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Optimization Program: Terminology

• For now, assume 𝑓, 𝑔𝑖 , ℎ𝑗 are twice differentiable

• Look for an optimal solution, the vector 𝑥∗

• Locally optimal: 𝑥∗ is a local minimum of 𝑓 𝑥
• Globally optimal: 𝑥∗ is a global minimum of 𝑓 𝑥

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚

Objective function

Inequality constraints

Equality constraints





Optimization Program: Examples

• Applications: Portfolio management

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚

maximize Expected profit

subject to Maximum budget
Maximum acceptable risk

min𝑓 𝑥 = −max −𝑓 𝑥



Optimization Program: Examples

• Applications: Portfolio management

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚

minimize Overall risk

subject to Maximum budget
Minimum acceptable expected profit

Constraints vs. objectives
• Sometimes constraints can be “moved” to the objective as a “penalty”



Optimization Program: Examples

• Applications: Building heating, ventilation, and air conditioning

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚

minimize Energy consumption

subject to Acceptable temperature range by location
Acceptable noise level
Internal and external heat transfer



Optimization Program: Examples

• Applications: Robotic trajectory planning

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚

minimize Fuel consumption

subject to Goal reaching
System dynamics
Collision avoidance



Optimization Program: Examples

• Applications: Robotic trajectory planning

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚

minimize Distance to goal

subject to Fuel limitations
System dynamics
Collision avoidance



Optimization Program: Examples

• Applications: Machine learning

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚

maximize Performance (eg. Accuracy of object recognition)

subject to Problem constraints



Optimization Program

• Very difficult to solve in general
• Trade-offs to consider: computation time, solution optimality

• Easy cases:
• Find global optimum for linear program: 𝑓, 𝑔𝑖 , ℎ𝑗 are linear

• Find global optimum for convex program: 𝑓, 𝑔𝑖 are convex, ℎ𝑗 is linear

• Find local optimum for nonlinear program: 𝑓, 𝑔𝑖 , ℎ𝑗 are differentiable

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚



Example: Least Squares

• Scalar example:
• Data: 𝑥𝑖, 𝑦𝑖 𝑖=1

𝑛 , 𝑥𝑖, 𝑦𝑖 ∈ ℝ
• Model: 𝑦 = 𝑚𝑥 + 𝑏,𝑚, 𝑏 ∈ ℝ
• Sum of error of model: σ𝑖=1

𝑛 𝑦𝑖 −𝑚𝑥𝑖 − 𝑏 2

• No constraints: allow any 𝑚, 𝑏

• Error in matrix form: 𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖 1
𝑚
𝑏

• Stacking the data points: 𝐸𝑖 =

𝑦1
𝑦2
⋮
𝑦𝑛

−

𝑥1 1
𝑥2 1
⋮ ⋮
𝑥𝑛 1

𝑚
𝑏

minimize
𝜃

𝑋𝜃 − 𝑌 2
2

𝜃𝑋𝑌



Example: Least Squares

• Analytic solution available!
• Objective: 𝑓 𝜃 = 𝑋𝜃 − 𝑌 2

2, set derivative to zero

• 𝑓 𝜃 = 𝑋𝜃 − 𝑌 ⊤ 𝑋𝜃 − 𝑌

• 𝑓 𝜃 = 𝜃⊤𝑋⊤𝑋𝜃 − 2𝑌⊤𝑋𝜃 + 𝑌⊤𝑌
𝜕𝑓

𝜕𝜃
= 2𝑋⊤𝑋𝜃 − 2𝑋⊤𝑌

0 = 2𝑋⊤𝑋𝜃 − 2𝑋⊤𝑌
𝑋⊤𝑌 = 𝑋⊤𝑋𝜃

𝜃 = 𝑋⊤𝑋 −1𝑋⊤𝑌

minimize
𝜃

𝑋𝜃 − 𝑌 2
2



• Convex function
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦 for all 𝑥, 𝑦 ∈ ℝ𝑛, 
for all 𝜃 ∈ 0,1

• Sublevel sets of convex functions, 𝑥: 𝑓 𝑥 ≤ 𝐶 , are 
convex
• Convex shape 𝒞:

𝑥1, 𝑥2 ∈ 𝒞, 𝜃 ∈ 0,1 ⇒ 𝜃𝑥1 + 1 − 𝜃 𝑥2 ∈ 𝒞
• Superlevel sets of convex functions are not convex!

Convex Programs
minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛, 
where 𝑔𝑖 𝑥 are convex

𝑥 𝑦𝜃𝑥 + 1 − 𝜃 𝑦

𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

𝑓 𝜃𝑥 + 1 − 𝜃 𝑦ℎ𝑗
⊤𝑥 = 0, 𝑗 = 1,… ,𝑚



Convex Programs

• Convex function
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦 for all 𝑥, 𝑦 ∈ ℝ𝑛, 
for all 𝜃 ∈ 0,1

• Sublevel sets of convex functions, 𝑥: 𝑓 𝑥 ≤ 𝐶 , are 
convex
• Convex shape 𝒞:

𝑥1, 𝑥2 ∈ 𝒞, 𝜃 ∈ 0,1 ⇒ 𝜃𝑥1 + 1 − 𝜃 𝑥2 ∈ 𝒞
• Superlevel sets of convex functions are not convex!

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛, 
where 𝑔𝑖 𝑥 are convex

ℎ𝑗
⊤𝑥 = 0, 𝑗 = 1,… ,𝑚



Convex Programs

Not convex

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛, 
where 𝑔𝑖 𝑥 are convex

ℎ𝑗
⊤𝑥 = 0, 𝑗 = 1,… ,𝑚

• Convex function
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦 for all 𝑥, 𝑦 ∈ ℝ𝑛, 
for all 𝜃 ∈ 0,1

• Sublevel sets of convex functions, 𝑥: 𝑓 𝑥 ≤ 𝐶 , are 
convex
• Convex shape 𝒞:

𝑥1, 𝑥2 ∈ 𝒞, 𝜃 ∈ 0,1 ⇒ 𝜃𝑥1 + 1 − 𝜃 𝑥2 ∈ 𝒞
• Superlevel sets of convex functions are not convex!



Convex Programs
minimize 𝑓 𝑥 , where 𝑓 is convex

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛, 
where 𝑔𝑖 𝑥 are convex

ℎ𝑗
⊤𝑥 = 0, 𝑗 = 1,… ,𝑚

minimize A convex objective function

subject to Convex inequality constraints
Linear equality constraints

Detailed observations:
• Linear functions are convex
• Any equality constraints must be linear

• ℎ 𝑥 = 0 ⇔ ℎ 𝑥 ≥ 0 AND ℎ 𝑥 ≤ 0



Convex Programs
minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛, 
where 𝑔𝑖 𝑥 are convex

ℎ𝑗
⊤𝑥 = 0, 𝑗 = 1,… ,𝑚

Globally optimal solution



Convex Programs

• Local optimum is global!

• Relatively easy to solve using simple algorithms

• When you see an optimization problem, first hope 
it’s convex (although this is almost never true)
• If an optimization problem is not convex, usually one can 

only hope for local optimum

• It is useful to recognize convex functions

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛, 
where 𝑔𝑖 𝑥 are convex

ℎ𝑗
⊤𝑥 = 0, 𝑗 = 1,… ,𝑚



Common Convex Functions on ℝ

• 𝑓 𝑥 = 𝑒𝑎𝑥 is convex for all 𝑥, 𝑎 ∈ ℝ

• 𝑓 𝑥 = 𝑥𝑎 is convex on 𝑥 > 0 if 𝑎 ≥ 1 or 𝑎 ≤ 0; concave if 0 < 𝑎 < 1

• 𝑓 𝑥 = log 𝑥 is concave

• 𝑓 𝑥 = 𝑥 log 𝑥 is convex for 𝑥 > 0 (or 𝑥 ≥ 0 if defined to be 0 when 𝑥 = 0)

𝑓 𝑥 = 𝑒𝑎𝑥 𝑓 𝑥 = 𝑥𝑎



Common Convex Functions on ℝ𝑛

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏 is convex for any 𝐴, 𝑏

• Every norm on ℝ𝑛 is convex

• 𝑓 𝑥 = max 𝑥1, 𝑥2, … , 𝑥𝑛 is convex

• 𝑓 𝑥 =
𝑥1
2

𝑥2
(for 𝑥2 > 0)

• Log-sum-exp softmax: 𝑓 𝑥 =
1

𝑘
log 𝑒𝑘𝑥1 + 𝑒𝑘𝑥2 +⋯+ 𝑒𝑘𝑥𝑛

• Geometric mean: 𝑓 𝑥 = ς𝑖=1
𝑛 𝑥𝑖

1

𝑛, 𝑥𝑖 > 0

𝑓 𝑥1, 𝑥2 = max 𝑥1, 𝑥2

𝑓 𝑥 =
𝑥1
2

𝑥2
𝑓 𝑥 =

1

5
log 𝑒5𝑥1 + 𝑒5𝑥2



Operations that Preserve Convexity

• Non-negative weighted sum: σ𝑖𝑤𝑖𝑓𝑖 𝑥 is convex if 𝑓𝑖 𝑥 are convex 
and 𝑤𝑖 ≥ 0
• Example: 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥4 + 𝑐𝑥6, where 𝑎, 𝑏, 𝑐 > 0

• Composition with affine function: 𝑔 𝑥 = 𝑓 𝐴𝑥 + 𝑏 is convex if 𝑓(𝑥)
is convex
• Example: 𝑓 𝜃 = 𝑋𝜃 − 𝑌 2

2

• Point-wise maximum: max 𝑓1 𝑥 , 𝑓2 𝑥



Operations that Preserve Convexity

• Point-wise minimum of a function: 𝑔 𝑦 ≔ min
𝑧

𝑓 𝑦, 𝑧 is convex if 𝑓 𝑦, 𝑧
is convex (jointly in 𝑦, 𝑧 )

• Perspective: 𝑔 𝑥, 𝑡 ≔ 𝑡𝑓
𝑥

𝑡
, 𝑡 > 0 is convex if 𝑓 𝑥 is convex

• Example: 
𝑥1
2

𝑥2
is convex if 𝑥2 > 0, because 𝑓 𝑥1 = 𝑥1

2 is convex

• If 𝑔𝑖: ℝ
𝑛 → ℝ are convex, and ℎ:ℝ𝑘 → ℝ is convex and non-decreasing in 

each argument, then ℎ 𝑔1 𝑥 , 𝑔2 𝑥 , … , 𝑔𝑘 𝑥 is convex
• Example: log 𝑒𝑔1 𝑥 + 𝑒𝑔2 𝑥 +⋯+ 𝑒𝑔𝑘 𝑥 is convex if 𝑔𝑖 are convex, since 
log 𝑒𝑥1 +⋯+ 𝑒𝑥𝑘 is convex

• More similar composition rules in Boyd and Vandenberghe.



How to check if a function is convex

• Use definition: 𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦

• Show 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥 for differentiable functions

• Show ∇2𝑓 𝑥 ≽ 0 for twice differentiable functions

• Show 𝒇 is obtained from simple convex functions and operations 
that preserve convexity



Example 1:

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏, 𝑥 ∈ ℝ𝑛

• Equality!

• This means 𝑓 is also concave (i.e. −𝑓 is convex)

• Linear functions are both convex and concave

𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 = 𝐴 𝜃𝑥 + 1 − 𝜃 𝑦 + 𝑏
= 𝜃𝐴𝑥 + 1 − 𝜃 𝐴𝑦 + 𝑏
= 𝜃𝐴𝑥 + 1 − 𝜃 𝐴𝑦 + 𝜃𝑏 + 1 − 𝜃 𝑏
= 𝜃𝑓 𝑥 + 1 − 𝜃 𝑓 𝑦



Example 2:

• 𝑓 𝑥 = 𝑥2 + 𝑥 − 6

• Method 1: show 𝑓 𝑦 ≥ 𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥
• ∇𝑓 𝑥 = 𝑓′ 𝑥 = 2𝑥 + 1

• Method 2: show ∇2𝑓 𝑥 ≥ 0

𝑓 𝑦 − 𝑓 𝑥 + 𝑓′ 𝑥 𝑦 − 𝑥 = 𝑦2 + 𝑦 − 6 − 𝑥2 + 𝑥 − 6 + 2𝑥 + 1 𝑦 − 𝑥

= 𝑦2 + 𝑦 − 𝑥2 + 𝑥 + 2𝑥𝑦 − 2𝑥2 + 𝑦 − 𝑥

= 𝑦2 + 𝑦 − −𝑥2 + 2𝑥𝑦 + 𝑦

= 𝑦2 + 𝑥2 − 2𝑥𝑦

= 𝑥 − 𝑦 2 ≥ 0

∇2𝑓 𝑥 = 𝑓′′ 𝑥 = 2 ≥ 0

𝑥𝑦

𝑓 𝑥

𝑓 𝑦

𝑓 𝑥 + ∇𝑓 𝑥 ⋅ 𝑦 − 𝑥



Example 3:

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏 2 + 𝜆 𝑥 1, 𝐴 is a constant matrix, 𝑏 is a constant 
vector, and 𝜆 ≥ 0 is a constant scalar.
• 𝑥 1 are 𝑥 2 are convex since all norms are convex

• So, 𝐴𝑥 + 𝑏 2 is convex, by the rule of affine composition
• 𝑔 𝑥 = 𝑓 𝐴𝑥 + 𝑏 is convex if 𝑓(𝑥) is convex

• Finally, 𝐴𝑥 + 𝑏 2 + 𝜆 𝑥 1 is convex, by the rule of non-negative weighted 
sum
• σ𝑖𝑤𝑖𝑓𝑖 𝑥 is convex if 𝑓𝑖 𝑥 are convex and 𝑤𝑖 ≥ 0


