, no other explicit constraints
 • Problem set up captured entirely in the reward
 • Probabilistic

• Optimal control
 minimize $u(\cdot) \quad l(x(t_f), t_f) + \int_0^{t_f} c(x(t), u(t), t) dt$

 subject to $\dot{x}(t) = f(x(t), u(t))$
 $g(x(t), u(t)) \geq 0$
 $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$

 • Explicit constraints
 • Can be continuous time
 • Not necessarily probabilistic
Imitation Learning

• Collect data through expert demonstration – sequence of states and actions, \(\{s_0, a_0, s_1, a_1, \ldots, s_{N-1}, a_{N-1}, s_N\} \)
 • Note: Expert may not be solving \(\max \sum_{\pi} \mathbb{E} \gamma^t r(s_t, a_t) \)

• Learn \(\pi_\theta(a_t|s_t) \) from data via regression
 • Minimize \(\mathbb{E} [\sum ||a_t - \pi_\theta(a_t|s_t)||] \)
Imitation Learning

• Collect data through expert demonstration – sequence of states and actions, \(\{s_0, a_0, s_1, a_1, \ldots, s_{N-1}, a_{N-1}, s_N\} \)
 • Note: Expert may not be solving maximize \(\mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \)

• Learn \(\pi_\theta (a_t | s_t) \) from data via regression
 • Minimize \(\mathbb{E} \left[\sum ||a_t - \pi_\theta (a_t | s_t)|| \right] \)
Imitation Learning

• Collect data through expert demonstration – sequence of states and actions, \(\{s_0, a_0, s_1, a_1, \ldots, s_{N-1}, a_{N-1}, s_N\} \)
 • Note: Expert may not be solving maximize \(\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right] \)

• Learn \(\pi_\theta (a_t | s_t) \) from data via regression
 • Minimize \(\mathbb{E}(\sum ||a_t - \pi_\theta (a_t | s_t)||) \)

• Usually doesn’t work due to “drift”: small mistakes add up, and takes the system far from trained states
 • Sometimes, there can be “tricks” to make imitation learning work!
Autonomous Driving Through Imitation
Dataset Aggregation

• Imitation learning drawback:
 • Distribution of observations in training is different from distribution of observations during test
 • Some states have never been seen during demonstration

• How to make the distributions equal?
 • Train perfect policy
 • Change data set → DAgger (Dataset Aggregation)
Dataset Aggregation (DAgger) Algorithm

1. Train policy from some initial data, $\mathcal{D}_i =$
 \[\{s_0, a_0, s_1, a_1, ..., s_{N-1}, a_{N-1}, s_N\} \]

2. Run policy to obtain new observations $\{s_{N+1}, s_{N+2}, ..., s_{N+M}\}$
 - Note: time indices and states here may not continue from initial data

3. Use humans to label data by providing actions for new observations, $\{a_{N+1}, ..., a_{N+M-1}\}$
 - This creates another data set, $\mathcal{D}_i =$
 \[\{s_{N+1}, a_{N+1}, s_{N+2}, a_{N+2} ..., a_{N+M-1}, s_{N+M}\} \]

4. Combine two datasets, $\mathcal{D}_i \leftarrow \mathcal{D}_i \cup \overline{\mathcal{D}}_i$
 - Go back to first step
Challenges

• Non-Markovian behaviour
 • Perhaps augment state/observation space to include some history
 • Use neural networks that implicitly capture time series data: RNNs/LSTMs

• Unnatural data collection
 • Humans are probably not very good at collecting correction data in this manner

• Inconsistencies in human action
Addressing Drift

- Main goal: Teach system to correct errors
- Explicitly demonstrate corrections (DAgger)
- During demonstration, add noise to “force” mistakes, and see how humans correct them
- Ask humans to intentionally make mistakes
- Prior knowledge and heuristics
 - Example: Learn from stabilizing controller
Imitation Learning Tricks

• Common neural network architectures
 • LSTM – since we have time-series data
 • CNN – usually in combination with LSTM, if the observations are images

• Simplify action space:
 • Driving example: action space simplified to \{left, centre, right\}

• Clever data collection
 • Driving example: side cameras

• Inverse reinforcement learning
 • Learn goal, instead of policy, from data
 • Use reinforcement learning to learn to achieve the same goal
Imitation Learning Drawbacks

• Very small amount of data – challenging for training deep neural networks

• Humans are not very good at providing some kinds of actions
 • Quadrotor motor speed
 • Non-humanoid machines

• Hard to perform better at tasks humans are not very good at
Reinforcement Learning

• Humans can learn without imitation
 • Given goal/task
 • Try an initial strategy
 • See how well the task is performed
 • Adjust strategy next time

• Reinforcement learning agent
 • Given goal/task in the form of reward function $r(s, a)$
 • Start with initial policy $\pi_{\theta}(a|s)$; execute policy
 • Obtain sum of rewards, $\sum_t r(s_t, a_t)$
 • Improve policy by updating θ, based on rewards
RL vs. Other ML Paradigms

• No supervisor

• Sequential data in time

• Reward feedback is obtained after a long time
 • Many actions combined together will receive reward
 • Actions are dependent on each other

• In robotics: lack of data