Dynamic Programming

CMPT 419/983

Mo Chen

SFU Computing Science

7/10/2019

Dynamic Programming Outline

Continuous time Hamilton-Jacobi equation

Continuous linear quadratic regulator

Optimal Control: Types of Solutions

minimize
$$l(T, x(T)) + \int_0^T c(x(t), u(t), t) dt$$

subject to $\dot{x}(t) = f(x(t), u(t))$
 $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$

- Open-loop control
 - Scalable, but errors will add up
- Closed-loop control
 - Find u(t,x) for $t \in [0,T], x \in \mathbb{R}^n$
 - Not scalable, but robust
 - "Special" techniques needed (eg. Reinforcement learning) for large n
- Receding horizon control:
 - Has features of both open- and closed-loop control

Optimal Control Problem

minimize
$$l(T, x(T)) + \int_0^T c(x(t), u(t), t) dt$$
 Cost functional, $J(x(\cdot), u(\cdot))$ subject to $\dot{x}(t) = f(x(t), u(t))$ Dynamic model $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$

Dynamic Programming

- Pros
 - Globally optimal solutions
 - Closed-loop (state feedback) control: u = u(t, x)
 - More robust
- Cons
 - Poor scalability except special cases

Optimal Trajectory

Suppose black trajectory is optimal

- Then $J_1 \leq J_2, J_3$
- Let $J_{bd}^* = J_1$

Principle of Optimality

• Optimal cost: J_{bd}^*

Principle of Optimality

• Any truncated optimal policy/trajectory is optimal for any "tail" subproblem \hat{J}_{cd}

• Black path \widetilde{cd} is optimal

•
$$J_{bd}^* = \tilde{J}_{bc} + \tilde{J}_{cd}$$

$$\tilde{J}_{bc} \coloneqq \int_0^{t_c} c(x(t), u(t), t) dt$$

- Proof:
 - Suppose not, then there is some other path from c to d with cost \hat{J}_{cd} such that $\hat{J}_{cd} < \tilde{J}_{cd}$
 - This means $J_{bd}^* = \tilde{J}_{bc} + \tilde{J}_{cd} > \tilde{J}_{bc} + \hat{J}_{cd}$
 - Therefore, the original trajectory \overline{bd} is not optimal \leftarrow contradiction!

Applying the Principle of Optimality

are optimal
$$\begin{array}{l} \bullet \text{ Then,} \\ J_{ab_1}^* + J_{b_1d}^*, \\ \tilde{J}_{ab_2} + J_{b_2d}^*, \\ \tilde{J}_{ab_3} + J_{b_3d}^*, \\ \tilde{J}_{ab_1} & \tilde{J}_{ab_2} \\ \end{array}$$

 $J_{b_1d}^*$

 $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $x(0) = x_0$

Running cost
$$u(\cdot) = \int_{0}^{T} c(x(t), u(t)) dt$$
 Cost functional, $J(x(\cdot), u(\cdot))$ subject to $\dot{x}(t) = f(x(t), u(t))$ Dynamic model

• Let
$$J(t, x(t)) = l(T, x(T)) + \int_t^T c(x(t), u(t))dt$$

- $V(0, x(0)) = \min_{u(\cdot)} J(0, x(0))$ is what we want
- Strategy:
 - make a "discrete time" argument with Δt
 - Let $\Delta t \rightarrow 0$

• Let
$$J(t,x(t)) = \int_t^T c\big(x(s),u(s)\big)ds + l\big(x(T)\big)$$
 "Cost to go" b_1 $J_{b_2d}^*$ $J_{b_2d}^*$ $J_{b_3d}^*$ $J_{ab_2}^*$ $J_{b_3d}^*$ Write out time interval explicitly for clarity "Value function", " $J^*(t,x(t))$ " $J_{ab_3}^*$

Dynamic programming principle:

$$V(t,x(t)) = \min_{u_{[t,t+\delta]}(\cdot)} \left[\int_{t}^{t+\delta} c(x(s),u(s))ds + V(t+\delta,x(t+\delta)) \right]$$

- Approximate integral and Taylor expand $V(t + \delta, x(t + \delta))$
- Derive Hamilton-Jacobi partial differential equation (HJ PDE)

• Approximations for small δ :

$$V(t,x(t)) = \min_{u_{[t,t+\delta]}(\cdot)} \left[\int_{t}^{t+\delta} c(x(s),u(s))ds + V(t+\delta,x(t+\delta)) \right]$$

$$c(x(t),u(t))\delta$$

$$V(t,x(t)) + \left(\frac{\partial V}{\partial x}\right)^{\mathsf{T}} \delta f(x(t),u(t)) + \frac{\partial V}{\partial t} \delta$$

• Omit t dependence...

$$V(t,x) = \min_{u} \left[c(x,u)\delta + V(t,x) + \left(\frac{\partial V}{\partial x}\right)^{\mathsf{T}} \delta f(x,u) + \frac{\partial V}{\partial t} \delta \right]$$
Assume constant $u_{[t,t+\delta]} \to \mathsf{Optimization}$ over a vector, not a function!

• V(t,x) does not depend on u

$$V(t,x) = V(t,x) + \min_{u} \left[c(x,u)\delta + \left(\frac{\partial V}{\partial x}\right)^{\mathsf{T}} \delta f(x,u) + \frac{\partial V}{\partial t} \delta \right]$$

• Approximations for small δ :

$$V(t,x(t)) = \min_{u_{[t,t+\delta]}(\cdot)} \left[\int_{t}^{t+\delta} c(x(s),u(s))ds + V(t+\delta,x(t+\delta)) \right]$$

$$c(x(t),u(t))\delta$$

$$V(t,x(t)) + \left(\frac{\partial V}{\partial x}\right)^{\mathsf{T}} \delta f(x(t),u(t)) + \frac{\partial V}{\partial t} \delta$$

• Omit t dependence...

$$V(t,x) = \min_{u} \left[c(x,u)\delta + V(t,x) + \left(\frac{\partial V}{\partial x}\right)^{\mathsf{T}} \delta f(x,u) + \frac{\partial V}{\partial t} \delta \right]$$
Assume constant $u_{[t,t+\delta]} \to \mathsf{Optimization}$ over a vector, not a function!

• V(t,x) does not depend on u

$$V(t,x) = V(t,x) + \min_{u} \left[c(x,u)\delta + \left(\frac{\partial V}{\partial x}\right)^{\mathsf{T}} \delta f(x,u) + \frac{\partial V}{\partial t} \delta \right]$$

• Approximations for small δ :

$$V(t,x(t)) = \min_{u_{[t,t+\delta]}(\cdot)} \left[\int_{t}^{t+\delta} c(x(s),u(s))ds + V(t+\delta,x(t+\delta)) \right]$$

$$c(x(t),u(t))\delta$$

$$V(t,x(t)) + \left(\frac{\partial V}{\partial x}\right)^{\mathsf{T}} \delta f(x(t),u(t)) + \frac{\partial V}{\partial t} \delta$$

• Omit t dependence...

$$V(t,x) = \min_{u} \left[c(x,u)\delta + V(t,x) + \left(\frac{\partial V}{\partial x}\right)^{\mathsf{T}} \delta f(x,u) + \frac{\partial V}{\partial t} \delta \right]$$
Assume constant $u_{[t,t+\delta]} \to \mathsf{Optimization}$ over a vector, not a function!

• V(t,x) does not depend on u

$$0 = \frac{\partial V}{\partial t} + \min_{u} \left[c(x, u) + \left(\frac{\partial V}{\partial x} \right)^{\mathsf{T}} f(x, u) \right]$$

Comments

Hamilton-Jacobi partial differential equation

$$\frac{\partial V}{\partial t} + \min_{u} \left[c(x, u) + \left(\frac{\partial V}{\partial x} \right)^{\mathsf{T}} f(x, u) \right] = 0, \qquad V(T, x) = l(x)$$

- Terminology:
 - Pre-Hamiltonian: $H(x, u, \lambda) = c(x, u) + \lambda^{T} f(x, u)$
 - Hamiltonian: $H^*(x,\lambda) = c(x,u^*) + \lambda^T f(x,u^*)$ $\Rightarrow \frac{\partial V}{\partial t} + H^*(x,\lambda) = 0$

Comments

Hamilton-Jacobi partial differential equation_

$$\frac{\partial V}{\partial t} + \min_{u} \left[c(x, u) + \left(\frac{\partial V}{\partial x} \right)^{\mathsf{T}} f(x, u) \right] = 0, \qquad V(T, x) = l(x)$$

- Minimization over u is typically easy
 - Most systems are control affine: f(x, u) has the form f(x) + g(x)u
 - Control constraints are typically "box" constraints, e.g. $|u_i| \leq 1$
- PDE is solved on a grid
 - $x \in \mathbb{R}^n$ means V(t,x) is computed on an (n+1)-dimensional grid
- V(t,x) is often not differentiable (or continuous)
 - Viscosity solutions
 - · Lax Friedrichs numerical method

