Convex Optimization: Part I

CMPT 419/983
Mo Chen
SFU Computing Science 23/09/2018

Textbook

- S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2008.

Outline

- Optimization program
- Examples and classes
- Convex optimization
- Convex functions
- Optimality conditions
- Numerical solutions

Optimization Program: Terminology

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& h_{j}(x)=0, j=1, \ldots, m
\end{array}
$$

Objective function Inequality constraints Equality constraints

- For now, assume f, g_{i}, h_{j} are twice differentiable
- Look for an optimal solution, the vector x^{*}
- Locally optimal: x^{*} is a local minimum of $f(x)$
- Globally optimal: x^{*} is a global minimum of $f(x)$

Optimization Program: Examples

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& h_{j}(x)=0, j=1, \ldots, m
\end{array}
$$

- Applications: Portfolio management

Optimization Program: Examples

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& h_{j}(x)=0, j=1, \ldots, m
\end{array}
$$

- Applications: Portfolio management

```
minimize Overall risk
subject to Maximum budget
    Minimum acceptable expected profit
```

Constraints vs. objectives

- Sometimes constraints can be "moved" to the objective as a "penalty"

Optimization Program: Examples

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& h_{j}(x)=0, j=1, \ldots, m
\end{array}
$$

- Applications: Building heating, ventilation, and air conditioning
minimize Energy consumption
subject to Acceptable temperature range by location
Acceptable noise level
Internal and external heat transfer

Optimization Program: Examples

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& h_{j}(x)=0, j=1, \ldots, m
\end{array}
$$

- Applications: Robotic trajectory planning minimize Fuel consumption
subject to Goal reaching
System dynamics
Collision avoidance

Optimization Program: Examples

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& h_{j}(x)=0, j=1, \ldots, m
\end{array}
$$

- Applications: Robotic trajectory planning minimize Distance to goal subject to Fuel limitations

System dynamics
Collision avoidance

Optimization Program: Examples

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& h_{j}(x)=0, j=1, \ldots, m
\end{array}
$$

- Applications: Machine learning
maximize Performance (eg. Accuracy of object recognition)
subject to Problem constraints

Optimization Program

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
& h_{j}(x)=0, j=1, \ldots, m
\end{array}
$$

- Very difficult to solve in general

- Trade-offs to consider: computation time, solution optimality
- Easy cases:
- Find global optimum for linear program: f, g_{i}, h_{j} are linear
- Find global optimum for convex program: f, g_{i} are convex, h_{j} is linear
- Find local optimum for nonlinear program: f, g_{i}, h_{j} are differentiable

Example: Least Squares

$$
\underset{\theta}{\operatorname{minimize}} \frac{1}{2}\|X \theta-Y\|_{2}^{2}
$$

- Scalar example:
- Data: $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}, x_{i}, y_{i} \in \mathbb{R}$

- Model: $y=m x+b, m, b \in \mathbb{R}$
- Sum of error of model: $\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}$
- No constraints: allow any m, b
- Error in matrix form: $e_{i}=y_{i}-\left[\begin{array}{ll}x_{i} & 1\end{array}\right]\left[\begin{array}{c}m \\ b\end{array}\right]$
- Stacking the data points: $E_{i}=\underbrace{\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]}_{Y}-\underbrace{\left[\begin{array}{cc}x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1\end{array}\right]}_{X} \underbrace{\left[\begin{array}{c}m \\ b\end{array}\right]}_{\theta}$

Example: Least Squares

$$
\underset{\theta}{\operatorname{minimize}} \frac{1}{2}\|X \theta-Y\|_{2}^{2}
$$

- Analytic solution available!
- Objective: $f(\theta)=\frac{1}{2}\|X \theta-Y\|_{2}^{2}$, set derivative to zero

- $f(\theta)=\frac{1}{2}(X \theta-Y)^{\top}(X \theta-Y)$
- $f(\theta)=\frac{1}{2} \theta^{\top} X^{\top} X \theta-Y^{\top} X \theta+\frac{1}{2} Y^{\top} Y$

$$
\begin{gathered}
\frac{\partial f}{\partial \theta}=X^{\top} X \theta-X^{\top} Y \\
0=X^{\top} X \theta-X^{\top} Y \\
X^{\top} Y=X^{\top} X \theta \\
\theta=\left(X^{\top} X\right)^{-1} X^{\top} Y
\end{gathered}
$$

Convex Programs

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n, \quad \theta f(x)+(1-\theta) f(y) \\
& \text { where } g_{i}(x) \text { are convex } \\
& h_{j}^{\top} x=0, j=1, \ldots, m \quad f(\theta x+(1-\theta) y) .
\end{array}
$$

- Convex function
$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$ for all $x, y \in \mathbb{R}^{n}$, for all $\theta \in[0,1]$
- Sublevel sets of convex functions, $\{x: f(x) \leq C\}$, are convex
- Convex shape \mathcal{C} :

$$
x_{1}, x_{2} \in \mathcal{C}, \theta \in[0,1] \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in \mathcal{C}
$$

Convex Programs

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
\quad \text { where } g_{i}(x) \text { are convex } \\
& h_{j}^{\top} x=0, j=1, \ldots, m
\end{array}
$$

- Convex function

$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$ for all $x, y \in \mathbb{R}^{n}$, for all $\theta \in[0,1]$

- Sublevel sets of convex functions, $\{x: f(x) \leq C\}$, are convex
- Convex shape \mathcal{C} :

$$
x_{1}, x_{2} \in \dot{\mathcal{C}}, \theta \in[0,1] \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in \mathcal{C}
$$

- Superlevel sets of convex functions are not convex!

Convex Programs

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x) \leq 0, i=1, \ldots, n \\
\quad \text { where } g_{i}(x) \text { are convex } \\
& h_{j}^{\top} x=0, j=1, \ldots, m
\end{array}
$$

- Convex function

$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$ for all $x, y \in \mathbb{R}^{n}$, for all $\theta \in[0,1]$

- Sublevel sets of convex functions, $\{x: f(x) \leq C\}$, are convex
- Convex shape \mathcal{C} :

$$
x_{1}, x_{2} \in \mathcal{C}, \theta \in[0,1] \Rightarrow \theta x_{1}+(1-\theta) x_{2} \in \mathcal{C}
$$

- Superlevel sets of convex functions are not convex!

Convex Programs

minimize $f(x)$, where f is convex

$$
\begin{gathered}
\text { subject to } g_{i}(x) \leq 0, i=1, \ldots, n \\
\text { where } g_{i}(x) \text { are convex } \\
h_{j}^{\top} x=0, j=1, \ldots, m
\end{gathered}
$$

minimize A convex objective function
subject to Convex inequality constraints Linear equality constraints

Detailed observations:

- Linear functions are convex
- Any equality constraints must be linear
- $h(x)=0 \Leftrightarrow h(x) \geq 0$ AND $h(x) \leq 0$

Convex Programs

minimize $f(x)$, where $f(x)$ is convex
Globally optimal solution subject to $g_{i}(x) \leq 0, i=1, \ldots, n$, where $g_{i}(x)$ are convex

$$
h_{j}^{\top} x=0, j=1, \ldots, m
$$

Convex Programs

minimize $f(x)$, where $f(x)$ is convex
subject to $g_{i}(x) \leq 0, i=1, \ldots, n$, where $g_{i}(x)$ are convex
$h_{j}^{\top} x=0, j=1, \ldots, m$

- Local optimum is global!
- Relatively easy to solve using simple algorithms
- When you see an optimization problem, first hope it's convex (although this is almost never true)
- If an optimization problem is not convex, usually one can only hope for local optimum
- It is useful to recognize convex functions

Common Convex Functions on \mathbb{R}

- $f(x)=e^{a x}$ is convex for all $x, a \in \mathbb{R}$
- $f(x)=x^{a}$ is convex on $x>0$ if $a \geq 1$ or $a \leq 0$; concave if $0<a<1$
- $f(x)=\log x$ is concave
- $f(x)=x \log x$ is convex for $x>0$ (or $x \geq 0$ if defined to be 0 when $x=0$)
$f(x)=e^{a x}$

$$
f(x)=x^{a}
$$

$$
f\left(x_{1}, x_{2}\right)=\max \left(x_{1}, x_{2}\right)
$$

Common Convex Functions on \mathbb{R}^{n}

- $f(x)=A x+b$ is convex for any A, b
- Every norm on \mathbb{R}^{n} is convex
- $f(x)=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is convex
- $f(x)=\frac{x_{1}^{2}}{x_{2}}\left(\right.$ for $x_{2}>0$)
- Log-sum-exp softmax: $f(x)=\frac{1}{k} \log \left(e^{k x_{1}}+e^{k x_{2}}+\cdots+e^{k x_{n}}\right)$
- Geometric mean: $f(x)=\left(\prod_{i=1}^{n} x_{i}\right)^{\frac{1}{n}}, x_{i}>0$

Operations that Preserve Convexity

- Non-negative weighted sum: $\sum_{i} w_{i} f_{i}(x)$ is convex if $f_{i}(x)$ are convex and $w_{i} \geq 0$
- Example: $f(x)=a x^{2}+b x^{4}+c x^{6}$, where $a, b, c>0$
- Composition with affine function: $g(x)=f(A x+b)$ is convex if $f(x)$ is convex
- Example: $f(\theta)=\|X \theta-Y\|_{2}^{2}$
- Point-wise maximum: $\max \left(f_{1}(x), f_{2}(x)\right)$

Operations that Preserve Convexity

- Point-wise minimum of a function: $g(y):=\min _{z} f(y, z)$ is convex if $f(y, z)$. is convex (jointly in (y, z))
- Perspective: $g(x, t):=t f\left(\frac{x}{t}\right), t>0$ is convex if $f(x)$ is convex
- Example: $\frac{x_{1}^{2}}{x_{2}}$ is convex if $x_{2}>0$, because $f\left(x_{1}\right)=x_{1}^{2}$ is convex
- If $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex, and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is convex and non-decreasing in each argument, then $h\left(g_{1}(x), g_{2}(x), \ldots, g_{k}(x)\right)$ is convex
- Example: $\log \left(e^{g_{1}(x)}+e^{g_{2}(x)}+\cdots+e^{g_{k}(x)}\right)$ is convex if g_{i} are convex, since $\log \left(e^{x_{1}}+\cdots+e^{x_{k}}\right)$ is convex
- More similar composition rules in Boyd and Vandenberghe.

How to check if a function is convex

- Use definition: $f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$
- Show $f(y) \geq f(x)+\nabla f(x) \cdot(y-x)$ for differentiable functions
- Show $\nabla^{2} f(x) \succcurlyeq 0$ for twice differentiable functions
- Show f is obtained from simple convex functions and operations that preserve convexity

Example 1:

- $f(x)=A x+b, x \in \mathbb{R}^{n}$

$$
\begin{aligned}
f(\theta x+(1-\theta) y) & =A(\theta x+(1-\theta) y)+b \\
& =\theta A x+(1-\theta) A y+b \\
& =\theta A x+(1-\theta) A y+\theta b+(1-\theta) b \\
& =\theta f(x)+(1-\theta) f(y)
\end{aligned}
$$

- Equality!
- This means f is also concave (i.e. $-f$ is convex)
- Linear functions are both convex and concave

Example 2:

- $f(x)=x^{2}+x-6$
- Method 1: show $f(y) \geq f(x)+\nabla f(x) \cdot(y-x)$
- $\nabla f(x)=f^{\prime}(x)=2 x+1$

$$
f(x)+\nabla f(x) \cdot(y-x) .
$$

$$
\begin{aligned}
f(y)-f(x)+f^{\prime}(x)(y-x) & =y^{2}+y-6-\left[x^{2}+x-6+(2 x+1)(y-x)\right] \\
& =y^{2}+y-\left[x^{2}+x+2 x y-2 x^{2}+y-x\right] \\
& =y^{2}+y-\left[-x^{2}+2 x y+y\right] \\
& =y^{2}+x^{2}-2 x y \\
& =(x-y)^{2} \geq 0
\end{aligned}
$$

- Method 2: show $\nabla^{2} f(x) \geq 0$

$$
\nabla^{2} f(x)=f^{\prime \prime}(x)=2 \geq 0
$$

Example 3:

- $f(x)=\|A x+b\|_{2}+\lambda\|x\|_{1}, A$ is a constant matrix, b is a constant vector, and $\lambda \geq 0$ is a constant scalar.
- $\|x\|_{1}$ are $\|x\|_{2}$ are convex since all norms are convex
- So, $\|A x+b\|_{2}$ is convex, by the rule of affine composition
- $g(x)=f(A x+b)$ is convex if $f(x)$ is convex
- Finally, $\|A x+b\|_{2}+\lambda\|x\|_{1}$ is convex, by the rule of non-negative weighted sum
- $\sum_{i} w_{i} f_{i}(x)$ is convex if $f_{i}(x)$ are convex and $w_{i} \geq 0$

