Dynamic Programming

CMPT 419/983
Mo Chen

SFU Computing Science
7/10/2019

Dynamic Programming Outline

* Continuous time Hamilton-Jacobi equation

* Continuous linear quadratic regulator

Optimal Control: Types of Solutions
T
mirllli(r.slize l(T,x(T)) +J c(x(t),u(t), t)dt

0
subject to x(t) = f(x(t),u(t))
x(t) € R™M,u(t) € R™ x(0) = xg

* Open-loop control
* Scalable, but errors will add up

* Closed-loop control
* Findu(t,x) fort € [0,T], x € R"
* Not scalable, but robust
e “Special” techniques needed (eg. Reinforcement learning) for large n

* Receding horizon control:
* Has features of both open- and closed-loop control

Optimal Control Problem

Running cost
,T | 1
minimize |(7, x(T)) + f c(x(t), u(t), t)dt
0

subject to x(t) = f(x(t), u(t))
x(t) € R"u(t) € R™ x(0) = x,

Dynamic Programming

* Pros
* Globally optimal solutions

* Closed-loop (state feedback) control: u = u(t, x)
* More robust

* Cons
* Poor scalability except special cases

Optimal Trajectory

* Suppose black trajectory is optimal

Principle of Optimality

* Optimal cost: J, 4

Principle of Optimality

* Any truncated optimal policy/trajectory is optimal for any “tail”
subproblem]

« Black path cd is optimal
* Jba =Jvc tJca

jbc =
* Proof:

* Suppose not, then there is some other path from ¢ to d with cost J.4 such
that Joq < Jeq

* This means J;4 = Jpc + Jea >]~bcijcd
* Therefore, the original trajectory bd is not optimal €< contradiction!

Applying the Principle of Optimality

* Suppose b;d, b,d, b;d
are optimal

e Then,

Jab, T Jpa0) B

:ld — min]abz +]l>;2dl ’
7 /
]Clb3 +]I>;3d

Example on a Graph

Example on a Graph _Cost,

Optimal cost (“Value function”) P

Example on a Graph _Cost,

Optimal cost (“Value function”) P

Control policy

Example on a Graph _Cost,

Optimal cost (“Value function”) P

Control policy

Example on a Graph _Cost,

Optimal cost (“Value function”) P

Control policy

Example on a Graph _Cost,

Optimal cost (“Value function”) P

Control policy

Example on a Graph _Cost,

Optimal cost (“Value function”) P

Control policy

Example on a Graph _Cost,

Optimal cost (“Value function”) P

Control policy

Example on a Graph _Cost,

Optimal cost (“Value function”) P

Control policy

Optimal path

Dynamic Programming: Continuous Time

Running cost

A
| 1

T
minimize l(T,x(T)) + f c(x(t),u(t))dt
0

u(’)
subject to x(t) = f(x(t), u(t))

x(t) € R"u(t) € R™ x(0) = x,

* Let J(t, x(t)) = (T, x(T)) + ftTc(x(t),u(t))dt
* 17(0,x(0)) = Ilrll(i.gl](o,x(())) is what we want

* Strategy:
* make a “discrete time” argument with At
e letAt—> 0

Dynamic Programming: Continuous Time

°* let Jjit,x@) = JTc(x(s),u(s))dg + 1(x(T)) “Cost to go”

t

V(t,x(t)) = m1n U c(x(s),u(s))ds + l(x(T))] ' ,‘]
/ “uy* n / ’ ’
Write out time interval explicitly for clarity “Value function”, °J (t’ x(t)) 27611?3 1

* Dynamic programming principle:

+6
V(t,x(t)) = min Ut c(x(s),u(s))ds +V(t+38,x(t+9))]
t J

Uit,e+6]()

T
|

* Approximate integral and Taylor expand V(t + 6, x(t + 6))
* Derive Hamilton-Jacobi partial differential equation (HJ PDE)

Dynamic Programming: Continuous Time

e Approximations for small ¢: x(6) + 8 Cx,)

+68
V(t x(t)) = min Ut c(x(s) u(s))ds + V(t + 5, x(t+95))]

Uure, t+8

C(x(t),u(t))5

* Omit t dependence...

_ avy\' oV
V(t,x) = min [c(x, w)o +V(tx)+ (a) Sf(x,u) + Ec?]

Assume constant up, .4 5] = Optimization over a vector, not a function!

* V(t,x) does not depend on u
.

ax) flaw) +5,]

V(t,x) =V(tx)+ muin [c(x, u)d + (

Dynamic Programming: Continuous Time

e Approximations for small ¢: x(6) + 8 Cx,)

+68
V(t x(t)) = min Ut c(x(s) u(s))ds + V(t + 5, x(t+95))]

Uure, t+8

C(x(t),u(t))5

* Omit t dependence...

_ avy\' oV
V(t,x) = min [c(x, w)o +V(tx)+ (a) Sf(x,u) + Ec?]

Assume constant up, .4 5] = Optimization over a vector, not a function!

* V(t,x) does not depend on u
.

av
) Sf(x,u) +E5]

V)= Vt0-+ muin [c(x, u)d + (Z_Z

Dynamic Programming: Continuous Time

e Approximations for small ¢: x(6) + 8 Cx,)

+68
V(t x(t)) = min Ut c(x(s) u(s))ds + V(t + 5, x(t+95) t]

Uure, t+8

C(x(t),u(t))5

* Omit t dependence...

vy ' oV
V(t,x) = muin [c(x, w)o +V(tx)+ (a) Sf(x,u) + Ec?]

Assume constant up, .4 5] = Optimization over a vector, not a function!

* V(t,x) does not depend on u

av

aV
0= E-I_ min [c(x u) + (f(x, u)]

Comments

* Hamilton-Jacobi partial dlfferentlal equation

a—V+ ml}n [c(x u) + (

aV

ax

™ f(x, u)] =0,

* Terminology:
* Pre-Hamiltonian: H(x,u, A1) = c(x,u) + ATf(x, u)
« Hamiltonian: H*(x, 1) = c(x,u*) + ATf(x,u*)

=>aV+H*(A)=0
ot XA =

Comments

Hamilton-Jacobi partial differential equation

1%

— + min |c(x,u) + (g)Tf(x u)|=20 V(T,x) = l(x)
ot u ' 0x ’ ' '

Minimization over u is typically easy
* Most systems are control affine: f(x, u) has the form f(x) + g(x)u
* Control constraints are typically “box” constraints, e.g. |u;| < 1

PDE is solved on a grid
 x € R®" means V(t, x) is computed on an (n + 1)-dimensional grid

V (t, x)is often not differentiable (or continuous)
* Viscosity solutions
* Lax Friedrichs numerical method

