
Optimal	Control	and	
Differential	Flatness

CMPT	419/983
Mo	Chen

SFU	Computing	Science
30/9/2019

Nonlinear	Optimization

• Nonlinear	optimization:
• Decision	variable	is	𝑥 ∈ ℝ!

• 𝑥 ≔ 𝑢", 𝑢#, … , 𝑢! could	be	the	
control

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ% 𝑥 = 0, 𝑗 = 1, … , 𝑚

𝑥

𝑢

𝑡𝑡!

𝑢!

Optimal	Control

• Nonlinear	optimization:
• Decision	variable	is	𝑥 ∈ ℝ!

• Optimal	control:
• Decision	variable	is	a	function 𝑢 ⋅

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"𝑢 ⋅

Final	cost
Running	cost

subject to �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 Dynamic	model

𝑥 𝑡 ∈ ℝ!, 𝑢 𝑡 ∈ ℝ+, 𝑥 0 = 𝑥"
𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional	constraints	

• Eg. actuation	limits

Cost	functional,	𝐽 𝑥 ⋅ , 𝑢 ⋅

𝑢

𝑡

𝑢 𝑡

Optimal	Control

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"
subject to �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

Final	cost
Running	cost

Dynamic	model

𝑥 𝑡 ∈ ℝ!, 𝑢 𝑡 ∈ ℝ+, 𝑥 0 = 𝑥"
𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional	constraints	

• Eg. actuation	limits

Cost	functional,	𝐽 𝑥 ⋅ , 𝑢 ⋅

𝑥" 𝑥 𝑡
. 𝑐

𝑥 𝑡
, 𝑢
𝑡 , 𝑡

𝑑𝑡

#

"

𝑥 𝑡$

𝑙 𝑥 𝑡$, 𝑡$

Optimal	Control:	Facts

• Observation	1:	Discretize	time	à nonlinear	optimization	problem

• Fact	1:	Minimizing	“cost”	is	same	as	maximizing	“reward”

• Fact	2:	Discretize	time	+	maximizing	reward	à “reinforcement	
learning	problem”

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"

subject to �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

Optimal	Control:	Types	of	Solutions

• Open-loop	control
• Find	𝑢 𝑡 for	𝑡 ∈ 0, 𝑇
• Scalable,	but	errors	will	add	up

• Closed-loop	control
• Find	𝑢 𝑡, 𝑥 for	𝑡 ∈ 0, 𝑇 ,	𝑥 ∈ ℝ%

• Not	scalable,	but	robust
• “Special”	techniques	needed	(eg. Reinforcement	learning)	for	large	𝑛

• Receding	horizon	control:
• Find	𝑢 𝑡 for	𝑡 ∈ 0, 𝑇 ,	use	𝑢 𝑡 for	𝑡 ∈ 0, ℎ ,	then	find	𝑢 𝑡 for	𝑡 ∈ ℎ, 𝑇 + ℎ and	
repeat

• Has	features	of	both	open- and	closed-loop	control

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"

subject to �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

𝑢

𝑡

Optimal	Control:	Variants

• For	now:	Deterministic	systems,	continuous	time,	continuous	state

• Other	variations:
• Stochastic
• Discrete	time
• Discrete	state

Outline:	Open-Loop	Control

• Optimal	Control	Problems

• Differential	flatness

• Direct	Methods	(Numerical	Methods)
• Shooting	methods
• Collocation
• CasADi Matlab toolbox

Optimal	Control

• Optimal	control:
• Decision	variable	is	a	function	𝑢 ⋅
• Other	constraints	are	possible

• E.g.	𝑥 𝑇 = 𝑥$

• Strategy	1:	Optimality	conditions
• Strategy	2:	Discretize	first	à nonlinear	
optimization
• Strategy	3:	Use	differential	flatness	(if	lucky)

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"
subject to �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡

𝑢 ⋅

Final	cost
Running	cost

Dynamic	model

𝑥 𝑡 ∈ ℝ!, 𝑢 𝑡 ∈ ℝ+, 𝑥 0 = 𝑥"
𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional	constraints	

• Eg. actuation	limits

Cost	functional,	𝐽 𝑥 ⋅ , 𝑢 ⋅

Differential	Flatness

• Problem:	find	a	𝑢 ⋅ such	that

• Worry	about	feasibility	for	now,	and	ignore	cost

• Example:	vehicle	steering
• State:	 𝑥, 𝑦, 𝜃
• Inputs:	 𝑣, 𝜙

�̇� 𝑡 = 𝑓 𝑥, 𝑢
𝑥 0 = 𝑥"
𝑥 𝑇 = 𝑥$

�̇� = 𝑣 cos 𝜃
�̇� = 𝑣 sin 𝜃

�̇� =
𝑣
𝑙 tan𝜙

Use	Special	Structure
• First,	suppose	𝑥 𝑡 , 𝑦 𝑡 are	smooth	and	given.

1. Obtain	heading:

2. Obtain	speed

3. Obtain	steering	angle

• All	state	variables	and	control	inputs	can	be	determined	from	the	given	trajectory!

Dynamics:

�̇�
�̇� =

sin 𝜃
cos 𝜃 ⇒ 𝜃 = arctan

�̇�
�̇�

�̇� = 𝑣 cos 𝜃
�̇� = 𝑣 sin 𝜃

�̇� =
𝑣
𝑙 tan𝜙

�̇� = 𝑣 cos 𝜃
�̇� = 𝑣 sin 𝜃

�̇� =
𝑣
𝑙 tan𝜙 ⇒ 𝜙 = arctan

𝑙�̇�
𝑣

⇒ 𝑣 = �̇� 8 + �̇� 8

Differential	Flatness	Definition

A	nonlinear	system	�̇� = 𝑓 𝑥, 𝑢 is	differentially	flat	if	there	exists	a	
function	𝛼 such	that

𝑧 = 𝛼 𝑥, 𝑢, … , 𝑢 >

and	we	can	write	the	solutions	of	the	nonlinear	system	as	functions	of	
𝑧 and	a	finite	number	of	derivatives

𝑥 = 𝛽 𝑧, �̇�, … , 𝑧 @

𝑢 = 𝛾 𝑧, �̇�, … , 𝑧 @

Differential	Flatness	Definition
Generic	system Kinematic	car

𝑧 = 𝑥, 𝑦

𝑥
𝑦
𝜃
=

𝑥
𝑦

arctan
�̇�
�̇�

𝑥 𝑡 , 𝑦 𝑡 are	smooth	and	given

𝑣
𝜙 =

�̇� 8 + �̇� 8

arctan
𝑙�̇�
𝑣

�̇� = 𝑓 𝒙, 𝑢 �̇� = 𝑣 cos 𝜃
�̇� = 𝑣 sin 𝜃

�̇� =
𝑣
𝑙 tan𝜙

𝑧 = 𝛼 𝒙, 𝑢, … , 𝑢 >

𝒙 = 𝛽 𝑧, �̇�, … , 𝑧 @

𝑢 = 𝛾 𝑧, �̇�, … , 𝑧 @

Trajectory	Generation
• Before:	𝑥 𝑡 was	given
• Now:	find	a	feasible	trajectory	𝑥 𝑡 that	satisfies

• Differential	flatness:

• Let 𝑧 𝑡 =K𝑏B𝜓B 𝑡
C

BDE
⋮

𝑧 @ 𝑡 =K𝑏B𝜓B
@ 𝑡

C

BDE

�̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡
𝑥 0 = 𝑥"
𝑥 𝑇 = 𝑥$

𝒙 = 𝛽 𝑧, �̇�, … , 𝑧 @ ⇒ 𝑥 0 = 𝛽 𝑧 0 , �̇� 0 , … , 𝑧 @ 0 = 𝑥"
𝑥 𝑇 = 𝛽 𝑧 𝑇 , �̇� 𝑇 , … , 𝑧 @ 𝑇 = 𝑥$

𝜓B:	basis	functions
• Your	choice!
• You	can	choose	𝑁 too!
• E.g.	𝜓B = 𝑥BFE -- monomial	basis

⇒ �̇� 𝑡 =K𝑏B�̇�B 𝑡
C

BDE

Trajectory	Generation

• Differential	flatness:

𝑧 𝑡 =K𝑏B𝜓B 𝑡
C

BDE

, �̇� 𝑡 = K𝑏B�̇�B 𝑡
C

BDE

, 𝑧 @ 𝑡 =K𝑏B𝜙B
@ 𝑡

C

BDE

𝑥 0 = 𝛽 𝑧 0 , �̇� 0 , … , 𝑧 @ 0 = 𝑥"
𝑥 𝑇 = 𝛽 𝑧 𝑇 , �̇� 𝑇 , … , 𝑧 @ 𝑇 = 𝑥$

⋯

⇒

𝜓E 0 𝜓8 0 ⋯ 𝜓C 0
�̇�E 0 �̇�8 0 ⋯ �̇�C 0
⋮ ⋮ ⋱ ⋮

𝜓E
@ 0 𝜓8 0 @ ⋯ 𝜓C

@ 0
𝜓E 𝑇 𝜓8 𝑇 ⋯ 𝜓C 𝑇
�̇�E 𝑇 �̇�8 𝑇 ⋯ �̇�C 𝑇
⋮ ⋮ ⋱ ⋮

𝜓E
@ 𝑇 𝜓8

@ 𝑇 ⋯ 𝜓C
@ 𝑇

𝑏E
𝑏8
⋮
𝑏C

=

𝑧E 0
�̇�E 0
⋮

𝑧E
@ 0
𝑧E 𝑇
�̇�E 𝑇
⋮

𝑧E
@ 𝑇

Trajectory	Generation

• Differential	flatness:

𝑧 𝑡 =K𝑏B𝜓B 𝑡
C

BDE

, �̇� 𝑡 = K𝑏B�̇�B 𝑡
C

BDE

, 𝑧 @ 𝑡 =K𝑏B𝜙B
@ 𝑡

C

BDE

𝑥 0 = 𝛽 𝑧 0 , �̇� 0 , … , 𝑧 @ 0 = 𝑥"
𝑥 𝑇 = 𝛽 𝑧 𝑇 , �̇� 𝑇 , … , 𝑧 @ 𝑇 = 𝑥$

⋯

⇒

𝜓E 0 𝜓8 0 ⋯ 𝜓C 0
�̇�E 0 �̇�8 0 ⋯ �̇�C 0
⋮ ⋮ ⋱ ⋮

𝜓E
@ 0 𝜓8 0 @ ⋯ 𝜓C

@ 0
𝜓E 𝑇 𝜓8 𝑇 ⋯ 𝜓C 𝑇
�̇�E 𝑇 �̇�8 𝑇 ⋯ �̇�C 𝑇
⋮ ⋮ ⋱ ⋮

𝜓E
@ 𝑇 𝜓8

@ 𝑇 ⋯ 𝜓C
@ 𝑇

𝑏E
𝑏8
⋮
𝑏C

=

𝑧E 0
�̇�E 0
⋮

𝑧E
@ 0
𝑧E 𝑇
�̇�E 𝑇
⋮

𝑧E
@ 𝑇

Trajectory	Generation

• Differential	flatness:

𝑧 𝑡 =K𝑏B𝜓B 𝑡
C

BDE

, �̇� 𝑡 = K𝑏B�̇�B 𝑡
C

BDE

, 𝑧 @ 𝑡 =K𝑏B𝜙B
@ 𝑡

C

BDE

𝑥 0 = 𝛽 𝑧 0 , �̇� 0 , … , 𝑧 @ 0 = 𝑥"
𝑥 𝑇 = 𝛽 𝑧 𝑇 , �̇� 𝑇 , … , 𝑧 @ 𝑇 = 𝑥$

⋯

⇒

𝜓E 0 𝜓8 0 ⋯ 𝜓C 0
�̇�E 0 �̇�8 0 ⋯ �̇�C 0
⋮ ⋮ ⋱ ⋮

𝜓E
@ 0 𝜓8 0 @ ⋯ 𝜓C

@ 0
𝜓E 𝑇 𝜓8 𝑇 ⋯ 𝜓C 𝑇
�̇�E 𝑇 �̇�8 𝑇 ⋯ �̇�C 𝑇
⋮ ⋮ ⋱ ⋮

𝜓E
@ 𝑇 𝜓8

@ 𝑇 ⋯ 𝜓C
@ 𝑇

𝑏E
𝑏8
⋮
𝑏C

=

𝑧E 0
�̇�E 0
⋮

𝑧E
@ 0
𝑧E 𝑇
�̇�E 𝑇
⋮

𝑧E
@ 𝑇

What	to	do	with	𝑏?
𝜓E 0 𝜓8 0 ⋯ 𝜓C 0
�̇�E 0 �̇�8 0 ⋯ �̇�C 0
⋮ ⋮ ⋱ ⋮

𝜓E
@ 0 𝜓8 0 @ ⋯ 𝜓C

@ 0
𝜓E 𝑇 𝜓8 𝑇 ⋯ 𝜓C 𝑇
�̇�E 𝑇 �̇�8 𝑇 ⋯ �̇�C 𝑇
⋮ ⋮ ⋱ ⋮

𝜓E
@ 𝑇 𝜓8

@ 𝑇 ⋯ 𝜓C
@ 𝑇

𝑏E
𝑏8
⋮
𝑏C

=

𝑧E 0
�̇�E 0
⋮

𝑧E
@ 0
𝑧E 𝑇
�̇�E 𝑇
⋮

𝑧E
@ 𝑇

𝑧 𝑡 =K𝑏B𝜓B 𝑡
C

BDE

, �̇� 𝑡 = K𝑏B�̇�B 𝑡
C

BDE

, 𝑧 @ 𝑡 =K𝑏B𝜙B
@ 𝑡

C

BDE

⋯

What	to	do	with	𝑏?

𝒖 = 𝜸 𝒛, �̇�, … , 𝒛 𝒒

𝜓E 0 𝜓8 0 ⋯ 𝜓C 0
�̇�E 0 �̇�8 0 ⋯ �̇�C 0
⋮ ⋮ ⋱ ⋮

𝜓E
@ 0 𝜓8 0 @ ⋯ 𝜓C

@ 0
𝜓E 𝑇 𝜓8 𝑇 ⋯ 𝜓C 𝑇
�̇�E 𝑇 �̇�8 𝑇 ⋯ �̇�C 𝑇
⋮ ⋮ ⋱ ⋮

𝜓E
@ 𝑇 𝜓8

@ 𝑇 ⋯ 𝜓C
@ 𝑇

𝑏E
𝑏8
⋮
𝑏C

=

𝑧E 0
�̇�E 0
⋮

𝑧E
@ 0
𝑧E 𝑇
�̇�E 𝑇
⋮

𝑧E
@ 𝑇

𝑧 𝑡 =K𝑏B𝜓B 𝑡
C

BDE

, �̇� 𝑡 = K𝑏B�̇�B 𝑡
C

BDE

, 𝑧 @ 𝑡 =K𝑏B𝜙B
@ 𝑡

C

BDE

⋯

𝒙 = 𝜷 𝒛, �̇�, … , 𝒛 𝒒

What	to	do	with	𝑏?

𝒖 = 𝜸 𝒛, �̇�, … , 𝒛 𝒒

𝜓E 0 𝜓8 0 ⋯ 𝜓C 0
�̇�E 0 �̇�8 0 ⋯ �̇�C 0
⋮ ⋮ ⋱ ⋮

𝜓E
@ 0 𝜓8 0 @ ⋯ 𝜓C

@ 0
𝜓E 𝑇 𝜓8 𝑇 ⋯ 𝜓C 𝑇
�̇�E 𝑇 �̇�8 𝑇 ⋯ �̇�C 𝑇
⋮ ⋮ ⋱ ⋮

𝜓E
@ 𝑇 𝜓8

@ 𝑇 ⋯ 𝜓C
@ 𝑇

𝑏E
𝑏8
⋮
𝑏C

=

𝑧E 0
�̇�E 0
⋮

𝑧E
@ 0
𝑧E 𝑇
�̇�E 𝑇
⋮

𝑧E
@ 𝑇

𝑧 𝑡 =K𝑏B𝜓B 𝑡
C

BDE

, �̇� 𝑡 = K𝑏B�̇�B 𝑡
C

BDE

, 𝑧 @ 𝑡 =K𝑏B𝜙B
@ 𝑡

C

BDE

⋯

𝒙 = 𝜷 𝒛, �̇�, … , 𝒛 𝒒

𝜓B:	basis	functions
• Your	choice!
• You	can	choose	𝑁 too!
• E.g.	𝜓B = 𝑥BFE -- monomial	basis

𝑞 is	from	dynamics
• Determines	number	of	rows	

• i.e.	number	of	equations
• Can’t	choose	this

𝑁 is	chosen
• Determines	number	of	columns

• i.e.	number	of	variables	in	𝑏

• 𝑁 too	small:	no	solutions
• 𝑁 very	large:	many	solutions

(∗∗)

Optimal	Control	Problem

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"𝑢 ⋅

Final	cost
Running	cost

subject to �̇� 𝑡 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 Dynamic	model

𝑥 𝑡 ∈ ℝ!, 𝑢 𝑡 ∈ ℝ+,
𝑥 0 = 𝑥", 𝑥 𝑇 = 𝑥Z

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional	constraints	
• Eg. actuation	limits

Cost	functional,	𝐽 𝑥 ⋅ , 𝑢 ⋅

Optimal	Control	Problem

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"𝒖 ⋅

Final	cost
Running	cost

subject to �̇� 𝒕 = 𝒇 𝒙 𝒕 , 𝒖 𝒕 Dynamic	model

𝒙 𝒕 ∈ ℝ𝒏, 𝑢 𝑡 ∈ ℝ+,
𝒙 𝟎 = 𝒙𝟎, 𝒙 𝑻 = 𝒙𝒇

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional	constraints	
• Eg. actuation	limits

Cost	functional,	𝐽 𝑥 ⋅ , 𝑢 ⋅

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"𝒃

subject to ∗∗

𝑢 𝑡 ∈ ℝ+, 𝑥 0 = 𝑥"
𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0

Optimal	Control	Problem

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝒖 𝒕 , 𝑡 𝑑𝑡
)

"𝒖 ⋅

Final	cost
Running	cost

subject to �̇� 𝒕 = 𝒇 𝒙 𝒕 , 𝒖 𝒕 Dynamic	model

𝒙 𝒕 ∈ ℝ𝒏, 𝑢 𝑡 ∈ ℝ+,
𝒙 𝟎 = 𝒙𝟎, 𝒙 𝑻 = 𝒙𝒇

𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 Additional	constraints	
• Eg. actuation	limits

Cost	functional,	𝐽 𝑥 ⋅ , 𝑢 ⋅

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"𝒃

subject to ∗∗

𝑢 𝑡 ∈ ℝ+, 𝑥 0 = 𝑥"
𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 𝒖 = 𝜸 𝒛, �̇�, … , 𝒛 𝒒

𝒙 = 𝜷 𝒛, �̇�, … , 𝒛 𝒒

𝒛 = 𝜶 𝒙, 𝒖, … , 𝒖 𝒑

Key	Points

• Trajectory	generation	via	solving	algebraic	equations	(∗∗)
• Other	constraints	can	be	transformed	into	𝑧 space
• Cost/performance	index	also	transformed	into	𝑧 space
• After	obtaining	𝑏,	we	can	obtain	𝑥 and	𝑢

• Quadrotors	are	differentially	flat
• D.	Mellinger	and	V.	Kumar.	Minimum	snap	trajectory	generation	and	control	for	
quadrotors,	ICRA	2011.

minimize 𝑙 𝑥 𝑇 , 𝑇 + D 𝑐 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡
)

"𝒃

subject to ∗∗

𝑢 𝑡 ∈ ℝ+, 𝑥 0 = 𝑥"
𝑔 𝑥 𝑡 , 𝑢 𝑡 ≥ 0 𝒖 = 𝜸 𝒛, �̇�, … , 𝒛 𝒒

𝒙 = 𝜷 𝒛, �̇�, … , 𝒛 𝒒

𝒛 = 𝜶 𝒙, 𝒖, … , 𝒖 𝒑

