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Hamilton-Jacobi	Equation
• Hamilton-Jacobi	partial	differential	equation

𝜕𝑉
𝜕𝑡

+ min
(

𝑐 𝑥, 𝑢 	 +
𝜕𝑉
𝜕𝑥

⋅ 𝑓 𝑥, 𝑢 = 0,  𝑉 𝑇, 𝑥 = 𝑙 𝑥

• Minimization	over	𝑢 is	typically	easy
• Most	systems	are	control	affine:	𝑓 𝑥, 𝑢 has	the	form	𝑓 𝑥 + 𝑔 𝑥 𝑢
• Control	constraints	are	typically	“box”	constraints,	e.g.	 𝑢5 ≤ 1

• PDE	is	solved	on	a	grid
• 𝑥 ∈ ℝ: means	𝑉 𝑡, 𝑥 is	computed	on	an	 𝑛 + 1 -dimensional	grid

• 𝑉 𝑡, 𝑥 is	often	not	differentiable	(or	continuous)
• Viscosity	solutions
• Lax	Friedrichs	numerical	method



Example:	Continuous	LQR

• Linear	system:	�̇� = 𝐴𝑥 + 𝐵𝑢
• Cost	involving	quadratic	expressions:

𝐽 𝑡, 𝑥 =
1
2

A 𝑥 𝑡 B𝑄𝑥 𝑡 + 𝑢 𝑡 B𝑅𝑢 𝑡 𝑑𝑡
F

G
+

1
2

𝑥 𝑇 B𝐿𝑥 𝑇

• 𝐿, 𝑄, 𝑅 are	symmetric	positive	semidefinite
• 𝑇 is	given
• 𝑥 𝑡 and	𝑢 𝑡 are	unconstrained

• The	Hamilton-Jacobi	equation	becomes
𝜕𝑉
𝜕𝑡 +

1
2 min

(
𝑥 𝑡 B𝑄𝑥 𝑡 + 𝑢 𝑡 B𝑅𝑢 𝑡 +

𝜕𝑉
𝜕𝑥 ⋅ 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 = 0

𝐽 𝑡, 𝑥 𝑡 = A 𝑐 𝑥 𝑠 , 𝑢 𝑠 𝑑𝑠
F

G
+ 𝑙 𝑥 𝑇

Pre-Hamiltonian:	𝐻 𝑥, 𝑢, KL
KM



Continuous	Time	LQR

• Pre-Hamiltonian:	𝐻 𝑥, 𝑢, KL
KM = 𝑥 𝑡 B𝑄𝑥 𝑡 + 𝑢 𝑡 B𝑅𝑢 𝑡 + KL

KM ⋅ 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡

• Take	Jacobian	to	optimize	𝐻:	KN
K( = 𝑅𝑢 𝑠 + 𝐵 ⋅ KL

KM

• Observe	that		 KO

K(O = 𝑅 ≽ 0,	so	first	order	condition	is	sufficient

• Setting	KN
K(

to	zero,	we	get	𝑢∗ 𝑡 = −𝑅ST𝐵B KL
KM

• Plugging	this	back	into	𝐻,	we	get	the	Hamiltonian:
𝐻∗ 𝑥,

𝜕𝑉
𝜕𝑥 =

1
2 𝑥 𝑡 B𝑄𝑥 𝑡 +

1
2 𝑅ST𝐵B 𝜕𝑉

𝜕𝑥

B

𝑅𝑅ST𝐵B 𝜕𝑉
𝜕𝑥 +

𝜕𝑉
𝜕𝑥

B

𝐴𝑥 − 𝐵𝑅ST𝐵B 𝜕𝑉
𝜕𝑥

𝐻∗ 𝑥,
𝜕𝑉
𝜕𝑥 =

1
2 𝑥 𝑡 B𝑄𝑥 𝑡 −

1
2

𝜕𝑉
𝜕𝑥

B

𝐵𝑅ST𝐵B 𝜕𝑉
𝜕𝑥 +

𝜕𝑉
𝜕𝑥

B

𝐴𝑥

𝐻∗ 𝑥,
𝜕𝑉
𝜕𝑥 =

1
2 𝑥 𝑡 B𝑄𝑥 𝑡 +

1
2

𝜕𝑉
𝜕𝑥

B

𝐵𝑅ST𝐵B 𝜕𝑉
𝜕𝑥 +

𝜕𝑉
𝜕𝑥

B

𝐴𝑥 − 𝐵𝑅ST𝐵B 𝜕𝑉
𝜕𝑥



Continuous	Time	LQR

• Hamilton-Jacobi	equation:
𝜕𝑉
𝜕𝑡 +

1
2 𝑥 𝑡 B𝑄𝑥 𝑡 −

1
2

𝜕𝑉
𝜕𝑥

B

𝐵𝑅ST𝐵B 𝜕𝑉
𝜕𝑥 +

𝜕𝑉
𝜕𝑥

B

𝐴𝑥 = 0, 𝑉 𝑇, 𝑥 𝑇 =
1
2 𝑥 𝑇 B𝐿𝑥 𝑇

• Strategy	for	obtaining	solution:	guess	something	that	works
• 𝑉 𝑡, 𝑥 = T

U 𝑥B𝐾 𝑡 𝑥, 𝐾 𝑡 ≥ 0

𝜕𝑉
𝜕𝑡

=
1
2

𝑥B�̇� 𝑡 𝑥,
𝜕𝑉
𝜕𝑥

= 𝐾 𝑡 𝑥



Continuous	Time	LQR

• Hamilton-Jacobi	equation:
1
2 𝑥B�̇� 𝑡 𝑥 +

1
2 𝑥 𝑡 B𝑄𝑥 𝑡 −

1
2

𝜕𝑉
𝜕𝑥

B

𝐵𝑅ST𝐵B 𝜕𝑉
𝜕𝑥 +

𝜕𝑉
𝜕𝑥

B

𝐴𝑥 = 0, 𝑉 𝑥 𝑡X , 𝑡X =
1
2 𝑥 𝑡X

B𝐿𝑥 𝑡X

• Strategy	for	obtaining	solution:	guess	something	that	works
• 𝑉 𝑡, 𝑥 = T

U 𝑥B𝐾 𝑡 𝑥, 𝐾 𝑡 ≥ 0

𝜕𝑉
𝜕𝑡

=
1
2

𝑥B�̇� 𝑡 𝑥,
𝜕𝑉
𝜕𝑥

= 𝐾 𝑡 𝑥



Continuous	Time	LQR

• Hamilton-Jacobi	equation:
1
2 𝑥B�̇� 𝑡 𝑥 +

1
2 𝑥 𝑡 B𝑄𝑥 𝑡 −

1
2 𝑥B𝐾 𝑡 B𝐵𝑅ST𝐵B𝐾 𝑡 𝑥 + 𝑥B𝐾 𝑡 B𝐴𝑥 = 0, 𝑉 𝑥 𝑡X , 𝑡X =

1
2 𝑥 𝑡X

B𝐿𝑥 𝑡X

• Strategy	for	obtaining	solution:	guess	something	that	works
• 𝑉 𝑡, 𝑥 = T

U 𝑥B𝐾 𝑡 𝑥, 𝐾 𝑡 ≥ 0

𝜕𝑉
𝜕𝑡

=
1
2

𝑥B�̇� 𝑡 𝑥,
𝜕𝑉
𝜕𝑥

= 𝐾 𝑡 𝑥



Continuous	Time	LQR

• Hamilton-Jacobi	equation:
1
2

𝑥B�̇� 𝑡 𝑥 +
1
2

𝑥 𝑡 B𝑄𝑥 𝑡 −
1
2

𝑥B𝐾 𝑡 B𝐵𝑅ST𝐵B𝐾 𝑡 𝑥 + 𝑥B𝐾 𝑡 B𝐴𝑥 = 0

• Collect	like	terms
1
2

𝑥B �̇� 𝑡 + 𝑄 − 𝐾 𝑡 B𝐵𝑅ST𝐵B𝐾 𝑡 + 𝐾 𝑡 B𝐴 + 𝐴B𝐾 𝑡 𝑥 = 0

• This	equation	must	hold	for	all	𝑥 𝑡 ,	so
�̇� 𝑡 + 𝑄 − 𝐾 𝑡 B𝐵𝑅ST𝐵B𝐾 𝑡 + 𝐾 𝑡 B𝐴 + 𝐴B𝐾 𝑡 = 0

• Boundary	condition:	𝑉 𝑇, 𝑥 𝑇 = T
U

𝑥 𝑇 B𝐿𝑥 𝑇
• Therefore	𝐾 𝑇 = 𝐿

1
2 𝑥B𝐾 𝑡 B𝐴𝑥 +

1
2 𝑥B𝐴B𝐾 𝑡 𝑥

Scalar,	therefore	
symmetric



Continuous	Time	LQR

• Hamilton-Jacobi	equation:
1
2 𝑥B�̇� 𝑡 𝑥 +

1
2 𝑥 𝑡 B𝑄𝑥 𝑡 −

1
2 𝑥B𝐾 𝑡 B𝐵𝑅ST𝐵B𝐾 𝑡 𝑥 + 𝑥B𝐾 𝑡 B𝐴𝑥 = 0, 𝑉 𝑥 𝑇 , 𝑇 =

1
2 𝑥 𝑇 B𝐿𝑥 𝑇

• PDE	becomes	ODE:	
�̇� 𝑡 + 𝑄 − 𝐾 𝑡 B𝐵𝑅ST𝐵B𝐾 𝑡 + 𝐾 𝑡 B𝐴 + 𝐴B𝐾 𝑡 = 0, 𝐾 𝑇 = 𝐿

• “Riccati equation”
• Integrate	backwards	in	time
• Optimal	control	is	linear	state	feedback!

𝑢∗ 𝑡, 𝑥 = −𝑅ST𝐵B 𝜕𝑉
𝜕𝑥 = −𝑅ST𝐵B𝐾 𝑡 𝑥



Comments

• No	control	constraint

• What	if	there	is	control	constraint?
• Easy:	Let	controllers	saturate
• Difficult	but	proper:	Explicitly	treat	it	in	the	minimization	of	𝐽

• MATLAB	commands
• Discrete	time:	dlqr;	continuous	time:	lqr

• In	general,	need	to	solve
𝜕𝑉
𝜕𝑡

+ min
(

𝐶 𝑥, 𝑢 	 +
𝜕𝑉
𝜕𝑥

⋅ 𝑓 𝑥, 𝑢 = 0,  𝑉 𝑥, 𝑇 = 𝑙 𝑥
• 𝑉 𝑥, 𝑡 is	 𝑛 + 1 -dimensional,	if	𝑥 ∈ ℝ:

• Optimal	state	feedback	control:	𝑢∗ 𝑡, 𝑥 = arg min
(

𝐶 𝑥, 𝑢 	 + KL
KM

⋅ 𝑓 𝑥, 𝑢

Suppose	 𝑢 𝑡 ≤ 1 is	a	constraint
• Use	𝑢 𝑡 = −𝑅ST𝐵B𝐾 𝑡 𝑥 if	 −𝑅ST𝐵B𝐾 𝑡 𝑥 ≤ 1
• Use	𝑢 𝑡 = 1 if−𝑅ST𝐵B𝐾 𝑡 𝑥 > 1
• Use	𝑢 𝑡 = −1 if−𝑅ST𝐵B𝐾 𝑡 𝑥 < −1



Time	Horizon

• Finite	time	horizon	problems
• Time-varying	value	function	𝑉 𝑡, 𝑥 :	optimal	cost	from	some	time	and	state
• Time-varying	control	policy	𝑢∗ 𝑡, 𝑥 :	achieves	optimal	cost

• Infinite	time	horizon	problems
• Let	final	time	be	0,	and	apply	DP	backwards	until	convergence
• Convergence	not	guaranteed;	if	𝑉 𝑡, 𝑥 converges,	then	we	have	a	time-
invariant	value	function	and	control	policy
• 𝑉_ 𝑥 , 𝑢_

∗ 𝑥



Robotic	Safety

• Verification	methods

• Considers	all	possible	system	behaviours,	given	assumptions

• Can	be	written	as	an	optimal	control	problem

Assumptions

Prove	safety
Control	policy



Reachability	Analysis:	Avoidance

Assumptions:	
• Model	of	robot
• Unsafe	region:	Obstacle

Unsafe	region

Backward	reachable	set	
(States	leading	to	danger)

Reachable	set

Control	policy



Assumptions
• System	dynamics: �̇� = 𝑓 𝑥, 𝑢, 𝑑 , 𝑡 ≤ 0 (by	convention,	final	time	is	0)

• State	𝑥
• Single	vehicle,	multiple	vehicle,	relative	coordinates

• Disturbance	𝑑:	uncontrolled	factors	that	affect	the	system,	such	as	wind
• Can	be	used	to	model	other	agents,	when	state	includes	them
• Assume	worst	case

𝑦T

𝑥T

𝜃T
𝑥T, 𝑦T, 𝜃T

𝑥U, 𝑦U, 𝜃U

𝑥 =

𝑥T
𝑦T
𝜃T
𝑥U
𝑦U
𝜃U

𝑥 =
𝑥T
𝑦T
𝜃T

𝜃b

𝑥b, 𝑦b

𝑥 =
𝑥b
𝑦b
𝜃b



Information	Pattern

• Control:	chosen	by	“ego”	robot
• Disturbances:	chosen	by	other	robot	(or	weather	gods)

• Assume	worst	case

• “Open-loop”	strategies
• Ego	robot	declares	entire	plan
• Other	robot	responds	optimally	(worst-case)
• Conservative,	unrealistic,	but	computationally	cheap

• “Non-anticipative”	strategies
• Other	robot	acts	based	on	state	and	control	trajectory	up	current	time
• Notation:	𝑑 ⋅ = Γ 𝑢 ⋅
• Disturbance	still	has	the	advantage:	it	gets	to	react	to	the	control!



Assumptions
• “Target	set”,	𝒯
• Can	specify	set	of	states	leading	to	danger
• Expressed	through	set	notation

𝑥 =
𝑥T
𝑦T
𝜃T

Obstacle
at	 �̅�, 𝑦f

𝒯 = 𝑥: 𝑥T − �̅� U + 𝑦T − 𝑦f U ≤ 𝑟 ⊆ ℝj

𝜃b

𝑥b, 𝑦b

𝑥 =
𝑥b
𝑦b
𝜃b

𝒯 = 𝑥: 𝑥b
U + 𝑦b

U ≤ 𝑅 ⊆ ℝj



Reachability	Analysis:	Avoidance

• Model	of	robot
• Unsafe	region

Unsafe	region

Backward	reachable	set	
(States	leading	to	danger)

Backward	reachable	set

Control	policy



Reachability	Analysis:	Goal	Reaching
Backward	reachable	set

Target	set

19

• Model	of	robot
• Goal	region

Backward	reachable	set	
(States	leading	to	goal)

Control	policy



Reachability	Analysis

20

• Model	of	robot
• Unsafe	region

Control	policy

• Model	of	robot
• Goal	region

Control	policy

• �̇� = 𝑓 𝑥, 𝑢, 𝑑
• 𝒯 • 𝑢∗ 𝑡, 𝑥

• 𝒜 𝑡 = �̅�: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , �̇� = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = �̅�, 𝑥 0 ∈ 𝒯

States	at	time	𝑡 satisfying	the	following:
there	exists	a	disturbance such	that	for	all	control, system enters	target	set	at	𝑡 = 0

• ℛ 𝑡 = �̅�: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , �̇� = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = �̅�, 𝑥 0 ∈ 𝒯

States	at	time	𝑡 satisfying	the	following:
for	all	disturbances, there	exists	a	control such	that system enters	target	set	at	𝑡 = 0

Backward	reachable	set	(States	leading	to	danger)

Backward	reachable	set	(States	leading	to	goal)



Terminology

• Minimal	backward	reachable	set
• 𝒜 𝑡 = �̅�: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , �̇� = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = �̅�, 𝑥 0 ∈ 𝒯
• Control	minimizes	size	of	reachable	set

• Maximal	backward	reachable	set
• ℛ 𝑡 = �̅�: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , �̇� = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = �̅�, 𝑥 0 ∈ 𝒯
• Control	maximizes	size	of	reachable	set

• Minimal	and	maximal	backward	reachable	tube
• �̅� 𝑡 = �̅�: ∃Γ 𝑢 ⋅ , ∀𝑢 ⋅ , �̇� = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = �̅�, ∃𝑠 ∈ 𝑡, 0 , 𝑥 𝑠 ∈ 𝒯
• ℛf 𝑡 = �̅�: ∀Γ 𝑢 ⋅ , ∃𝑢 ⋅ , �̇� = 𝑓 𝑥, 𝑢, 𝑑 , 𝑥 𝑡 = �̅�, ∃𝑠 ∈ 𝑡, 0 , 𝑥 𝑠 ∈ 𝒯



Computing	Reachable	Sets

• Start	from	continuous	time	dynamic	programming

• Observe	that	disturbances	do	not	affect	the	procedure

• Remove	running	cost

• Pick	final	cost	intelligently


