

Convex Optimization: Part II

CMPT 419/983

Mo Chen

SFU Computing Science

23/09/2018

• S. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2008.

Outline

- Optimization program
 - Examples and classes
- Convex optimization
 - Convex functions
 - Optimality conditions
- Numerical solutions

• Unconstrained case: minimize f(x)

• $\nabla f(x) = 0$

• Inequality constraints only:

minimize f(x)subject to $g_i(x) \le 0, i = 1, ..., n$

- Penalty view point: penalize constraint violation
 - Lagrangian: $L(x, \lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x)$, $\lambda_i \ge 0$
- Optimality conditions
 - Stationarity: $\nabla_{\chi} L(x^*, \lambda^*) = 0$
 - Primal feasibility: $g_i(x^*) \leq 0$
 - Dual feasibility: $\lambda^* \ge 0$
 - Complementary slackness: $\lambda_i^* g_i(x^*) = 0$, i = 1, ..., n

- Stationarity: $\nabla_{x} L(x^*, \lambda^*) = 0$
 - Lagrangian:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x), \qquad \lambda_i \ge 0$$

• Take gradient and set to zero: $0 = \nabla f(x) + \sum_{i=1}^{n} \lambda_i \nabla g_i(x)$

$$\nabla f(x) = -\sum_{i=1}^{n} \lambda_i \nabla g_i(x)$$

• Since $\lambda_i \ge 0$, gradient of f(x) must point "away" from gradients of active constraint functions

- Stationarity: $\nabla_{x} L(x^*, \lambda^*) = 0$
 - Lagrangian:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x), \qquad \lambda_i \ge 0$$

• Take gradient and set to zero: $0 = \nabla f(x) + \sum_{i=1}^{n} \lambda_i \nabla g_i(x)$

$$\nabla f(x) = -\sum_{i=1}^{n} \lambda_i \nabla g_i(x)$$

• Since $\lambda_i \ge 0$, gradient of f(x) must point "away" from gradients of active constraint functions

- Stationarity: $\nabla_{x} L(x^*, \lambda^*) = 0$
 - Lagrangian:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x), \qquad \lambda_i \ge 0$$

• Take gradient and set to zero: $0 = \nabla f(x) + \sum_{i=1}^{n} \lambda_i \nabla g_i(x)$

$$\nabla f(x) = -\sum_{i=1}^{n} \lambda_i \nabla g_i(x)$$

• Since $\lambda_i \ge 0$, gradient of f(x) must point "away" from gradients of active constraint functions

- Primal feasibility: $g_i(x^*) \leq 0$
 - Constraints must be satisfied
- Dual feasibility: $\lambda^* \ge 0$
 - Penalty view point

- Complementary slackness: $\lambda_i^* g_i(x^*) = 0, i = 1, ..., n$
 - Lagrangian:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x), \qquad \lambda_i \ge 0$$

- If $g_i(x^*) < 0$, then the constraint is not active, so λ_i^* is set to 0 to not decrease the Lagrangian
- If $g_i(x^*) = 0$, then the constraint is active, so λ_i^* is free to be positive

• Full optimization problem: minimize f(x)

subject to
$$g_i(x) \le 0, i = 1, ..., n$$

 $a_j^{\mathsf{T}} x = b_j, j = 1, ..., m$

- Penalty view point:
 - Lagrangian: $L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x) + \sum_{j=1}^{m} \mu_j \left(a_j^\top x b_j \right), \ \lambda_i \ge 0$
- Karush-Kuhn-Tucker (KKT) Conditions:
 - Stationarity $\nabla_{x}L(x^{*},\lambda^{*},\mu^{*})=0$
 - Primal feasibility: $g_i(x^*) \leq 0$, $a_i^{\top} x^* b_i = 0$
 - Dual feasibility: $\lambda^* \ge 0$
 - Complementary slackness: $\lambda_i^* g_i(x^*) = 0$, i = 1, ..., n
- Solve above systems of equations to obtain optimum

Solving Convex Optimization Problems

- Solve the optimality conditions
- Gradient methods for approximating solutions to convex optimization problems

• Full optimization problem: minimize f(x)

subject to
$$g_i(x) \le 0, i = 1, ..., n$$

 $a_j^{\mathsf{T}} x = b_j, j = 1, ..., m$

- Penalty view point:
 - Lagrangian: $L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x) + \sum_{j=1}^{m} \mu_j (a_j^{\mathsf{T}} x b_j), \ \lambda_i \ge 0$
- Karush-Kuhn-Tucker (KKT) Conditions:
 - Stationarity $\nabla_{\chi} L(x^*, \lambda^*, \mu^*) = 0$
 - Primal feasibility: $g_i(x^*) \leq 0$, $a_i^{\mathsf{T}} x^* b_i = 0$
 - Dual feasibility: $\lambda^* \ge 0$
 - Complementary slackness: $\lambda_i^* g_i(x^*) = 0$, i = 1, ..., n
- Solve above systems of equations to obtain optimum

 $\underset{\theta}{\text{minimize}} \| X\theta - Y \|_2^2$

- Scalar example:
 - Data: $\{x_i, y_i\}_{i=1}^n, x_i, y_i \in \mathbb{R}$
 - Model: $y = mx + b, m, b \in \mathbb{R}$
 - Sum of error of model: $\sum_{i=1}^{n} (y_i mx_i b)^2$
 - No constraints: allow any m, b
- Error in matrix form: $e_i = y_i \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$

• Stacking the data points:
$$E_{i} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix} - \begin{bmatrix} x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$$
$$Y = \begin{bmatrix} x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$$

• Full optimization problem: minimize f(x)

subject to
$$g_i(x) \le 0, i = 1, ..., n$$

 $a_j^{\mathsf{T}} x = b_j, j = 1, ..., m$

- Penalty view point:
 - Lagrangian: $L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x) + \sum_{j=1}^{m} \mu_j (a_j^\top x b_j), \ \lambda_i \ge 0$
- Karush-Kuhn-Tucker (KKT) Conditions:
 - Stationarity $\nabla_{x} L(x^*, \lambda^*, \mu^*) = 0$ \frown $\nabla f(x) = 0$
 - Primal feasibility: $g_i(x^*) \leq 0$, $a_i^{\mathsf{T}} x^* b_i = 0$
 - Dual feasibility: $\lambda^* \ge 0$
 - Complementary slackness: $\lambda_i^* g_i(x^*) = 0, \ i = 1, ..., n$
- Solve above systems of equations to obtain optimum

 $\underset{\theta}{\text{minimize}} \| X\theta - Y \|_2^2$

- Analytic solution available!
 - Objective: $f(\theta) = ||X\theta Y||_2^2$, set derivative to zero
 - $f(\theta) = (X\theta Y)^{\mathsf{T}}(X\theta Y)$
 - $f(\theta) = \theta^{\mathsf{T}} X^{\mathsf{T}} X \theta 2Y^{\mathsf{T}} X \theta + Y^{\mathsf{T}} Y$

$$\frac{\partial f}{\partial \theta} = 2X^{\mathsf{T}}X\theta - 2X^{\mathsf{T}}Y$$
$$0 = 2X^{\mathsf{T}}X\theta - 2X^{\mathsf{T}}Y$$
$$X^{\mathsf{T}}Y = X^{\mathsf{T}}X\theta$$
$$\theta = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

 $L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i g_i(x)$

$$\begin{array}{ll} \text{minimize} & \|X\theta - Y\|_2^2\\ \text{subject to} & \theta_1^2 + \theta_2^2 \le 1 \end{array}$$

• Lagrangian:

• Stationarity
$$\nabla_x L(x^*, \lambda^*, \mu^*) = 0$$

$$\begin{array}{ll} \underset{\theta}{\text{minimize}} & \|X\theta - Y\|_2^2 \\ \text{subject to} & \|\theta\|_2^2 - 1 \le 0 \end{array}$$

 $L(\theta, \lambda) = \|X\theta - Y\|_2^2 + \lambda(\|\theta\|_2^2 - 1)$

 $\nabla_{\theta} L(\theta, \lambda) = 2X^{\mathsf{T}} X \theta - 2X^{\mathsf{T}} Y + 2\lambda \theta$ $0 = X^{\mathsf{T}} X \theta - X^{\mathsf{T}} Y + \lambda \theta$ $X^{\mathsf{T}} Y = (X^{\mathsf{T}} X + \lambda I) \theta$ $\|\theta\|_{2}^{2} - 1 \leq 0$

 $\lambda > 0$

- Primal feasibility: $g_i(x^*) \le 0$, $a_i^{\mathsf{T}} x^* b_i = 0$
- Dual feasibility: $\lambda^* \ge 0$
- Complementary slackness: $\lambda_i^* g_i(x^*) = 0$, i = 1, ..., n

 $\lambda(\|\theta\|_2^2 - 1) = 0$ $\lambda = 0 \text{ or } \|\theta\|_2^2 = 1$

- Case 1: If $\lambda = 0$, then
 - $\lambda \ge 0$ is satisfied automatically
 - $X^{\top}Y = (X^{\top}X)\theta \Rightarrow \theta = (X^{\top}X)^{-1}X^{\top}Y$
 - If $\|\theta\|_2^2 1 \le 0$ happens to be true, we are done
 - Otherwise, try case 2
- Case 2: If $\|\theta\|_2^2 = 1$, then
 - $\|\theta\|_2^2 1 \le 0$ is satisfied automatically
 - $X^{\top}Y = (X^{\top}X + \lambda I)\theta \Rightarrow \theta = (X^{\top}X + \lambda I)^{-1}X^{\top}Y$
 - Solve $\|\theta\|_2^2 = 1$ and $\theta = (X^T X + \lambda I)^{-1} X^T Y$ for θ and λ
 - If $\lambda \geq 0$, we are done

KKT conditions:

- $X^{\top}Y = (X^{\top}X + \lambda I)\theta$
- $\|\theta\|_2^2 1 \le 0$
- $\lambda \ge 0$
- $\lambda = 0$ or $\|\theta\|_2^2 = 1$

Solving the Optimality Conditions

minimize f(x)

- Equations to solve: KKT conditions
 - Stationarity $\nabla_{x} L(x^*, \lambda^*, \mu^*) = 0$
 - Primal feasibility: $g_i(x^*) \leq 0$, $a_i^{\mathsf{T}} x^* b_i = 0$
 - Dual feasibility: $\lambda^* \ge 0$
 - Complementary slackness: $\lambda_i^* g_i(x^*) = 0$, i = 1, ..., n
- Use numerical equation solvers, or do it by hand (as much as possible)
- For convex problems, KKT conditions are necessary and sufficient
- For non-convex problems, KKT conditions are just necessary

subject to $g_i(x) \le 0, i = 1, ..., n$ $a_j^{\mathsf{T}} x = b_j, j = 1, ..., m$

Numerical Solution: Gradient Methods

- Start from x^0 and construct a sequence x^k such that $x^k \rightarrow x^*$
 - Calculate x^{k+1} from x^k by "going down the gradient"
 - Unconstrained case: $x^{k+1} = x^k \alpha^k \nabla f(x)$, $\alpha^k > 0$

Numerical Solution: Gradient Methods

- Start from x^0 and construct a sequence x^k such that $x^k \rightarrow x^*$
 - Calculate x^{k+1} from x^k by "going down the gradient"
 - Unconstrained case: $x^{k+1} = x^k \alpha^k \nabla f(x)$, $\alpha^k > 0$
- More generally, $x^{k+1} = x^k + \alpha^k d^k$ for some d such that $\nabla f(x^k) \cdot d^k < 0$
- Tuning parameters: descent direction d^k , and step size α^k

Descent Direction

- Steepest descent: $d^k = -\nabla f(x^k)$
 - $x^{k+1} = x^k \alpha^k \nabla f(x)$
 - Simple but sometimes leads to slow convergence

Steepest Descent (Gradient Descent) Example

• Line fitting:
$$f(\theta) = ||X\theta - Y||_2^2$$

• $\frac{\partial f}{\partial \theta} = 2X^T X \theta - 2X^T Y$

```
theta_last = [-2; -2];
dtheta = inf;
maxIter = 500;
```

end

```
alpha = 0.1/k;
theta = theta_last - alpha*(2*X'*X*theta_last - 2*X'*Y);
dtheta = theta_last - theta;
theta_last = theta;
```


end

Steepest Descent (Gradient Descent) Example

Descent Direction

- Steepest descent: $d^k = -\nabla f(x^k)$
 - $x^{k+1} = x^k \alpha^k \nabla f(x)$
 - Simple but sometimes leads to slow convergence

• Newton's method:
$$d^k = \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$$

Minimize the quadratic approximation:

$$f^{k}(x) = f(x^{k}) + \nabla f(x^{k})^{\mathsf{T}}(x - x^{k}) + \frac{1}{2}(x - x^{k})^{\mathsf{T}} \nabla^{2} f(x^{k})(x - x^{k})$$

0

-1

-2

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

• Set gradient to zero to obtain next iterate

$$\nabla f^{k}(x) = \nabla f(x^{k}) + \nabla^{2} f(x^{k})(x - x^{k}) = 0$$

$$\Rightarrow x^{k+1} = x^{k} - \left(\nabla^{2} f(x^{k})\right)^{-1} \nabla f(x^{k})$$

- Fast convergence, but matrix inverse required
- Alternatively, use an algorithm to minimize a quadratic function

Step Size

- Recall $x^{k+1} = x^k + \alpha^k d^k$, with $\nabla f(x^k)^T d^k < 0$
- Line search: choose $\alpha^k = \min_{\alpha \ge 0} f(x^k + \alpha^k d^k)$
 - Requires minimization
- Constant step size: $\alpha^k = \alpha$
 - May not converge
- Diminishing step size: $\alpha^k \to 0$
 - Still need to explore all regions $\sum \alpha^k = \infty$
 - For example: $\alpha^k = \frac{\alpha^0}{k}$

• Steepest descent, $\alpha^k = \alpha^0/k$

• Steepest descent, $\alpha^k = \alpha^0$ (small steps)

• Steepest descent, $\alpha^k = \alpha^0$ (large steps)

• Steepest descent, $\alpha^k = \alpha^0/k^2$ (steps do not sum to ∞ : $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$)

Dealing with Constraints

- Idea 1: Apply descent step, and project point to feasible set
 - Proximal gradient methods
 - Difficulty: Computing the projected point
- Idea 2: Set penalty to ∞ for constraint violation
 - Barrier functions

