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Textbook

• S.	Boyd	and	L.	Vandenberghe,	Convex	Optimization.	Cambridge	
University	Press,	2008.



Outline

• Optimization	program
• Examples	and	classes

• Convex	optimization
• Convex	functions
• Optimality	conditions

• Numerical	solutions



Optimization	Program:	Terminology

• For	now,	assume	𝑓, 𝑔$, ℎ& are	twice	differentiable

• Look	for	an	optimal	solution,	the	vector	𝑥∗

• Locally	optimal:	𝑥∗ is	a	local	minimum	of	𝑓 𝑥
• Globally	optimal:	𝑥∗ is	a	global	minimum	of	𝑓 𝑥

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ& 𝑥 = 0, 𝑗 = 1, … , 𝑚

Objective	function
Inequality	constraints
Equality	constraints





Optimization	Program:	Examples

• Applications:	Portfolio	management

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ& 𝑥 = 0, 𝑗 = 1, … , 𝑚

maximize Expected	profit

subject to Maximum	budget
Maximum	acceptable	risk

min 𝑓 𝑥 = − max −𝑓 𝑥



Optimization	Program:	Examples

• Applications:	Portfolio	management

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ& 𝑥 = 0, 𝑗 = 1, … , 𝑚

minimize Overall	risk

subject to Maximum	budget
Minimum	acceptable	expected	profit

Constraints	vs.	objectives
• Sometimes	constraints	can	be	“moved”	to	the	objective	as	a	“penalty”



Optimization	Program:	Examples

• Applications:	Building	heating,	ventilation,	and	air	conditioning

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ& 𝑥 = 0, 𝑗 = 1, … , 𝑚

minimize Energy	consumption

subject to Acceptable	temperature	range	by	location
Acceptable	noise	level
Internal	and	external	heat	transfer



Optimization	Program:	Examples

• Applications:	Robotic	trajectory	planning

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ& 𝑥 = 0, 𝑗 = 1, … , 𝑚

minimize Fuel	consumption

subject to Goal	reaching
System	dynamics
Collision	avoidance



Optimization	Program:	Examples

• Applications:	Robotic	trajectory	planning

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ& 𝑥 = 0, 𝑗 = 1, … , 𝑚

minimize Distance	to	goal

subject to Fuel	limitations
System	dynamics
Collision	avoidance



Optimization	Program:	Examples

• Applications:	Machine	learning

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ& 𝑥 = 0, 𝑗 = 1, … , 𝑚

maximize Performance	(eg. Accuracy	of	object	recognition)

subject to Problem	constraints



Optimization	Program

• Very	difficult	to	solve	in	general
• Trade-offs	to	consider:	computation	time,	solution	optimality

• Easy	cases:
• Find	global	optimum	for	linear	program:	𝑓, 𝑔$, ℎ& are	linear
• Find	global	optimum	for	convex	program:	𝑓, 𝑔$ are	convex,	ℎ& is	linear
• Find	local	optimum	for	nonlinear	program:	𝑓, 𝑔$, ℎ& are	differentiable

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛

ℎ& 𝑥 = 0, 𝑗 = 1, … , 𝑚



Example:	Least	Squares

• Scalar	example:
• Data:	 𝑥$, 𝑦$ $CD

E ,	𝑥$, 𝑦$ ∈ ℝ
• Model:	𝑦 = 𝑚𝑥 + 𝑏, 𝑚, 𝑏 ∈ ℝ
• Sum	of	error	of	model:	D

J
∑ 𝑦$ − 𝑚𝑥$ − 𝑏 JE

$CD
• No	constraints:	allow	any 𝑚, 𝑏

• Error	in	matrix	form:	𝑒$ = 𝑦$ − 𝑥$ 1 𝑚
𝑏

• Stacking	the	data	points:	𝐸$ =

𝑦D
𝑦J
⋮

𝑦E

−

𝑥D 1
𝑥J 1
⋮ ⋮

𝑥E 1

𝑚
𝑏

minimize
O

1
2 𝑋𝜃 − 𝑌 J

J

𝜃𝑋𝑌



Example:	Least	Squares

• Analytic	solution	available!
• Objective:	𝑓 𝜃 = D

J 𝑋𝜃 − 𝑌 J
J,	set	derivative	to	zero

• 𝑓 𝜃 = D
J 𝑋𝜃 − 𝑌 T 𝑋𝜃 − 𝑌

• 𝑓 𝜃 = D
J 𝜃T𝑋T𝑋𝜃 − 𝑌T𝑋𝜃 + D

J 𝑌T𝑌
𝜕𝑓
𝜕𝜃

= 𝑋T𝑋𝜃 − 𝑋T𝑌
0 = 𝑋T𝑋𝜃 − 𝑋T𝑌

𝑋T𝑌 = 𝑋T𝑋𝜃
𝜃 = 𝑋T𝑋 VD𝑋T𝑌

minimize
O

1
2 𝑋𝜃 − 𝑌 J

J



• Convex	function
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦 for	all	𝑥, 𝑦 ∈ ℝE,	
for	all	𝜃 ∈ 0,1

• Sublevel	sets	of	convex	functions,	 𝑥: 𝑓 𝑥 ≤ 𝐶 ,	are	
convex
• Convex shape 𝒞:

𝑥D, 𝑥J ∈ 𝒞, 𝜃 ∈ 0,1 ⇒ 𝜃𝑥D + 1 − 𝜃 𝑥J ∈ 𝒞
• Superlevel	sets	of	convex	functions	are	not convex!

Convex	Programs
minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛,	

where	𝑔$ 𝑥 are	convex

𝑥 𝑦𝜃𝑥 + 1 − 𝜃 𝑦

𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

𝑓 𝜃𝑥 + 1 − 𝜃 𝑦ℎ&
T𝑥 = 0, 𝑗 = 1, … , 𝑚



Convex	Programs

• Convex	function
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦 for	all	𝑥, 𝑦 ∈ ℝE,	
for	all	𝜃 ∈ 0,1

• Sublevel	sets	of	convex	functions,	 𝑥: 𝑓 𝑥 ≤ 𝐶 ,	are	
convex
• Convex shape 𝒞:

𝑥D, 𝑥J ∈ 𝒞, 𝜃 ∈ 0,1 ⇒ 𝜃𝑥D + 1 − 𝜃 𝑥J ∈ 𝒞
• Superlevel	sets	of	convex	functions	are	not convex!

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛,	

where	𝑔$ 𝑥 are	convex
ℎ&

T𝑥 = 0, 𝑗 = 1, … , 𝑚



Convex	Programs

Not	convex

minimize 𝑓 𝑥
subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛,	

where	𝑔$ 𝑥 are	convex
ℎ&

T𝑥 = 0, 𝑗 = 1, … , 𝑚
• Convex	function

𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦 for	all	𝑥, 𝑦 ∈ ℝE,	
for	all	𝜃 ∈ 0,1

• Sublevel	sets	of	convex	functions,	 𝑥: 𝑓 𝑥 ≤ 𝐶 ,	are	
convex
• Convex shape 𝒞:

𝑥D, 𝑥J ∈ 𝒞, 𝜃 ∈ 0,1 ⇒ 𝜃𝑥D + 1 − 𝜃 𝑥J ∈ 𝒞
• Superlevel	sets	of	convex	functions	are	not convex!



Convex	Programs
minimize 𝑓 𝑥 ,	where	𝑓 is	convex

subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛,	
where	𝑔$ 𝑥 are	convex

ℎ&
T𝑥 = 0, 𝑗 = 1, … , 𝑚

minimize A	convex	objective	function

subject to Convex	inequality	constraints
Linear	equality	constraints

Detailed	observations:
• Linear	functions	are	convex
• Any	equality	constraints	must	be	linear
• ℎ 𝑥 = 0 ⇔ ℎ 𝑥 ≥ 0 AND	ℎ 𝑥 ≤ 0



Convex	Programs
minimize 𝑓 𝑥 ,	where	𝑓 𝑥 is	convex

subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛,	
where	𝑔$ 𝑥 are	convex

ℎ&
T𝑥 = 0, 𝑗 = 1, … , 𝑚

Globally	optimal	solution



Convex	Programs

• Local	optimum	is	global!
• Relatively	easy	to	solve	using	simple	algorithms
• When	you	see	an	optimization	problem,	first	hope	
it’s	convex	(although	this	is	almost	never	true)
• If	an	optimization	problem	is	not	convex,	usually	one	can	
only	hope	for	local	optimum

• It	is	useful	to	recognize	convex	functions

minimize 𝑓 𝑥 ,	where	𝑓 𝑥 is	convex

subject to 𝑔$ 𝑥 ≤ 0, 𝑖 = 1, … , 𝑛,	
where	𝑔$ 𝑥 are	convex

ℎ&
T𝑥 = 0, 𝑗 = 1, … , 𝑚



Common	Convex	Functions	on	ℝ

• 𝑓 𝑥 = 𝑒]^ is	convex	for	all	𝑥, 𝑎 ∈ ℝ
• 𝑓 𝑥 = 𝑥] is	convex	on	𝑥 > 0 if	𝑎 ≥ 1 or	𝑎 ≤ 0;	concave	if	0 < 𝑎 < 1
• 𝑓 𝑥 = log 𝑥 is	concave
• 𝑓 𝑥 = 𝑥 log 𝑥 is	convex	for	𝑥 > 0 (or	𝑥 ≥ 0 if	defined	to	be	0 when	𝑥 = 0)

𝑓 𝑥 = 𝑒]^ 𝑓 𝑥 = 𝑥]



Common	Convex	Functions	on	ℝE

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏 is	convex	for	any	𝐴, 𝑏
• Every	norm	on	ℝE is	convex
• 𝑓 𝑥 = max 𝑥D, 𝑥J, … , 𝑥E is	convex

• 𝑓 𝑥 = ^e
f

^f
(for	𝑥J > 0)

• Log-sum-exp	softmax:	𝑓 𝑥 = D
g log 𝑒g^e + 𝑒g^f + ⋯ + 𝑒g^i

• Geometric mean:	𝑓 𝑥 = ∏ 𝑥$
E
$CD

e
i, 𝑥$ > 0

𝑓 𝑥D, 𝑥J = max 𝑥D, 𝑥J

𝑓 𝑥 =
𝑥D

J

𝑥J
𝑓 𝑥 =

1
5 log 𝑒l^! + 𝑒l^"



Operations	that	Preserve	Convexity

• Non-negative	weighted	sum:	∑ 𝑤$𝑓$ 𝑥$ is	convex	if	𝑓$ 𝑥 are	convex	
and	𝑤$ ≥ 0
• Example:	𝑓 𝑥 = 𝑎𝑥J + 𝑏𝑥n + 𝑐𝑥p, where	𝑎, 𝑏, 𝑐 > 0

• Composition	with	affine	function:	𝑔 𝑥 = 𝑓 𝐴𝑥 + 𝑏 is	convex	if	𝑓(𝑥)
is	convex
• Example:	𝑓 𝜃 = 𝑋𝜃 − 𝑌 J

J

• Point-wise maximum:	max 𝑓D 𝑥 , 𝑓J 𝑥



Operations	that	Preserve	Convexity

• Point-wise	minimum	of	a	function:	𝑔 𝑦 ≔ min
t

𝑓 𝑦, 𝑧 is	convex	if	𝑓 𝑦, 𝑧
is	convex	(jointly	in	 𝑦, 𝑧 )

• Perspective:	𝑔 𝑥, 𝑡 ≔ 𝑡𝑓 ^
w
,	𝑡 > 0 is	convex	if	𝑓 𝑥 is	convex

• Example:	^e
f

^f
is	convex	if	𝑥J > 0,	because	𝑓 𝑥D = 𝑥D

J is	convex

• If	𝑔$: ℝE → ℝ are	convex,	and	ℎ: ℝg → ℝ is	convex	and	non-decreasing	in	
each	argument,	then	ℎ 𝑔D 𝑥 , 𝑔J 𝑥 , … , 𝑔g 𝑥 is	convex
• Example:	log 𝑒ye ^ + 𝑒yf ^ + ⋯ + 𝑒yz ^ is	convex	if	𝑔$ are	convex,	since	

log 𝑒^e + ⋯ + 𝑒^z is	convex
• More	similar	composition	rules	in	Boyd	and	Vandenberghe.



How	to	check	if	a	function	is	convex

• Use	definition:	𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

• Show	𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥 for	differentiable	functions

• Show	∇J𝑓 𝑥 ≽ 0 for	twice	differentiable	functions

• Show	𝒇 is	obtained	from	simple	convex	functions	and	operations	
that	preserve	convexity



Example	1:

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏, 𝑥 ∈ ℝE

• Equality!
• This	means	𝑓 is	also	concave	(i.e.	−𝑓 is	convex)
• Linear	functions	are	both	convex	and	concave

𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 = 𝐴 𝜃𝑥 + 1 − 𝜃 𝑦 + 𝑏
= 𝜃𝐴𝑥 + 1 − 𝜃 𝐴𝑦 + 𝑏
= 𝜃𝐴𝑥 + 1 − 𝜃 𝐴𝑦 + 𝜃𝑏 + 1 − 𝜃 𝑏
= 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦



Example	2:

• 𝑓 𝑥 = 𝑥J + 𝑥 − 6
• Method	1:	show	𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥
• ∇𝑓 𝑥 = 𝑓� 𝑥 = 2𝑥 + 1

• Method	2:	show	∇J𝑓 𝑥 ≥ 0

𝑓 𝑦 − 𝑓 𝑥 + 𝑓� 𝑥 𝑦 − 𝑥 = 𝑦J + 𝑦 − 6 − 𝑥J + 𝑥 − 6 + 2𝑥 + 1 𝑦 − 𝑥
= 𝑦J + 𝑦 − 𝑥J + 𝑥 + 2𝑥𝑦 − 2𝑥J + 𝑦 − 𝑥
= 𝑦J + 𝑦 − −𝑥J + 2𝑥𝑦 + 𝑦
= 𝑦J + 𝑥J − 2𝑥𝑦
= 𝑥 − 𝑦 J ≥ 0

∇J𝑓 𝑥 = 𝑓�� 𝑥 = 2 ≥ 0

𝑥𝑦

𝑓 𝑥

𝑓 𝑦

𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥



Example	3:

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏 J + 𝜆 𝑥 D,	𝐴 is	a	constant	matrix,	𝑏 is	a	constant	
vector,	and	𝜆 ≥ 0 is	a	constant	scalar.
• 𝑥 D are	 𝑥 J are	convex	since	all	norms	are	convex

• So,	 𝐴𝑥 + 𝑏 J is	convex,	by	the	rule	of	affine	composition
• 𝑔 𝑥 = 𝑓 𝐴𝑥 + 𝑏 is	convex	if	𝑓(𝑥) is	convex

• Finally,	 𝐴𝑥 + 𝑏 J + 𝜆 𝑥 D is	convex,	by	the	rule	of	non-negative	weighted	
sum
• ∑ 𝑤$𝑓$ 𝑥$ is	convex	if	𝑓$ 𝑥 are	convex	and	𝑤$ ≥ 0


