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Nonlinear Optimization

minimize f(x)
X
subjectto g;(x) <0,i=1,..,n
h](X) = O,] = 1, e, M

* Nonlinear optimization:
* Decision variable is x € R"

e x == (u%ul,...,u™) could be the
control




Optimal Control

Running cost
|

T
mirgti(tr)lize [(x(T),T) + f c(x(t), u(t), t)dt
0

subject to x(t) = f(x(t), u(t))

g(x(t),u(t)) >0
x(t) € R"u(t) € R™ x(0) = xq

* Optimal control:

 Decision variable is a function u(:)
u A

W




Optimal Control

Final cost
|

Running cost
|

1

|

( T
mirgli(rr)lize [(x(T),T) + f c(x(t), u(t), t)dt
0

subject to x(t) = f(x(t),u(t))
g(x(@®),u®)) =0

x(t) € R"u(t) € R™ x(0) = xq




Optimal Control: Facts

T

mir%tigx)lize [(x(T), T) +j c(x(t),u(t), t)dt

0
subject to x(t) = f(x(t), u(t))

* Observation 1: Discretize time = nonlinear optimization problem
* Fact 1: Minimizing “cost” is same as maximizing “reward”

* Fact 2: Discretize time + maximizing reward =2 “reinforcement
learning problem”




Optimal Control: Types of Solutions
T
mirllli(r.slize l(x(T), T) +j c(x(t),u(t), t)dt

0
subject to x(t) = f(x(t), u(t))

u

* Open-loop control /\N
e Findu(t) fort € [0, T]

* Scalable, but errors will add up

* Closed-loop control
* Findu(t,x) fort € [0,T], x € R"
* Not scalable, but robust
e “Special” techniques needed (eg. Reinforcement learning) for large n

* Receding horizon control:
* Findu(t) fort € [0,T], use u(t) fort € [0, h], then find u(t) fort € |h,T + h] and
repeat
* Has features of both open- and closed-loop control




Optimal Control: Variants

* For now: Deterministic systems, continuous time, continuous state

e Other variations:
e Stochastic
* Discrete time
* Discrete state




Outline: Open-Loop Control

e Optimal Control Problems

e Differential flatness

* Direct Methods (Numerical Methods)
e Shooting methods

e Collocation
e CasADi Matlab toolbox




Optimal Control

Running cost
|

br

mirzliigglize L(x(T), T) +j c(x(t),u(t), t)dt
0

subject to x(t) = f(x(t), u(t))

g(x(t),u(t)) >0
x(t) € R"u(t) € R™ x(0) = x,

* Optimal control:  Strategy 1: Optimality conditions

* Decision variable is a function u(*) « Strategy 2: Discretize first > nonlinear
e Other constraints are possible optimization

+ Eg x(T) =
8 x(T) = * Strategy 3: Use differential flatness (if lucky)

N,




Differential Flatness

* Problem: find a u(+) such that
x(t) = f(x,u)
x(0) = x,
x(T) = x¢

* Worry about feasibility for now, and ignore cost

* Example: vehicle steering X =1vcosf
* State: (x,y,0) y = vsinf

* Inputs: (v, ) 0 = ;tancl)




Use Special Structure

Dynamics:
X =vcosf

y =vsinf
%

* First, suppose x(t), y(t) are smooth and given.

tan ¢

6 =
Obtain heading: y _ sin 6 0 = arctan (X) [
¥ cos6 X

Obtain speed X=vcosf =uv=.(x)2+ )2
y =vsinf

.U 16
0 = Ttanqb = ¢ = arctan (—>

v

Obtain steering angle

» All state variables and control inputs can be determined from the given trajectory!




Differential Flatness Definition

A nonlinear system x = f(x,u) is differentially flat if there exists a
function a such that

z=a(xu,..u®)

and we can write the solutions of the nonlinear system as functions of
z and a finite number of derivatives

x =p(z2,..,2z9)
u=y(z2,..,z%P)




Differential Flatness Definition

Generic system Kinematic car
x(t), y(t) are smooth and given

x = f(x,u) , X=wvcosH

y=vsinf

.V
0 =7tan¢

z=(x,y)
B X

-

Y/

/)% + (0)?]
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Trajectory Generation

» Before: x(t) was given

* Now: find a feasible trajectory x(t) that satisfies

x() = f(x(©), u®)
x(0) = x,

x(T) = x¢

° Differential ﬂatness: X = ﬂ(Z; Z, ___’Z(CI)) . X(O) — ,8 (Z(O),Z(O), ...,Z(q)(O)) = X,

N N
s let 2= bypi(®) > 2(6) = ) bpi(®)
i=1 i=1

N
z@() = Y bap!?(t)
2

x(T) = B (2(1), 2(T), ..., 20(T)) = x¢

;: basis functions

* Your choice!

* You can choose N too!

e E.g.Y; =x'"! - monomial basis




Trajectory Generation

e Differential flatness:

x(0) = B (Z(O),Z'(O), ...,z<q>(0)) = x,
x(T) = B (2(1), 2(T), ..., 2D(T)) = x;

N N N
20 = ) bp(®), 20 = ) ban(0), - 2D =) b
=1 =1 =1

" 1(0)

,(0)

le(O) | i Zl(O) |




Trajectory Generation

« Differential flatness: x(0) = B (2(0),2(0), ..., z@(0) ) = x,
x(T) = B (2(1), 2(T), ..., 2D(T)) = x;

N N N
20 = ) bp(®), 20 = ) ban(0), - 2D =) b
=1 =1 =1

" 1(0) P,(0) - Py(0) " z1(0) T
Y1(0)  $2(0) Pw (0) £,(0)

BO0) Y@@ - p@(0) 2@ (0)




Trajectory Generation

« Differential flatness: x(0) = B (2(0),2(0), ..., z@(0) ) = x,
x(T) = B (2(1), 2(T), ..., 2D(T)) = x;

N N N
20 = ) bp(®), 20 = ) ban(0), - 2D =) b
=1 =1 =1

" 1(0) P,(0) - Py(0) " z1(0) T
Y1(0)  $2(0) Pw (0) £,(0)

bO0) P O@ - P90 @)
Y, (T) Y, (T) e Py(T) 5 z1(T)
DD @ g [

WOT) YOI - @O, 290,




What to do with b?

[ l/{1 (0) l/{z (0)
$1(0) 1 (0)

BO0) (0@
YT Pa(T)
o) (1)

WO POy

P9 0)

O

Yn(0) ]

Pw (0)

Yn(T)

Y (M) |

r z1(0) ]
4(0)

Zl(CI). (O)
z,(T)
2,(T)

N N
20 = ) b0, 20 = Y bin(®),
i=1 i=1

-Zl(q) (T)_

N
@) = Y bp P (t)
2




What to do with b?

[ l/{1 (0) l/{z (0)
$1(0) 1 (0)

BO0) (0@
YT Pa(T)
o) (1)

WO POy

P9 0)

O

Yn(0) ]

Pw (0)

Yn(T)

N N
20 = ) b0, 20 = Y bin(®),
i=1 i=1

X = B(z, Z, ...,z(q))

u=y(zz..,29)

Y (M) |

r z1(0) ]
4(0)

Zl(CI). (O)
z,(T)
2,(T)

-Zl(q) (T)_

N
@) = Y bp P (t)
2




What to do with b?

" 1(0) P,(0) - Py (0)
D@ B0 = U(0)

D©) $O@ -~ OO
BT @) e D
W ) (D)

_§q5<T) z/);%) w}v‘*%ﬂ_

N N
20) = ) bpi(®), 2() = ) bpi(®),
i=1 =1

X = ﬁ(z,z, ...,z("))
u=y(zz..,29)

BEAOR
7(0)

2 (0)
z1(T)
7(T)

_Z§CI) (T)_

N
2@() = ) bip(®)
i=1

;: basis functions

* Your choice!

* You can choose N too!

* E.g.y; = x'"1 - monomial basis

q is from dynamics
 Determines number of rows

e i.e. number of equations
* Can’t choose this

N is chosen
* Determines number of columns
* j.e. number of variablesin b

e N too small: no solutions
* N very large: many solutions




Optimal Control Problem

Running cost
|

T
mirgti(tr)lize [(x(T),T) + f c(x(t), u(t), t)dt
0

subject to x(t) = f(x(t),u(t))
g(x(@®),u®)) =0

x(t) € R u(t) e R™,
x(0) = x0,x(T) = x¢




Optimal Control Problem

Running cost
|

T
mirg(rr)lize [(x(T),T) + f c(x(t), u(t), t)dt
0

subject to x(t) = f(x(t),u(t))
g(x(t),u(t)) >0
x(t) € R, u(t) e R™,
x(0) = x9,x(T) = xf

T
minimize |(x(T),T) + f c(x(t), u(t), t)dt
0

subject to (xx)

g(x(@®),u(®)) =0
u(t) € R™ x(0) = xq




Optimal Control Problem

Running cost

Final cost I

A

1

|

, T
mlrzll(yl)qlze L(x(T), T) +f c(x(t), u(t), t)dt  costfunctional, J(x(), u())
0

subject to x(t) = f(x(t),u(t)) Dynamic model
g(x(t), u(t)) >0 Additional constraints

e Eg. actuation limits

x(t) € R, u(t) e R™,
x(0) = x9,x(T) = x¢

T

minimize (1), ) + [ e(e(0),u(0), )
0

subject to ()

g(x(t),u(t)) >0
u(t) € R™ x(0) = xq




Key Points

minibmize [(x(T), T) + f c(x(t),u(t), t)dt z=a(xu,..,u®)

0
subject to () x=p(z%..,29)

g(x(t)' u(t)) =0 u=y(zz..,2z9)
U(t) (S ]Rm,X(O) = X

* Trajectory generation via solving algebraic equations (**)
e Other constraints can be transformed into z space

» Cost/performance index also transformed into z space

* After obtaining b, we can obtain x and u

* Quadrotors are differentially flat

e D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for
quadrotors, ICRA 2011.




