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Textbook

• S.	Boyd	and	L.	Vandenberghe,	Convex	Optimization.	Cambridge	
University	Press,	2008.



Outline

• Optimization	program
• Examples	and	classes

• Convex	optimization
• Convex	functions
• Optimality	conditions

• Numerical	solutions



Optimality	Conditions	for	Convex	Programs

• Unconstrained	case:	

• ∇𝑓 𝑥 = 0

minimize 𝑓 𝑥



Optimality	Conditions	for	Convex	Programs

• Inequality	constraints	only:	

• Penalty	view	point:	penalize	constraint	violation
• Lagrangian:	𝐿 𝑥, 𝜆 = 𝑓 𝑥 + ∑ 𝜆0𝑔0 𝑥2

034 , 𝜆0 ≥ 0

• Optimality	conditions
• Stationarity:	∇6𝐿 𝑥∗, 𝜆∗ = 0
• Primal	feasibility:	𝑔0 𝑥∗ ≤ 0
• Dual	feasibility:	𝜆∗ ≥ 0
• Complementary	slackness:	𝜆0

∗𝑔0 𝑥∗ = 0, 𝑖 = 1, … , 𝑛

minimize 𝑓 𝑥
subject to 𝑔0 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛



Optimality	Conditions	for	Convex	Programs

• Stationarity:	∇6𝐿 𝑥∗, 𝜆∗ = 0
• Lagrangian:	

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + E 𝜆0𝑔0 𝑥
2

034

, 𝜆0 ≥ 0

• Take	gradient	and	set	to	zero:

0 = ∇𝑓 𝑥 + E 𝜆0∇𝑔0 𝑥
2

034

∇𝑓 𝑥  = − E 𝜆0∇𝑔0 𝑥
2

034
• Since	𝜆0 ≥ 0,	gradient	of	𝑓 𝑥 must	
point	“away”	from	gradients	of	active	
constraint	functions
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Optimality	Conditions	for	Convex	Programs

• Primal	feasibility:	𝑔0 𝑥∗ ≤ 0
• Constraints	must	be	satisfied

• Dual	feasibility:	𝜆∗ ≥ 0
• Penalty	view	point



Optimality	Conditions	for	Convex	Programs

• Complementary	slackness:	
𝜆0

∗𝑔0 𝑥∗ = 0, 𝑖 = 1, … , 𝑛
• Lagrangian:	

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + E 𝜆0𝑔0 𝑥
2

034

,  𝜆0 ≥ 0

• If	𝑔0 𝑥∗ < 0,	then	the	constraint	
is	not	active,	so	𝜆0

∗ is	set	to	0 to	not	
decrease	the	Lagrangian
• If	𝑔0 𝑥∗ = 0,	then	the	constraint	
is	active,	so	𝜆0

∗ is	free	to	be	positive



Optimality	Conditions	for	Convex	Programs

• Full	optimization	problem:

• Penalty	view	point:
• Lagrangian:	𝐿 𝑥, 𝜆 = 𝑓 𝑥 + ∑ 𝜆0𝑔0 𝑥2

034 + ∑ 𝜇I 𝑎I
K𝑥 − 𝑏I

M
I34 , 𝜆0 ≥ 0

• Karush-Kuhn-Tucker	(KKT)	Conditions:
• Stationarity	∇6𝐿 𝑥∗, 𝜆∗, 𝜇∗ = 0
• Primal	feasibility:	𝑔0 𝑥∗ ≤ 0, 𝑎0

K𝑥∗ − 𝑏0 = 0
• Dual	feasibility:	𝜆∗ ≥ 0
• Complementary	slackness:	𝜆0

∗𝑔0 𝑥∗ = 0, 𝑖 = 1, … , 𝑛

• Solve	above	systems	of	equations	to	obtain	optimum

minimize 𝑓 𝑥

subject to 𝑔0 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛
𝑎I

K𝑥 = 𝑏I, 𝑗 = 1, … , 𝑚



Solving	Convex	Optimization	Problems

• Solve	the	optimality	conditions

• Gradient	methods	for	approximating	solutions	to	convex	optimization	
problems
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Example:	Least	Squares

• Scalar	example:
• Data:	 𝑥0, 𝑦0 034

2 ,	𝑥0, 𝑦0 ∈ ℝ
• Model:	𝑦 = 𝑚𝑥 + 𝑏, 𝑚, 𝑏 ∈ ℝ
• Sum	of	error	of	model:	∑ 𝑦0 − 𝑚𝑥0 − 𝑏 S2

034
• No	constraints:	allow	any 𝑚, 𝑏

• Error	in	matrix	form:	𝑒0 = 𝑦0 − 𝑥0 1 𝑚
𝑏

• Stacking	the	data	points:	𝐸0 =

𝑦4
𝑦S
⋮

𝑦2

−

𝑥4 1
𝑥S 1
⋮ ⋮

𝑥2 1

𝑚
𝑏

minimize
W

𝑋𝜃 − 𝑌 S
S

𝜃𝑋𝑌



Optimality	Conditions	for	Convex	Programs

• Full	optimization	problem:

• Penalty	view	point:
• Lagrangian:	𝐿 𝑥, 𝜆 = 𝑓 𝑥 + ∑ 𝜆0𝑔0 𝑥2
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M
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• Karush-Kuhn-Tucker	(KKT)	Conditions:
• Stationarity	∇6𝐿 𝑥∗, 𝜆∗, 𝜇∗ = 0
• Primal	feasibility:	𝑔0 𝑥∗ ≤ 0, 𝑎0

K𝑥∗ − 𝑏0 = 0
• Dual	feasibility:	𝜆∗ ≥ 0
• Complementary	slackness:	𝜆0

∗𝑔0 𝑥∗ = 0, 𝑖 = 1, … , 𝑛

• Solve	above	systems	of	equations	to	obtain	optimum

minimize 𝑓 𝑥

subject to 𝑔0 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛
𝑎I

K𝑥 = 𝑏I, 𝑗 = 1, … , 𝑚

𝛁𝒇 𝒙 = 𝟎



Example:	Least	Squares

• Analytic	solution	available!
• Objective:	𝑓 𝜃 = 𝑋𝜃 − 𝑌 S

S,	set	derivative	to	zero
• 𝑓 𝜃 = 𝑋𝜃 − 𝑌 K 𝑋𝜃 − 𝑌
• 𝑓 𝜃 = 𝜃K𝑋K𝑋𝜃 − 2𝑌K𝑋𝜃 + 𝑌K𝑌

𝜕𝑓
𝜕𝜃

= 2𝑋K𝑋𝜃 − 2𝑋K𝑌
0 = 2𝑋K𝑋𝜃 − 2𝑋K𝑌

𝑋K𝑌 = 𝑋K𝑋𝜃
𝜃 = 𝑋K𝑋 a4𝑋K𝑌

minimize
W

𝑋𝜃 − 𝑌 S
S



Example:	Least	Squares

• Lagrangian:	

• Stationarity	∇6𝐿 𝑥∗, 𝜆∗, 𝜇∗ = 0

• Primal	feasibility:	𝑔0 𝑥∗ ≤ 0, 𝑎0
K𝑥∗ − 𝑏0 = 0

• Dual	feasibility:	𝜆∗ ≥ 0

• Complementary	slackness:	𝜆0
∗𝑔0 𝑥∗ = 0, 𝑖 = 1, … , 𝑛

minimize
W

subject to 𝜃4
S + 𝜃S

S ≤ 1

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + E 𝜆0𝑔0 𝑥
2

034
𝐿 𝜃, 𝜆 = 𝑋𝜃 − 𝑌 S

S + 𝜆 𝜃 S
S − 1

𝑋𝜃 − 𝑌 S
S minimize

W

subject to 𝜃 S
S − 1 ≤ 0

𝑋𝜃 − 𝑌 S
S

∇W𝐿 𝜃, 𝜆 = 2𝑋K𝑋𝜃 − 2𝑋K𝑌 + 2𝜆𝜃
0 = 𝑋K𝑋𝜃 − 𝑋K𝑌 + 𝜆𝜃

𝑋K𝑌 = 𝑋K𝑋 + 𝜆𝐼 𝜃

𝜃 S
S − 1 ≤ 0

𝜆 ≥ 0

𝜆 𝜃 S
S − 1 = 0

𝜆 = 0 or	 𝜃 S
S = 1



Example:	Least	Squares

• Case	1:	If	𝜆 = 0,	then
• 𝜆 ≥ 0 is	satisfied	automatically
• 𝑋K𝑌 = 𝑋K𝑋 𝜃 ⇒ 𝜃 = 𝑋K𝑋 a4𝑋K𝑌
• If	 𝜃 S

S − 1 ≤ 0 happens	to	be	true,	we	are	done
• Otherwise,	try	case	2

• Case	2:	If	 𝜃 S
S = 1,	then

• 𝜃 S
S − 1 ≤ 0 is	satisfied	automatically

• 𝑋K𝑌 = 𝑋K𝑋 + 𝜆𝐼 𝜃 ⇒ 𝜃 = 𝑋K𝑋 + 𝜆𝐼 a4𝑋K𝑌
• Solve	 𝜃 S

S = 1 and	𝜃 = 𝑋K𝑋 + 𝜆𝐼 a4𝑋K𝑌 for	𝜃 and	𝜆
• If	𝜆 ≥ 0,	we	are	done

KKT	conditions:
• 𝑋K𝑌 = 𝑋K𝑋 + 𝜆𝐼 𝜃
• 𝜃 S

S − 1 ≤ 0
• 𝜆 ≥ 0
• 𝜆 = 0 or	 𝜃 S

S = 1



Solving	the	Optimality	Conditions

• Equations	to	solve:	KKT	conditions
• Stationarity	∇6𝐿 𝑥∗, 𝜆∗, 𝜇∗ = 0
• Primal	feasibility:	𝑔0 𝑥∗ ≤ 0, 𝑎0

K𝑥∗ − 𝑏0 = 0
• Dual	feasibility:	𝜆∗ ≥ 0
• Complementary	slackness:	𝜆0

∗𝑔0 𝑥∗ = 0, 𝑖 = 1, … , 𝑛

• Use	numerical	equation	solvers,	or	do	it	by	hand	(as	much	as	possible)

• For	convex	problems,	KKT	conditions	are	necessary	and	sufficient
• For	non-convex	problems,	KKT	conditions	are	just	necessary

minimize 𝑓 𝑥
subject to 𝑔0 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

𝑎I
K𝑥 = 𝑏I, 𝑗 = 1, … , 𝑚



Numerical	Solution:	Gradient	Methods	

• Start	from	𝑥d and	construct	a	sequence	𝑥e
such	that	𝑥e → 𝑥∗

• Calculate	𝑥eg4 from	𝑥e by	“going down	the	
gradient”

• Unconstrained	case:	𝑥eg4 = 𝑥e − 𝛼e∇𝑓 𝑥 ,
𝛼e > 0

• More	generally,	𝑥eg4 = 𝑥e + 𝛼e𝑑e for	some	
𝑑 such	that	

∇𝑓 𝑥e ⋅ 𝑑e < 0

• Tuning parameters:	descent	direction	𝑑e,	
and	step	size	𝛼e
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Descent	Direction

• Steepest	descent:	𝑑e = −∇𝑓 𝑥e

• 𝑥eg4 = 𝑥e − 𝛼e∇𝑓 𝑥
• Simple	but	sometimes	leads	to	slow	convergence



Steepest	Descent	(Gradient	Descent)	Example

• Line	fitting:	𝑓 𝜃 = 𝑋𝜃 − 𝑌 S
S

• lm
lW = 2𝑋K𝑋𝜃 − 2𝑋K𝑌

𝜃eg4 = 𝜃e −
0.1
𝑘 2𝑋K𝑋𝜃 − 2𝑋K𝑌	

𝛼e



Steepest	Descent	(Gradient	Descent)	Example

• Line	fitting:	𝑓 𝜃 = 𝑋𝜃 − 𝑌 S
S

• lm
lW = 2𝑋K𝑋𝜃 − 2𝑋K𝑌

Previously:	𝜃 = 𝑋K𝑋 a4𝑋K𝑌
𝜃eg4 = 𝜃e −

0.1
𝑘 2𝑋K𝑋𝜃 − 2𝑋K𝑌	

𝛼e



Descent	Direction

• Steepest	descent:	𝑑e = −∇𝑓 𝑥e

• 𝑥eg4 = 𝑥e − 𝛼e∇𝑓 𝑥
• Simple	but	sometimes	leads	to	slow	convergence

• Newton’s method:	𝑑e = ∇S𝑓 𝑥e
a4

∇𝑓 𝑥e

• Minimize the	quadratic	approximation:

𝑓e 𝑥 = 𝑓 𝑥e + ∇𝑓 𝑥e K 𝑥 − 𝑥e +
1
2

𝑥 − 𝑥e K∇S𝑓 𝑥e 𝑥 − 𝑥e

• Set	gradient	to	zero	to	obtain	next	iterate
∇𝑓e 𝑥 = ∇𝑓 𝑥e + ∇S𝑓 𝑥e 𝑥 − 𝑥e = 0

⇒ 𝑥eg4 = 𝑥e − ∇S𝑓 𝑥e
a4

∇𝑓 𝑥e

• Fast	convergence,	but	matrix	inverse	required
• Alternatively,	use	an	algorithm	to	minimize	a	quadratic	function



Step	Size

• Recall	𝑥eg4 = 𝑥e + 𝛼e𝑑e,	with	∇𝑓 𝑥e K𝑑e < 0

• Line	search:	choose	𝛼e = min
pqd

𝑓 𝑥e + 𝛼e𝑑e

• Requires	minimization

• Constant	step	size:	𝛼e = 𝛼
• May	not	converge

• Diminishing	step	size:	𝛼e → 0
• Still	need	to	explore	all	regions	∑ 𝛼e = ∞
• For	example:	𝛼e = ps

e



Step	Size	Example

• Steepest	descent,	𝛼e = 𝛼d/𝑘



Step	Size	Example

• Steepest	descent,	𝛼e = 𝛼d (small	steps)



Step	Size	Example

• Steepest	descent,	𝛼e = 𝛼d (large	steps)



Step	Size	Example
• Steepest	descent,	𝛼e = 𝛼d/𝑘S (steps	do	not	sum	to	∞:	∑ 4

eu
v
e34 = wu

x
)



Dealing	with	Constraints

• Idea	1:	Apply	descent	step,	and	project	
point	to	feasible	set
• Proximal	gradient	methods
• Difficulty:	Computing	the	projected	point

• Idea	2:	Set	penalty	to	∞ for	constraint	
violation
• Barrier	functions


