Continuous Time LQR and
Robotic Safety via Reachability

CMPT 419/983
Mo Chen

SFU Computing Science
9/10/2019

References

* Dynamic Programming:

e Bertsekas, Dynamic Programming and Optimal Control. Athena Scientific,
2017, 1886529434,

e Reachability Analysis:

* Chen & Tomlin. “Hamilton-Jacobi Reachability: Some Recent Theoretical
Advances and Applications in Unmanned Airspace Management”. Annual
Review.

Hamilton-Jacobi Equation

Hamilton-Jacobi pglr/tial differential equaatIi})n
— 4+ min [c(x, u) +—- f(x, u)] = 0, V(T,x) = 1(x)
dt u dx

Minimization over u is typically easy
* Most systems are control affine: f(x, u) has the form f(x) + g(x)u
* Control constraints are typically “box” constraints, e.g. |u;| < 1

PDE is solved on a grid
* x € R" means V(t, x) is computed on an (n + 1)-dimensional grid

V (t, x) is often not differentiable (or continuous)
* Viscosity solutions
* Lax Friedrichs numerical method

Example: Continuous LQR

T
](t,x(t)) = j c(x(s),u(s))ds + l(x(T))
* Linear system: x = Ax + Bu

e Cost involving quadrTatic expressions:
J(t,x) = %j (x(@®)TQx(t) + u(t) "Ru(t))dt + %x(T)TLx(T)
t

* L,0Q, R are symmetric positive semidefinite
* T is given
* x(t) and u(t) are unconstrained

* The Hamilton-Jacobi equation becomes

A [(t)T () +u(t)R (t)+a—V-(A (t)+B (t))]—O
PP 2mulnx Qx u u I X u ’—

|
. . 1%
Pre-Hamiltonian: H (x, u, 6_x)

Continuous Time LQR

* Pre-Hamiltonian: # (x,1,5) = x(t)TQx(t) + u(t)TRu(t) + 22 (Ax(t) + Bu(®))

* Take Jacobian to optimize H — = Ru(s) + B - a

X
2

)
e Observe that 57— = R = 0, so first order condition is sufficient

1T 0
. Settlng to zero, we get u*(t) = —R 1BT6—Z

. Pluggmg this back into H, we get the Hamiltonian:

avy 1 1 vy " v v
* — | == T _ 1T ____ 1T _ _ 1T
H (x’ax) 5% () Qx(t)+2<R B 6x) RR™B 55 <6x> (Ax BR=B ax)

ovy 1 Loy OV OVy' ;)
H*(, () BR™'B —+() (Ax BR™'B)
X dx dx dx dx

LA 1 /0V\" v oV
* Y\ _Z T _ (2 1pT 2"
H (x, 6x> Zx(t) Qux(t) Z(Gx) BR™B 6x+<6x) Ax

Continuous Time LQR

 Hamilton-Jacobi equation:
v 1 1,0V v oV
_ 1 T R —-1pT _ -
ot +2x(t) Qx(t) 2(0x> BR™B 0x+(6x

.
) Ax=0, V(T,x(T)) = %x(T)TLx(T)

* Strategy for obtaining solution: guess something that works
+ V(t,x) =>xTK(®)x, K(t) 20

v 1 N v KO
ot 2" Yo gy T A

Continuous Time LQR

* Hamilton-Jacobi equation:
ovy' av v\ .
¥ (0x> Ax =0, V(x(tr).tf) = Ex(tf)TLx(tf)

1. 1 1)
ExTK(t)x+§x(t)TQx(t)—E(E) BR-1BT

0x

* Strategy for obtaining solution: guess something that works
+ V(t,x) =>xTK(®)x, K(t) 20

v 1 N v KO
ot 2" Yo gy T A

Continuous Time LQR

 Hamilton-Jacobi equation:
leI'((t)x + %x(t)TQx(t) — %xTK(t)TBR‘lBTK(t)x +xTK(t)"Ax = 0, V(x(tf), tf) = %x(tf)TLx(tf)

2

* Strategy for obtaining solution: guess something that works
+ V(t,x) =5xTK(@®)x, K(t) =0

V_1von Y ko
ac 20 T BT Y

Continuous Time LQR

Scalar, therefore

1 1
: : : —x"K({t)"Ax + =xTATK(t)x symmetric
* Hamilton-Jacobi equation: 2 2 /

1 . 1 1 f !
ExTK(t)x + Ex(t)TQx(t) — ExTK(t)TBR‘lBTK(t)x +xTK({t)TAx =0

e Collect like terms
1 .
%3 (K(t) +0Q—K(@®TBRIBTK(t) + K(t)TA + ATK(t)) x=0

 This equation must hold for all x(t), so
Kt)+Q—K@®)"BRIBTK(t) + K(t)TA+ATK(t) =0

» Boundary condition: V(T,x(T)) = %x(T)TLx(T)
* Therefore K(T) = L

Continuous Time LQR

 Hamilton-Jacobi equation:

%ka(t)x + %x(t)TQx(t) = %xTK(t)TBR‘lBTK(t)x +x'K@®)"Ax =0, V(x(T),T)= %X(T)TLx(T)

 PDE becomes ODE:
Kt)+Q—K@®TBRIBTK(t) + K(t)TA+ ATK(t) =0, K(T) =1L
* “Riccati equation”
* Integrate backwards in time
* Optimal control is linear state feedback!

av
u*(t,x) = —R‘lBTa = —RIBTK(t)x

Comments

No control constraint » Suppose |u(t)| < 1is a constraint
e Useu(t)=—-RBTK(®)xif|-R™'BTK(t)x| < 1
e Useu(t) =1if—R'BTK(t)x > 1
What if there is control constraint? e Useu(t) =—-1if—RBTK(t)x < —1
e Easy: Let controllers saturate
 Difficult but proper: Explicitly treat it in the minimization of |

MATLAB commands
* Discrete time: d1gr; continuous time: 1gr

In general, need to solve

av av
2 rmin|coow) + 2 f(x, u)] 0, V@T)=Ix)
ot u 0x

* V(x,t)is (n+ 1)-dimensional, if x € R"

* Optimal state feedback control: u*(t, x) = arg min [C(x, u) + Z—Z - f(x, u)]
u

Time Horizon

* Finite time horizon problems
* Time-varying value function V (t, x): optimal cost from some time and state
* Time-varying control policy u*(t, x): achieves optimal cost

* Infinite time horizon problems
* Let final time be 0, and apply DP backwards until convergence

» Convergence not guaranteed; if V(t, x) converges, then we have a time-
invariant value function and control policy

¢ Voo (%), Uso (x)

Robotic Safety

e Verification methods

Assumptions

Prove safety
Control policy

* Considers all possible system behaviours, given assumptions

e Can be written as an optimal control problem

Reachability Analysis: Avoidance

Reachable set | <ofe region

Assumptions: Control policy

Model of robot

Unsafe region: Obstacle Backward reachable set

(States leading to danger)

Assumptions

e System dynamics: x = f(x,u,d),t < 0 (by convention, final time is 0)

e State x
* Single vehicle, multiple vehicle, relative coordinates

(xz,yz, 92)

X =

 Disturbance d: uncontrolled factors that affect the system, such as wind

e Can be used to model other agents, when state includes them
* Assume worst case

Information Pattern

* Control: chosen by “ego” robot

* Disturbances: chosen by other robot (or weather gods)
* Assume worst case

* “Open-loop” strategies
* Ego robot declares entire plan
* Other robot responds optimally (worst-case)
* Conservative, unrealistic, but computationally cheap

* “Non-anticipative” strategies
* Other robot acts based on state and control trajectory up current time
* Notation: d(-) = TI'[u](:)
* Disturbance still has the advantage: it gets to react to the control!

Assumptions

* “Target set”, T
» Can specify set of states leading to danger
* Expressed through set notation

Obstacle
at (x,y)
01

P

T={x:\/(x1—f)2+(y1—37)2 ST}EIR3

Reachability Analysis: Avoidance

Backward reachable set Unsafe region

Control policy
* Model of robot

e Unsafe region
Backward reachable set

(States leading to danger)

Reachability Analysis: Goal Reaching

Backward reachable set

Control policy
* Model of robot

 Goal region
Backward reachable set

(States leading to goal)

Target set

Reachability Analysis

* Model of robot
* Unsafe region

« x=f(x,u,d)
e T

* Model of robot
* Goal region

States at time t satisfying the following:
there exists a disturbance such that for all control, system enters target setat t = 0

o A(t) ={:3aru]C), vul),x = f(x,u,d),x(t) = x,x(0) € T}

Backward reachable set (States leading to danger)

=)

Control policy

o u*(t,x)

Control policy

—

Backward reachable set (States leading to goal)

o R(t) = {x:VI[u](),Jul-),x = f(x,u,d), x(t) = ix,x(0) € T}

States at time t satisfying the following:

for all disturbances, there exists a control such that system enters target setatt = 0 .

Terminology

e Minimal backward reachable set
* A(t) = {x: Al [u] (), Vul),x = f(x,u,d), x(t) = x,x(0) € T}
e Control minimizes size of reachable set

* Maximal backward reachable set
* R(t) = {e: VI [u] (), Ful), x = f(x,u,d),x(t) = x,x(0) € T}
* Control maximizes size of reachable set

o =
* Minimal and maximal backward reachable tube]

« A(t) = {&:3AT[u] (), vu(-),x = f(x,u,d),x(t) = x,3s € [t,0],x(s) € T}
e R(t) = {Z:VI'u](),Fu(),x = f(x,u,d), x(t) = x,3s € [t,0],x(s) € T}

Computing Reachable Sets

 Start from continuous time dynamic programming

* Observe that disturbances do not affect the procedure

* Remove running cost

* Pick final cost intelligently

