Convex Optimization: Part II

CMPT 419/983
Mo Chen
SFU Computing Science
23/09/2018

Textbook

- S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2008.

Outline

- Optimization program
- Examples and classes
- Convex optimization
- Convex functions
- Optimality conditions
- Numerical solutions

Optimality Conditions for Convex Programs

- Unconstrained case: minimize $f(x)$
- $\nabla f(x)=0$

Optimality Conditions for Convex Programs

- Inequality constraints only:

```
minimize }f(x
subject to }\mp@subsup{g}{i}{}(x)\leq0,i=1,\ldots,
```

- Penalty view point: penalize constraint violation
- Lagrangian: $L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \lambda_{i} \geq 0$
- Optimality conditions
- Stationarity: $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$
- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0$
- Dual feasibility: $\lambda^{*} \geq 0$
- Complementary slackness: $\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$

Optimality Conditions for Convex Programs

- Stationarity: $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$
- Lagrangian:
$L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \quad \lambda_{i} \geq 0$
- Take gradient and set to zero:

$$
\begin{aligned}
& 0=\nabla f(x)+\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x) \\
& \nabla f(x)=-\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x)
\end{aligned}
$$

- Since $\lambda_{i} \geq 0$, gradient of $f(x)$ must point "away" from gradients of active constraint functions

Optimality Conditions for Convex Programs

- Stationarity: $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$
- Lagrangian:
$L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \quad \lambda_{i} \geq 0$
- Take gradient and set to zero:

$$
\begin{aligned}
& 0=\nabla f(x)+\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x) \\
& \nabla f(x)=-\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x)
\end{aligned}
$$

- Since $\lambda_{i} \geq 0$, gradient of $f(x)$ must point "away" from gradients of active constraint functions

Optimality Conditions for Convex Programs

- Stationarity: $\nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0$
- Lagrangian:
$L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \quad \lambda_{i} \geq 0$
- Take gradient and set to zero:

$$
\begin{aligned}
& 0=\nabla f(x)+\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x) \\
& \nabla f(x)=-\sum_{i=1}^{n} \lambda_{i} \nabla g_{i}(x)
\end{aligned}
$$

- Since $\lambda_{i} \geq 0$, gradient of $f(x)$ must point "away" from gradients of active constraint functions

Optimality Conditions for Convex Programs

- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0$
- Constraints must be satisfied
- Dual feasibility: $\lambda^{*} \geq 0$
- Penalty view point

Optimality Conditions for Convex Programs

- Complementary slackness:
$\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$
- Lagrangian:
$L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x), \quad \lambda_{i} \geq 0$
- If $g_{i}\left(x^{*}\right)<0$, then the constraint is not active, so λ_{i}^{*} is set to 0 to not decrease the Lagrangian
- If $g_{i}\left(x^{*}\right)=0$, then the constraint is active, so λ_{i}^{*} is free to be positive

Optimality Conditions for Convex Programs

- Full optimization problem: minimize $f(x)$

$$
\begin{array}{ll}
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& a_{j}^{\top} x=b_{j}, j=1, \ldots, m
\end{array}
$$

- Penalty view point:
- Lagrangian: $L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x)+\sum_{j=1}^{m} \mu_{j}\left(a_{j}^{\top} x-b_{j}\right), \lambda_{i} \geq 0$
- Karush-Kuhn-Tucker (KKT) Conditions:
- Stationarity $\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$
- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0, a_{i}^{\top} x^{*}-b_{i}=0$
- Dual feasibility: $\lambda^{*} \geq 0$
- Complementary slackness: $\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$
- Solve above systems of equations to obtain optimum

Solving Convex Optimization Problems

- Solve the optimality conditions
- Gradient methods for approximating solutions to convex optimization problems

Optimality Conditions for Convex Programs

- Full optimization problem: minimize $f(x)$

$$
\begin{array}{ll}
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& a_{j}^{\top} x=b_{j}, j=1, \ldots, m
\end{array}
$$

- Penalty view point:
- Lagrangian: $L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x)+\sum_{j=1}^{m} \mu_{j}\left(a_{j}^{\top} x-b_{j}\right), \lambda_{i} \geq 0$
- Karush-Kuhn-Tucker (KKT) Conditions:
- Stationarity $\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$
- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0, a_{i}^{\top} x^{*}-b_{i}=0$
- Dual feasibility: $\lambda^{*} \geq 0$
- Complementary slackness: $\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$
- Solve above systems of equations to obtain optimum

Example: Least Squares

$$
\underset{\theta}{\operatorname{minimize}}\|X \theta-Y\|_{2}^{2}
$$

- Scalar example:
- Data: $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}, x_{i}, y_{i} \in \mathbb{R}$

- Model: $y=m x+b, m, b \in \mathbb{R}$
- Sum of error of model: $\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}$
- No constraints: allow any m, b
- Error in matrix form: $e_{i}=y_{i}-\left[\begin{array}{ll}x_{i} & 1\end{array}\right]\left[\begin{array}{c}m \\ b\end{array}\right]$
- Stacking the data points: $E_{i}=\underbrace{\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]}_{Y}-\underbrace{\left[\begin{array}{cc}x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1\end{array}\right]}_{X}$ -

Optimality Conditions for Convex Programs

- Full optimization problem: minimize $f(x)$

$$
\begin{array}{ll}
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& a_{j}^{\top} x=b_{j}, j=1, \ldots, m
\end{array}
$$

- Penalty view point:
- Lagrangian: $L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x)+\sum_{j=1}^{m} \mu_{j}\left(a_{j}^{\top} x-b_{j}\right), \lambda_{i} \geq 0$
- Karush-Kuhn-Tucker (KKT) Conditions:
- Stationarity $\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0 \longleftarrow \nabla \boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$
- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0, a_{i}^{\top} x^{*}-b_{i}=0$
- Dual feasibility: $\lambda^{*} \geq 0$
- Complementary slackness: $\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$
- Solve above systems of equations to obtain optimum

Example: Least Squares

$$
\underset{\theta}{\operatorname{minimize}}\|X \theta-Y\|_{2}^{2}
$$

- Analytic solution available!
- Objective: $f(\theta)=\|X \theta-Y\|_{2}^{2}$, set derivative to zero

- $f(\theta)=(X \theta-Y)^{\top}(X \theta-Y)$
- $f(\theta)=\theta^{\top} X^{\top} X \theta-2 Y^{\top} X \theta+Y^{\top} Y$

$$
\begin{gathered}
\frac{\partial f}{\partial \theta}=2 X^{\top} X \theta-2 X^{\top} Y \\
0=2 X^{\top} X \theta-2 X^{\top} Y \\
X^{\top} Y=X^{\top} X \theta \\
\theta=\left(X^{\top} X\right)^{-1} X^{\top} Y
\end{gathered}
$$

Example: Least Squares

$\underset{\theta}{\operatorname{minimize}}\|X \theta-Y\|_{2}^{2}$
subject to $\theta_{1}^{2}+\theta_{2}^{2} \leq 1$

- Lagrangian: $L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x)$
- Stationarity $\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$
$\underset{\theta}{\operatorname{minimize}}\|X \theta-Y\|_{2}^{2}$
subject to $\quad\|\theta\|_{2}^{2}-1 \leq 0$

$$
L(\theta, \lambda)=\|X \theta-Y\|_{2}^{2}+\lambda\left(\|\theta\|_{2}^{2}-1\right)
$$

$$
\begin{aligned}
\nabla_{\theta} L(\theta, \lambda) & =2 X^{\top} X \theta-2 X^{\top} Y+2 \lambda \theta \\
0 & =X^{\top} X \theta-X^{\top} Y+\lambda \theta \\
X^{\top} Y & =\left(X^{\top} X+\lambda I\right) \theta
\end{aligned}
$$

$$
\|\theta\|_{2}^{2}-1 \leq 0
$$

$$
\lambda \geq 0
$$

$$
\begin{aligned}
& \lambda\left(\|\theta\|_{2}^{2}-1\right)=0 \\
& \lambda=0 \text { or }\|\theta\|_{2}^{2}=1
\end{aligned}
$$

Example: Least Squares

- Case 1: If $\lambda=0$, then
- $\lambda \geq 0$ is satisfied automatically
- $X^{\top} Y=\left(X^{\top} X\right) \theta \Rightarrow \theta=\left(X^{\top} X\right)^{-1} X^{\top} Y$

KKT conditions:

- If $\|\theta\|_{2}^{2}-1 \leq 0$ happens to be true, we are done
- $X^{\top} Y=\left(X^{\top} X+\lambda I\right) \theta$
- Otherwise, try case 2
- $\|\theta\|_{2}^{2}-1 \leq 0$
- $\lambda \geq 0$
- $\lambda=0$ or $\|\theta\|_{2}^{2}=1$
- Case 2: If $\|\theta\|_{2}^{2}=1$, then
- $\|\theta\|_{2}^{2}-1 \leq 0$ is satisfied automatically
- $X^{\top} Y=\left(X^{\top} X+\lambda I\right) \theta \Rightarrow \theta=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} Y$
- Solve $\|\theta\|_{2}^{2}=1$ and $\theta=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} Y$ for θ and λ
- If $\lambda \geq 0$, we are done

Solving the Optimality Conditions

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& a_{j}^{\top} x=b_{j}, j=1, \ldots, m
\end{array}
$$

- Equations to solve: KKT conditions
- Stationarity $\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$
- Primal feasibility: $g_{i}\left(x^{*}\right) \leq 0, a_{i}^{\top} x^{*}-b_{i}=0$
- Dual feasibility: $\lambda^{*} \geq 0$
- Complementary slackness: $\lambda_{i}^{*} g_{i}\left(x^{*}\right)=0, i=1, \ldots, n$
- Use numerical equation solvers, or do it by hand (as much as possible)
- For convex problems, KKT conditions are necessary and sufficient
- For non-convex problems, KKT conditions are just necessary

Numerical Solution: Gradient Methods

- Start from x^{0} and construct a sequence x^{k} such that $x^{k} \rightarrow x^{*}$
- Calculate x^{k+1} from x^{k} by "going down the gradient"
- Unconstrained case: $x^{k+1}=x^{k}-\alpha^{k} \nabla f(x)$, $\alpha^{k}>0$

Numerical Solution: Gradient Methods

- Start from x^{0} and construct a sequence x^{k} such that $x^{k} \rightarrow x^{*}$
- Calculate x^{k+1} from x^{k} by "going down the gradient"
- Unconstrained case: $x^{k+1}=x^{k}-\alpha^{k} \nabla f(x)$, $\alpha^{k}>0$
- More generally, $x^{k+1}=x^{k}+\alpha^{k} d^{k}$ for some d such that

$$
\nabla f\left(x^{k}\right) \cdot d^{k}<0
$$

- Tuning parameters: descent direction d^{k}, and step size α^{k}

Descent Direction

- Steepest descent: $d^{k}=-\nabla f\left(x^{k}\right)$
- $x^{k+1}=x^{k}-\alpha^{k} \nabla f(x)$
- Simple but sometimes leads to slow convergence

Steepest Descent (Gradient Descent) Example

- Line fitting: $f(\theta)=\|X \theta-Y\|_{2}^{2}$
- $\frac{\partial f}{\partial \theta}=2 X^{\top} X \theta-2 X^{\top} Y$

```
theta_last = [-2; -2];
dtheta = inf;
maxIter = 500;
for k = 1:maxIter
    if (norm(dtheta) <= 0.001)
        break;
    end
    alpha = 0.1/k;
    theta = theta_last - alpha*(2*X'*X*theta_last - 2*X'*Y);
    dtheta = theta_last - theta;
    theta_last = theta;
end
```


Steepest Descent (Gradient Descent) Example

- Line fitting: $f(\theta)=\|X \theta-Y\|_{2}^{2}$
- $\frac{\partial f}{\partial \theta}=2 X^{\top} X \theta-2 X^{\top} Y$

Descent Direction

- Steepest descent: $d^{k}=-\nabla f\left(x^{k}\right)$
- $x^{k+1}=x^{k}-\alpha^{k} \nabla f(x)$
- Simple but sometimes leads to slow convergence
- Newton's method: $d^{k}=\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)$

- Minimize the quadratic approximation:

$$
f^{k}(x)=f\left(x^{k}\right)+\nabla f\left(x^{k}\right)^{\top}\left(x-x^{k}\right)+\frac{1}{2}\left(x-x^{k}\right)^{\top} \nabla^{2} f\left(x^{k}\right)\left(x-x^{k}\right)
$$

- Set gradient to zero to obtain next iterate

$$
\begin{aligned}
& \nabla f^{k}(x)=\nabla f\left(x^{k}\right)+\nabla^{2} f\left(x^{k}\right)\left(x-x^{k}\right)=0 \\
& \quad \Rightarrow x^{k+1}=x^{k}-\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)
\end{aligned}
$$

- Fast convergence, but matrix inverse required
- Alternatively, use an algorithm to minimize a quadratic function

Step Size

- Recall $x^{k+1}=x^{k}+\alpha^{k} d^{k}$, with $\nabla f\left(x^{k}\right)^{\top} d^{k}<0$
- Line search: choose $\alpha^{k}=\min _{\alpha \geq 0} f\left(x^{k}+\alpha^{k} d^{k}\right)$
- Requires minimization
- Constant step size: $\alpha^{k}=\alpha$
- May not converge
- Diminishing step size: $\alpha^{k} \rightarrow 0$
- Still need to explore all regions $\sum \alpha^{k}=\infty$
- For example: $\alpha^{k}=\frac{\alpha^{0}}{k}$

Step Size Example

- Steepest descent, $\alpha^{k}=\alpha^{0} / k$

Step Size Example

- Steepest descent, $\alpha^{k}=\alpha^{0}$ (small steps)

Step Size Example

- Steepest descent, $\alpha^{k}=\alpha^{0}$ (large steps)

Step Size Example

- Steepest descent, $\alpha^{k}=\alpha^{0} / k^{2}$ (steps do not sum to $\infty: \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$)

Dealing with Constraints

- Idea 1: Apply descent step, and project point to feasible set
- Proximal gradient methods
- Difficulty: Computing the projected point
-Idea 2: Set penalty to ∞ for constraint violation
- Barrier functions

