Convex Optimization: Part |

CMPT 419/983
Mo Chen

SFU Computing Science
23/09/2018




Textbook

* S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2008.




Outline

* Optimization program
* Examples and classes

* Convex optimization
e Convex functions
* Optimality conditions

* Numerical solutions




Optimization Program: Terminology

minimize f(x) Objective function

subjectto g;(x) <0,i=1,..,n Inequality constraints
hi(x) =0,j=1,..,m Equality constraints

* For now, assume f, g;, h; are twice differentiable

* Look for an optimal solution, the vector x*
* Locally optimal: x* is a local minimum of f(x)
* Globally optimal: x* is a global minimum of f(x)
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Optimization Program: Examples

15

minimize f(x)
1

subjectto g;(x) <0,i=1,..,n
hj(X) = O,j = 1, e, M

* Applications: Portfolio management

maximize Expected profit >
. . sy
subject to Maximum budget KOTRESS

Maximum acceptable risk -
min f (x) = —max{—f(x)}




Optimization Program: Examples

minimize f(x)

subjectto g;(x) <0,i=1,..,n
hj(X) = O,j = 1, e, M

* Applications: Portfolio management

minimize Overall risk
subject to Maximum budget
Minimum acceptable expected profit

Constraints vs. objectives
* Sometimes constraints can be “moved” to the objective as a “penalty”




Optimization Program: Examples

minimize f(x)

subjectto g;(x) <0,i=1,..,n
hj(X) = O,j = 1, e, M

* Applications: Building heating, ventilation, and air conditioning

minimize Energy consumption

subject to Acceptable temperature range by location

Acceptable noise level
Internal and external heat transfer




Optimization Program: Examples

minimize f(x)

subjectto g;(x) <0,i=1,..,n
hj(X) = O,j = 1, e, M

e Applications: Robotic trajectory planning
minimize Fuel consumption

subject to Goal reaching
System dynamics
Collision avoidance




Optimization Program: Examples

minimize f(x)

subjectto g;(x) <0,i=1,..,n
hj(X) = O,j = 1, e, M

e Applications: Robotic trajectory planning

minimize Distance to goal

subject to Fuel limitations
System dynamics
Collision avoidance




Optimization Program: Examples

minimize f(x)

subjectto g;(x) <0,i=1,..,n
hj(X) = O,j = 1, e, M

* Applications: Machine learning

maximize Performance (eg. Accuracy of object recognition)

subject to Problem constraints




Optimization Program

minimize f(x)

subjectto g;(x) <0,i=1,..,n
hj(X) = O,j = 1, e, M

* Very difficult to solve in general
* Trade-offs to consider: computation time, solution optimality

* Easy cases:
* Find global optimum for linear program: f, g;, h; are linear
* Find global optimum for convex program: f, g; are convex, h; is linear
* Find local optimum for nonlinear program: f, g;, hj are differentiable




Example: Least Squares

R vl2
mlnlemlzezllXH Y|l5

* Scalar example:
* Data: {x;,¥;}i=1, i, ¥ ER
* Model:y=mx+b,m,b €R
* Sum of error of model: % * (v —mx; — b)?
* No constraints: allow any m, b

* Error in matrix form: e; = y; — [x; 1] [71?;]

1] [x1 T

* Stacking the data points: E; = y:Z

theta(1) = 0.75, theta(2) = 1.90




Example: Least Squares

R vl2
mlnlemlzezllXH Y|l5

* Analytic solution available! Al
* Objective: f(0) = %IIXH — Y||35, set derivative to zero

* f(0) = X8 —Y)T(X0 — )
¢ f(6) =-0TXTXO —YTXO +-YTY

0
9 xTxo—xTy
00
0=XTX0—XTY
XTY = X7X6
9=(XTX)"1XxTy

theta(1) = 0.75, theta(2) = 1.90

Il 1 1 1 1 Il
0.4 0.2 0 0.2 0.4 0.6

theta(1) = 0.53, theta(2) = 2.00




Convex Programs

minimize f(x)

subjectto g;(x) <0,i=1,..,n, Of(x) + (1 —0)f(y)-
where g;(x) are convex
hix=0j=1,..,m
* Convex function

fOx+(1-0)y) <0f(x)+ (1 —-06)f(y)forall x,y € R,
forall 6 € [0,1]

fox+ (1 -06)y) --

* Sublevel sets of convex functions, {x: f(x) < C}, are |
convex

e Convex shape C:
X1,X2 (S C,H (S [0,1] = 9x1 + (1 — Q)XZ eEC




Convex Programs

minimize f(x)

subjectto g;(x) <0,i=1,..,n,
where g;(x) are convex
thx =0,j=1,...,m

* Convex function

fOx+(1-0)y) <0f(x)+ (1 —-06)f(y)forall x,y € R,
forall 6 € [0,1]

* Sublevel sets of convex functions, {x: f(x) < C}, are
convex
e Convex shape C:
X1,X90 €EC,0€[01]=2>60x;+(1—-0)x, €C
e Superlevel sets of convex functions are not convex!




Convex Programs

minimize f(x)
subjectto g;(x) <0,i=1,..,n,
where g;(x) are convex
hix=0j=1,..,m
* Convex function '

fOx+(1-0)y) <0f(x)+ (1 —-06)f(y)forall x,y € R,
forall 6 € [0,1]

Not convex

* Sublevel sets of convex functions, {x: f(x) < C}, are
convex
e Convex shape C:
X1,X90 €EC,0€[01]=2>60x;+(1—-0)x, €C
* Superlevel sets of convex functions are not convex!




Convex Programs

minimize f(x), where f is convex

subjectto g;(x) <0,i=1,..,n,
where g;(x) are convex

Detailed observations:
e Linear functions are convex
.. N~ : * Any equality constraints must be linear
minimize A convex objective function
J e h(x) =0 h(x) = 0AND h(x) <0

subject to Convex inequality constraints




Convex Programs

minimize f(x), where f(x) is convex Globally optimal solution

subjectto g;(x) <0,i=1,..,n,
where g;(x) are convex
thx =0,j=1,...,m




Convex Programs

minimize f(x), where f(x) is convex

subjectto g;(x) <0,i=1,..,n,
where g;(x) are convex
thx =0,j=1,...,m

* Local optimum is global!
* Relatively easy to solve using simple algorithms

* When you see an optimization problem, first hope
it’s convex (although this is almost never true)

* If an optimization problem is not convex, usually one can
only hope for local optimum

* It is useful to recognize convex functions




Common Convex Functions on R

* f(x) =e%isconvexforallx,a € R

* f(x) =x%isconvexonx >0ifa=1ora <0;concaveif 0 <a <1

* f(x) = logx is concave

* f(x) = xlogx is convex for x > 0 (or x = 0 if defined to be 0 when x = 0)

fx) =e™ fx) =x*

1 1 1
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Common Convex Functions on R™

* f(x) =Ax + bisconvexforany A,b
* Every norm on R" is convex
e f(x) = max(xq, Xy, ..., Xp,) is convex

* f(x) =fc—%(forx2 > 0)

0.5

* Log-sum-exp softmax: f(x) = %log(ekxl + ek*2 4 .o ekn)

1
« Geometric mean: f(x) = ([[l{x)=, x; >0

1

0.5

1
f(x) = <log(e5%s + ¢5%2),

o - N w ~ o ) ~ oo ©



Operations that Preserve Convexity

* Non-negative weighted sum: }; w;f; (x) is convex if f;(x) are convex
andw; = 0
« Example: f(x) = ax? + bx* + ¢x® where a,b,c > 0

« Composition with affine function: g(x) = f(Ax + b) is convex if f(x)
IS convex

 Example: f(0) = ||1X0 —Y||5

* Point-wise maximum: max(f1 (x), f5 (x))
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Operations that Preserve Convexity

* Point-wise minimum of a function: g(y) := min f (y, z) is convex if }co(y;_os 0
is convex (jointly in (y, z)) z

* Perspective: g(x,t) = tf (%), t > 0 is convex if f(x) is convex

* Example: x—l is convex if x, > 0, because f(x;) = x# is convex
2

* If g;: R® - R are convex, and h: R - R is convex and non-decreasing in
each argument, then h(gl(x),g2 (x), ...,gk(x)) is convex

* Example: log(egl(x) +e92(%) 4 ... ¢ egk(x)) is convex if g; are convex, since
log(e*t 4 --- 4+ e*k) is convex
* More similar composition rules in Boyd and Vandenberghe.




How to check if a function is convex

* Use definition: f(Bx + (1 —0)y) < 0f(x)+ (1 —6)f(y)
* Show f(y) = f(x) + Vf(x) - (y — x) for differentiable functions
* Show V4f(x) = 0 for twice differentiable functions

* Show f is obtained from simple convex functions and operations
that preserve convexity




Example 1:

 f(x) =Ax+b,x € R"

fOx+ (1 —-60)y)=AO0x+(1—-6)y)+b
= 0Ax + (1 — 9)Ay + b
= 0Ax + (1 —0)Ay + 6b + (1 — 0)b
=0f(0)+(1-06)f(y)

e Equality!
* This means f is also concave (i.e. —f is convex)
* Linear functions are both convex and concave
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f) TH7Y

FGO +TFGO) - (7 — x) 40
*f(x) =x*+x—-6
+ Method 1: show F(3) = F(x) + VF(x) - (y —x) '™ 7
* Vi) =f'(x) =2x+1 o -

f—fO)+f )y -—x)=y*+y—6—[x*+x—-6+2x+ 1Dy —x)]
=y +y—[x*+x+2xy—2x*+y—x]
=y?2+y—[-x%+ 2xy + y]
= y% +x% — 2xy
=(x—v)?=>0

« Method 2: show V2f(x) = 0

Example 2:

V) =f"(x) =220



Example 3:

* f(x) = ||Ax + b||, + A]|x||{, 4 is a constant matrix, b is a constant
vector, and A = 0 is a constant scalar.

* ||x||{ are ||x||, are convex since all norms are convex

* So, ||Ax + b||, is convex, by the rule of affine composition
 g(x) = f(Ax + b) is convex if f(x) is convex

* Finally, ||Ax + b||, + A]||x||1 is convex, by the rule of non-negative weighted
sum

« Y. w;fi(x) is convexif f;(x) are convex and w; = 0




