

Optimal Control and Differential Flatness

CMPT 419/983

Mo Chen

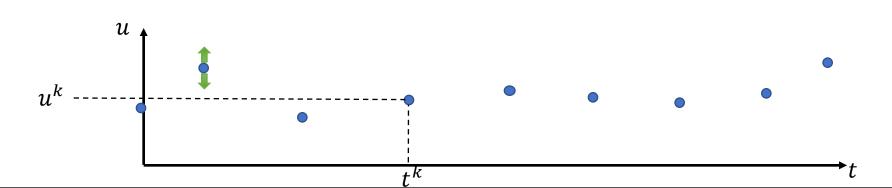
SFU Computing Science

30/9/2019

Nonlinear Optimization

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f(x)\\ \text{subject to} & g_i(x) \leq 0, i = 1, \dots, n\\ & h_j(x) = 0, j = 1, \dots, m \end{array}$$

- Nonlinear optimization:
 - Decision variable is $x \in \mathbb{R}^n$
 - $x \coloneqq (u^0, u^1, \dots, u^n)$ could be the control



Optimal Control

Final cost

$$\begin{array}{l} \text{Final cost} \\
\text{minimize} \\
u(\cdot) \\
u(\cdot) \\
\end{array} \\
\begin{array}{l} I(x(T), T) + \int_{0}^{T} c(x(t), u(t), t) dt \\
\text{Subject to} \\
\dot{x}(t) = f(x(t), u(t)) \\
g(x(t), u(t)) \ge 0 \\
x(t) \in \mathbb{R}^{n}, u(t) \in \mathbb{R}^{m}, x(0) = x_{0} \\
\end{array}$$

$$\begin{array}{l} \text{Running cost} \\
\text{Cost function} \\
\text{Dynamic monons} \\
\text{Additional construction} \\
\text{Final cost} \\
\end{array}$$

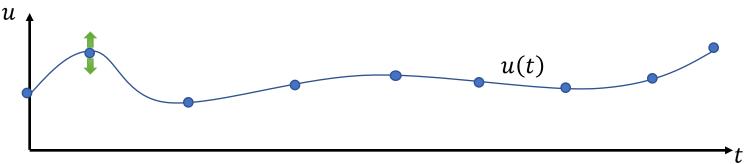
nal, $J(x(\cdot), u(\cdot))$

bdel

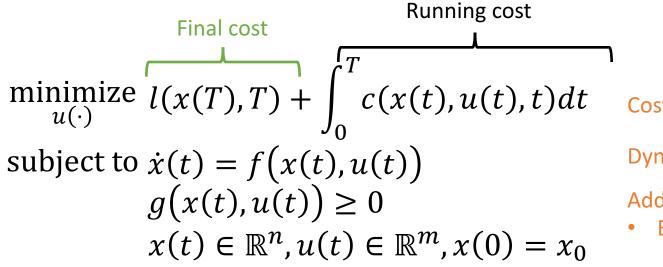
onstraints tion limits

- Nonlinear optimization:
 - Decision variable is $x \in \mathbb{R}^n$

- Optimal control:
 - Decision variable is a **function** $u(\cdot)$



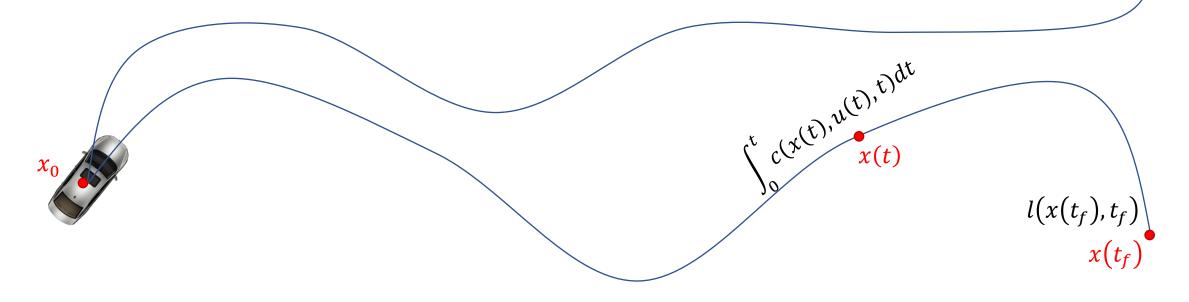
Optimal Control



Cost functional, $J(x(\cdot), u(\cdot))$

Dynamic model

Additional constraintsEg. actuation limits



Optimal Control: Facts

minimize
$$l(x(T), T) + \int_0^T c(x(t), u(t), t) dt$$

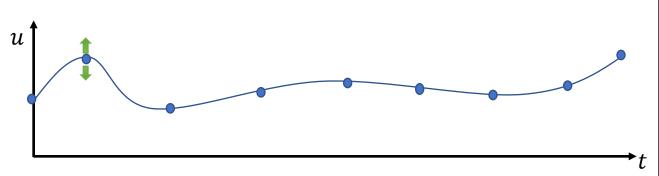
subject to $\dot{x}(t) = f(x(t), u(t))$

- Observation 1: Discretize time \rightarrow nonlinear optimization problem
- Fact 1: Minimizing "cost" is same as maximizing "reward"
- Fact 2: Discretize time + maximizing reward → "reinforcement learning problem"

Optimal Control: Types of Solutions minimize $l(x(T),T) + \int_{0}^{T} c(x(t),u(t),t)dt$

subject to $\dot{x}(t) = f(x(t), u(t))$

- Open-loop control
 - Find u(t) for $t \in [0, T]$
 - Scalable, but errors will add up
- Closed-loop control
 - Find u(t, x) for $t \in [0, T]$, $x \in \mathbb{R}^n$
 - Not scalable, but robust
 - "Special" techniques needed (eg. Reinforcement learning) for large n
- Receding horizon control:
 - Find u(t) for $t \in [0, T]$, use u(t) for $t \in [0, h]$, then find u(t) for $t \in [h, T + h]$ and repeat
 - Has features of both open- and closed-loop control



Optimal Control: Variants

- For now: Deterministic systems, continuous time, continuous state
- Other variations:
 - Stochastic
 - Discrete time
 - Discrete state

Outline: Open-Loop Control

- Optimal Control Problems
- Differential flatness
- Direct Methods (Numerical Methods)
 - Shooting methods
 - Collocation
 - CasADi Matlab toolbox

Optimal Control

Final cost
minimize
$$i(x(T), T) + \int_0^T c(x(t), u(t), t) dt$$

subject to $\dot{x}(t) = f(x(t), u(t))$
 $g(x(t), u(t)) \ge 0$
 $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, x(0) = x_0$
Running cost
Cost functional, $J(x(\cdot), u(\cdot))$
Dynamic model
Additional constraints
• Eg. actuation limits

- Optimal control:
 - Decision variable is a function $u(\cdot)$
 - Other constraints are possible
 - E.g. $x(T) = x_f$

- Strategy 1: Optimality conditions
- Strategy 2: Discretize first → nonlinear optimization
- Strategy 3: Use differential flatness (if lucky)

Differential Flatness

• Problem: find a $u(\cdot)$ such that

 $\dot{x}(t) = f(x, u)$ $x(0) = x_0$ $x(T) = x_f$

 $\dot{y} = v \sin \theta$

 $\dot{\theta} = \frac{v}{l} \tan \phi$

- Worry about feasibility for now, and ignore cost
- Example: vehicle steering $\dot{x} = v \cos \theta$
 - State: (*x*, *y*, *θ*)
 - Inputs: (v, ϕ)

Use Special Structure

• First, suppose x(t), y(t) are smooth and **given**.

1.

Dynamics: $\dot{x} = v \cos \theta$ $\dot{y} = v \sin \theta$ $\dot{\theta} = \frac{v}{l} \tan \phi$

Obtain heading: $\frac{\dot{y}}{\dot{x}} = \frac{\sin\theta}{\cos\theta} \Rightarrow \theta$

$$\frac{\dot{y}}{\dot{x}} = \frac{\sin\theta}{\cos\theta} \Rightarrow \theta = \arctan\left(\frac{\dot{y}}{\dot{x}}\right)$$

- 2. Obtain speed $\dot{x} = v \cos \theta \Rightarrow v = \sqrt{(\dot{x})^2 + (\dot{y})^2}$ $\dot{y} = v \sin \theta$
- 3. Obtain steering angle $\dot{\theta} = \frac{v}{l} \tan \phi \Rightarrow \phi = \arctan\left(\frac{l\dot{\theta}}{v}\right)$

• All state variables and control inputs can be determined from the given trajectory!

Differential Flatness Definition

A nonlinear system $\dot{x} = f(x, u)$ is differentially flat if there exists a function α such that

$$z = \alpha \big(x, u, \dots, u^{(p)} \big)$$

and we can write the solutions of the nonlinear system as functions of z and a finite number of derivatives

$$\begin{aligned} x &= \beta \left(z, \dot{z}, \dots, z^{(q)} \right) \\ u &= \gamma \left(z, \dot{z}, \dots, z^{(q)} \right) \end{aligned}$$

Differential Flatness Definition

Generic system Kinematic car x(t), y(t) are smooth and given $\dot{x} = v \cos \theta$ $\dot{\boldsymbol{x}} = f(\boldsymbol{x}, \boldsymbol{u})$ $\dot{y} = v \sin \theta$ $\dot{\theta} = \frac{v}{l} \tan \phi$ $z = \alpha(\mathbf{x}, u, \dots, u^{(p)})$ z = (x, y) $\boldsymbol{x} = \beta \big(\boldsymbol{z}, \boldsymbol{\dot{z}}, \dots, \boldsymbol{z}^{(q)} \big) \quad \longrightarrow \quad$ $\begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = \begin{bmatrix} x \\ y \\ \arctan\left(\frac{\dot{x}}{\dot{y}}\right) \end{bmatrix}$ $\begin{bmatrix} \nu \\ \phi \end{bmatrix} = \begin{bmatrix} \sqrt{(\dot{x})^2 + (\dot{y})^2} \\ \arctan\left(\frac{l\dot{\theta}}{u}\right) \end{bmatrix}$ $u = \gamma \left(z, \dot{z}, \dots, z^{(q)} \right) \quad \longrightarrow \quad$

- Before: x(t) was given
- Now: find a feasible trajectory x(t) that satisfies

$$\dot{x}(t) = f(x(t), u(t))$$
$$x(0) = x_0$$
$$x(T) = x_f$$

• Differential flatness:
$$x = \beta(z, \dot{z}, \dots, z^{(q)}) \Rightarrow x(0) = \beta(z(0), \dot{z}(0), \dots, z^{(q)}(0)) = x_0$$

 $x(T) = \beta(z(T), \dot{z}(T), \dots, z^{(q)}(T)) = x_f$

• Let
$$z(t) = \sum_{i=1}^{N} b_i \psi_i(t) \Rightarrow \dot{z}(t) = \sum_{i=1}^{N} b_i \dot{\psi}_i(t)$$

$$\vdots$$
$$z^{(q)}(t) = \sum_{i=1}^{N} b_i \psi_i^{(q)}(t)$$

 ψ_i : basis functions

- Your choice!
- You can choose *N* too!
- E.g. $\psi_i = x^{i-1}$ -- monomial basis

• Differential flatness: $x(0) = \beta \left(z(0), \dot{z}(0), \dots, z^{(q)}(0) \right) = x_0$ $x(T) = \beta \left(z(T), \dot{z}(T), \dots, z^{(q)}(T) \right) = x_f$

$$z(t) = \sum_{i=1}^{N} b_{i}\psi_{i}(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_{i}\dot{\psi}_{i}(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_{i}\phi_{i}^{(q)}(t)$$
$$\Rightarrow \begin{bmatrix} \psi_{1}(0) & \psi_{2}(0) & \cdots & \psi_{N}(0) \\ \vdots \\ \vdots \\ \vdots \\ b_{N} \end{bmatrix} = \begin{bmatrix} z_{1}(0) \\ \vdots \\ \vdots \\ b_{N} \end{bmatrix} = \begin{bmatrix} z_{1}(0) \\ \vdots \\ \vdots \\ b_{N} \end{bmatrix}$$

• Differential flatness: $x(0) = \beta \left(z(0), \dot{z}(0), \dots, z^{(q)}(0) \right) = x_0$ $x(T) = \beta \left(z(T), \dot{z}(T), \dots, z^{(q)}(T) \right) = x_f$

$$z(t) = \sum_{i=1}^{N} b_{i}\psi_{i}(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_{i}\dot{\psi}_{i}(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_{i}\phi_{i}^{(q)}(t)$$
$$\Rightarrow \begin{bmatrix} \psi_{1}(0) & \psi_{2}(0) & \cdots & \psi_{N}(0) \\ \dot{\psi}_{1}(0) & \dot{\psi}_{2}(0) & \cdots & \dot{\psi}_{N}(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(0) & \psi_{2}(0)^{(q)} & \cdots & \psi_{N}^{(q)}(0) \\ \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{N} \end{bmatrix} = \begin{bmatrix} z_{1}(0) \\ \dot{z}_{1}(0) \\ \vdots \\ z_{1}^{(q)}(0) \\ \vdots \\ \vdots \\ b_{N} \end{bmatrix}$$

• Differential flatness: $x(0) = \beta \left(z(0), \dot{z}(0), \dots, z^{(q)}(0) \right) = x_0$ $x(T) = \beta \left(z(T), \dot{z}(T), \dots, z^{(q)}(T) \right) = x_f$

$$z(t) = \sum_{i=1}^{N} b_{i}\psi_{i}(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_{i}\dot{\psi}_{i}(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_{i}\phi_{i}^{(q)}(t)$$

$$\Rightarrow \begin{bmatrix} \psi_{1}(0) & \psi_{2}(0) & \cdots & \psi_{N}(0) \\ \dot{\psi}_{1}(0) & \dot{\psi}_{2}(0) & \cdots & \dot{\psi}_{N}(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(0) & \psi_{2}(0)^{(q)} & \cdots & \psi_{N}^{(q)}(0) \\ \dot{\psi}_{1}(T) & \psi_{2}(T) & \cdots & \psi_{N}(T) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{1}^{(q)}(T) & \psi_{2}^{(q)}(T) & \cdots & \psi_{N}^{(q)}(T) \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{N} \end{bmatrix} = \begin{bmatrix} z_{1}(0) \\ \dot{z}_{1}(0) \\ \vdots \\ z_{1}(T) \\ \dot{z}_{1}(T) \\ \vdots \\ z_{1}^{(q)}(T) \end{bmatrix}$$

What to do with *b*?

$$\begin{bmatrix} \psi_1(0) & \psi_2(0) & \cdots & \psi_N(0) \\ \dot{\psi}_1(0) & \dot{\psi}_2(0) & \cdots & \dot{\psi}_N(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1^{(q)}(0) & \psi_2(0)^{(q)} & \cdots & \psi_N^{(q)}(0) \\ \psi_1(T) & \psi_2(T) & \cdots & \psi_N(T) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1^{(q)}(T) & \psi_2^{(q)}(T) & \cdots & \psi_N^{(q)}(T) \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix} = \begin{bmatrix} z_1(0) \\ \dot{z}_1(0) \\ \vdots \\ z_1^{(q)}(0) \\ z_1(T) \\ \dot{z}_1(T) \\ \vdots \\ z_1^{(q)}(T) \end{bmatrix}$$

$$z(t) = \sum_{i=1}^{N} b_i \psi_i(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_i \dot{\psi}_i(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_i \phi_i^{(q)}(t)$$

What to do with *b*?

$$\begin{bmatrix} \psi_1(0) & \psi_2(0) & \cdots & \psi_N(0) \\ \dot{\psi}_1(0) & \dot{\psi}_2(0) & \cdots & \dot{\psi}_N(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1^{(q)}(0) & \psi_2(0)^{(q)} & \cdots & \psi_N^{(q)}(0) \\ \psi_1(T) & \psi_2(T) & \cdots & \psi_N(T) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1^{(q)}(T) & \psi_2^{(q)}(T) & \cdots & \psi_N^{(q)}(T) \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix} = \begin{bmatrix} z_1(0) \\ \dot{z}_1(0) \\ \vdots \\ z_1^{(q)}(0) \\ z_1(T) \\ \dot{z}_1(T) \\ \vdots \\ z_1^{(q)}(T) \end{bmatrix}$$

$$z(t) = \sum_{i=1}^{N} b_{i}\psi_{i}(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_{i}\dot{\psi}_{i}(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_{i}\phi_{i}^{(q)}(t)$$
$$x = \beta(z, \dot{z}, \dots, z^{(q)})$$
$$u = \gamma(z, \dot{z}, \dots, z^{(q)})$$

What to do with *b*?

$$\begin{bmatrix} \psi_1(0) & \psi_2(0) & \cdots & \psi_N(0) \\ \dot{\psi}_1(0) & \dot{\psi}_2(0) & \cdots & \dot{\psi}_N(0) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1^{(q)}(0) & \psi_2(0)^{(q)} & \cdots & \psi_N^{(q)}(0) \\ \psi_1(T) & \psi_2(T) & \cdots & \psi_N(T) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_1^{(q)}(T) & \psi_2^{(q)}(T) & \cdots & \psi_N^{(q)}(T) \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_N \end{bmatrix} = \begin{bmatrix} z_1(0) \\ \dot{z}_1(0) \\ \vdots \\ z_1(T) \\ \dot{z}_1(T) \\ \vdots \\ z_1(T) \\ \vdots \\ z_1(T) \end{bmatrix}$$

$$z(t) = \sum_{i=1}^{N} b_{i}\psi_{i}(t), \quad \dot{z}(t) = \sum_{i=1}^{N} b_{i}\dot{\psi}_{i}(t), \quad \cdots \quad z^{(q)}(t) = \sum_{i=1}^{N} b_{i}\phi_{i}^{(q)}(t)$$
$$x = \beta(z, \dot{z}, \dots, z^{(q)})$$
$$u = \gamma(z, \dot{z}, \dots, z^{(q)})$$

 ψ_i : basis functions

- Your choice!
- You can choose *N* too!
- E.g. $\psi_i = x^{i-1}$ -- monomial basis

q is from dynamics

- Determines number of rows
 - i.e. number of equations
- Can't choose this

N is chosen

- Determines number of columns
 - i.e. number of variables in *b*
- *N* too small: no solutions
- *N* very large: many solutions

(**)

Optimal Control Problem

Final cost
minimize
$$l(x(T),T) + \int_0^T c(x(t),u(t),t)dt$$
 Cost functional, $J(x(\cdot),u(\cdot))$
subject to $\dot{x}(t) = f(x(t),u(t))$
 $g(x(t),u(t)) \ge 0$
 $x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m,$
 $x(0) = x_0, x(T) = x_f$
Cost functional, $J(x(\cdot),u(\cdot))$
Dynamic model
Additional constraints
• Eg. actuation limits

Optimal Control Problem

Final cost

$$\begin{array}{l} \text{Running cost} \\
\text{Running cost} \\
\text{Interval in the second secon$$

Cost functional, $J(x(\cdot), u(\cdot))$

Dynamic model

Additional constraintsEg. actuation limits

$$\begin{array}{l} \underset{b}{\text{minimize }} l(x(T),T) + \int_{0}^{T} c(x(t),u(t),t)dt\\ \text{subject to (**)}\\ g\bigl(x(t),u(t)\bigr) \geq 0\\ u(t) \in \mathbb{R}^{m}, x(0) = x_{0} \end{array}$$

Optimal Control Problem

Final cost

$$\begin{array}{l} \text{Final cost} \\
\text{Wunning cost} \\
\text{Wunning cost} \\
\begin{array}{l} \text{Wunning cost} \\
\end{array} \\
\end{array} \\
\begin{array}{l} \text{Wunning cost} \\
\end{array} \\
\begin{array}{l} \text{Wunning cost} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{l} \text{Wunning cost} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{l} \text{Wunning cost} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\$$

Subschut \\
\end{array} \\

Subschut \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{l} \text{Wunning cost} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\

Subschut \\
\end{array} \\
\end{array} \\

Subschut \\

Subschut \\
\end{array} \\

Subschut \\

Cost functional, $J(x(\cdot), u(\cdot))$

Dynamic model

Additional constraintsEg. actuation limits

minimize $l(x(T), T) + \int_0^T c(x(t), u(t), t) dt$ subject to (**) $g(x(t), u(t)) \ge 0$ $u(t) \in \mathbb{R}^m, x(0) = x_0$

 $z = \alpha(x, u, ..., u^{(p)})$ $x = \beta(z, \dot{z}, ..., z^{(q)})$ $u = \gamma(z, \dot{z}, ..., z^{(q)})$

Key Points $\begin{array}{l} \underset{b}{\text{minimize } l(x(T), T) + \int_{0}^{T} c(x(t), u(t), t) dt \\ \text{subject to } (**) \\ g(x(t), u(t)) \geq 0 \\ u(t) \in \mathbb{R}^{m}, x(0) = x_{0} \end{array}$ $z = \alpha(x, u, \dots, u^{(p)}) \\ x = \beta(z, \dot{z}, \dots, z^{(q)}) \\ u = \gamma(z, \dot{z}, \dots, z^{(q)}) \\ u = \gamma(z, \dot{z}, \dots, z^{(q)}) \end{array}$

- Trajectory generation via solving algebraic equations (**)
- Other constraints can be transformed into z space
- Cost/performance index also transformed into *z* space
- After obtaining b, we can obtain x and u
- Quadrotors are differentially flat
 - D. Mellinger and V. Kumar. *Minimum snap trajectory generation and control for quadrotors*, ICRA 2011.