

Collocation Methods

CMPT 419/983

Mo Chen

SFU Computing Science

7/10/2019

Collocation

 $\begin{array}{ll} \text{minimize} & h(s_N, t_N) + \sum_{i=0}^{N-1} c(s_i, q_i, t_i)(t_{i+1} - t_i) \\ \text{subject to} & \forall i \in \{0, 1, \dots, N-1\}, \\ & \frac{s_{i+1} - s_i + f(s_i, q_i)(t_{i+1} - t_i)}{g(s_i, q_i)} \geq 0 \end{array}$

- No numerical integration
- Directly approximates x(t) and u(t)
 - Piecewise: eg. Hermite-Simpson method
 - Global: eg. Pseudospectral methods
- Impose dynamics constraints at discrete time points ("collocation points")

Hermite-Simpson Collocation

• Discretize time: $t_0 < t_1 < \cdots < t_N \coloneqq t_f$, $h \coloneqq t_{i+1} - t_i$ variable

$$x_i \coloneqq x(t_i), \qquad u_i = u(t_i) \checkmark$$

 x_i and u_i are decision variables

• (Assume scalar x for now, and) write $x(t) = b_{i,0} + b_{i,1}(t - t_i) + b_{i,2}(t - t_i)^2 + b_{i,3}(t - t_i)^3$, $t \in [t_i, t_{i+1}]$

$$\dot{x}(t) = b_{i,1} + 2b_{i,2}(t - t_i) + 3b_{i,3}(t - t_i)^2, \qquad t \in [t_i, t_{i+1}]$$

1. Some algebra: At t_i and t_{i+1} :

$$\begin{bmatrix} x(t_i) \\ \dot{x}(t_i) \\ x(t_{i+1}) \\ \dot{x}(t_{i+1}) \\ \dot{x}(t_{i+1}) \end{bmatrix} = \begin{bmatrix} x_i \\ f(x_i, u_i) \\ x_{i+1} \\ f(x_{i+1}, u_{i+1}) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & h & h^2 & h^3 \\ 0 & 1 & 2h & 3h^2 \end{bmatrix} \begin{bmatrix} b_{i,0} \\ b_{i,1} \\ b_{i,2} \\ b_{i,3} \end{bmatrix}$$

Obtain coefficients in terms of decision variables by taking inverse

$$\begin{bmatrix} b_{i,0} \\ b_{i,1} \\ b_{i,2} \\ b_{i,3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3/h^2 & -2/h & 3/h^2 & -1/h \\ 2/h^3 & 1/h^2 & -2/h^3 & 1/h^2 \end{bmatrix} \begin{bmatrix} x_i \\ f(x_i, u_i) \\ x_{i+1} \\ f(x_{i+1}, u_{i+1}) \end{bmatrix}$$

Dynamics Constraint

2. Choice of collocation points:

$$t_{i,c} = \frac{t_i + t_{i+1}}{2}$$
$$u_{i,c} \coloneqq \frac{u_{i+1} + u_i}{2}$$

- Plug in $t_{i,c}$: $x_{i,c} = b_{i,0} + b_{i,1}(t_{i,c} - t_i) + b_{i,2}(t_{i,c} - t_i)^2 + b_{i,3}(t_{i,c} - t_i)^3$ $\dot{x}_{i,c} = b_{i,1} + 2b_{i,2}(t_{i,c} - t_i) + 3b_{i,3}(t_{i,c} - t_i)^2$
- 3. Dynamics constraint at collocation points:

$$\dot{x}_{i,c}-f(x_{i,c},u_{i,c})=0$$

- $x_{i,c}$, $\dot{x}_{i,c}$ depend on $b_{i,0}$, $b_{i,1}$, $b_{i,2}$, $b_{i,3}$
- $b_{i,0}, b_{i,1}, b_{i,2}, b_{i,3}$ depend on $x_i, x_{i+1}, u_i, u_{i+1}$
- $u_{i,c}$ depends on u_i, u_{i+1}

$\begin{bmatrix} b_{i,0} \\ b_{i,1} \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{bmatrix} x_i \\ f(x, y_i) \end{bmatrix}$
$\begin{vmatrix} b_{i,1} \\ b_{i,2} \end{vmatrix} =$	$-3/h^2$	-2/h	$3/h^2$ -2/h ³	-1/h	$\begin{array}{c}f(x_i, u_i)\\x_{i+1}\end{array}$
$b_{i,3}$	$\frac{-3}{h}$ $\frac{2}{h^3}$	$1/h^{2}$	$-2/h^{3}$	$1/h^2$	$\left[f(x_{i+1}, u_{i+1})\right]$

Hermite-Simpson collocation

• Optimization problem, with simple integration

 $\begin{array}{l} \underset{\{x_i\}_{i=1}^{N}, \{u_i\}_{i=1}^{N-1}}{\text{minimize}} \quad h(x_N, t_N) + \sum_{i=0}^{N-1} c(x_i, u_i, t_i)(t_{i+1} - t_i) \\ \text{subject to} \quad \forall i \in \{0, 1, \dots, N-1\}, \\ \\ \frac{\dot{x}_{i,c} - f(x_{i,c}, u_{i,c}) = 0}{g(x_i, u_i) \ge 0} \end{array}$

$$\begin{aligned} x_{i,c} &= b_{i,0} + b_{i,1} (t_{i,c} - t_i) + b_{i,2} (t_{i,c} - t_i)^2 + b_{i,3} (t_{i,c} - t_i)^3 \\ \dot{x}_{i,c} &= b_{i,1} + 2b_{i,2} (t_{i,c} - t_i) + 3b_{i,3} (t_{i,c} - t_i)^2 \\ \begin{bmatrix} b_{i,0} \\ b_{i,1} \\ b_{i,2} \\ b_{i,3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3/h^2 & -2/h & 3/h^2 & -1/h \\ 2/h^3 & 1/h^2 & -2/h^3 & 1/h^2 \end{bmatrix} \begin{bmatrix} x_i \\ f(x_i, u_i) \\ x_{i+1} \\ f(x_{i+1}, u_{i+1}) \end{bmatrix} \\ u_{i,c} &= \frac{u_{i+1} + u_i}{2} \end{aligned}$$

Hermite-Simpson collocation

• Optimization problem, with simple integration

$$\begin{array}{l} \underset{\{x_i\}_{i=1}^{N}, \{u_i\}_{i=1}^{N-1}}{\text{minimize}} \quad h(x_N, t_N) + \sum_{i=0}^{N-1} c(x_i, u_i, t_i)(t_{i+1} - t_i) \\ \text{subject to} \quad \forall i \in \{0, 1, \dots, N-1\}, \\ \frac{\dot{x}_{i,c} - f(x_{i,c}, u_{i,c}) = 0}{g(x_i, u_i) \ge 0} \end{array}$$

- Key difference from shooting methods
 - Dynamics constraint: no numerical integration

Pseudospectral Methods

- Represent entire state trajectory as sum of weighted basis functions
 - Chebyshev polynomials, Legendre polynomials, etc.
- Pros:
 - Fewer decision variables
 - Numerically more accurate
- Cons:
 - Dense optimization problems

```
\begin{array}{ll} \underset{q}{\text{minimize}} & l(x(t_{N}), t_{N}) + \sum_{i=0}^{N-1} c(x(t_{i}), q_{i}, t_{i})(t_{i+1} - t_{i}) \\ \text{subject to} & \forall i \in \{0, 1, \dots, N-1\}, \\ & x(t_{i+1}) = x(t_{i}) + f(x(t_{i}), q_{i})(t_{i+1} - t_{i}) \\ & g(x(t_{i}), q_{i}) \geq 0 \end{array}
```

- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N 1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0

- $\begin{array}{ll} \underset{q}{\text{minimize}} & l(x(t_{N}), t_{N}) + \sum_{i=0}^{N-1} c(x(t_{i}), q_{i}, t_{i})(t_{i+1} t_{i}) \\ \text{subject to} & \forall i \in \{0, 1, \dots, N-1\}, \\ & x(t_{i+1}) = x(t_{i}) + f(x(t_{i}), q_{i})(t_{i+1} t_{i}) \\ & g(x(t_{i}), q_{i}) \geq 0 \end{array}$
- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N 1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0
- Now, the state is at $x(t_{i+1})$; re-solve the optimization
 - Obtain control from time steps i + 1 to i + N

- $\begin{array}{ll} \underset{q}{\text{minimize}} & l(x(t_{N}), t_{N}) + \sum_{i=0}^{N-1} c(x(t_{i}), q_{i}, t_{i})(t_{i+1} t_{i}) \\ \text{subject to} & \forall i \in \{0, 1, \dots, N-1\}, \\ & x(t_{i+1}) = x(t_{i}) + f(x(t_{i}), q_{i})(t_{i+1} t_{i}) \\ & g(x(t_{i}), q_{i}) \geq 0 \end{array}$
- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N 1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0
- Now, the state is at $x(t_{i+1})$; re-solve the optimization
 - Obtain control from time steps i + 1 to i + N
 - Apply control at time step i + 1

- $\begin{array}{ll} \underset{q}{\text{minimize}} & l(x(t_{N}), t_{N}) + \sum_{i=0}^{N-1} c(x(t_{i}), q_{i}, t_{i})(t_{i+1} t_{i}) \\ \text{subject to} & \forall i \in \{0, 1, \dots, N-1\}, \\ & x(t_{i+1}) = x(t_{i}) + f(x(t_{i}), q_{i})(t_{i+1} t_{i}) \\ & g(x(t_{i}), q_{i}) \geq 0 \end{array}$
- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N 1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0
- Now, the state is at $x(t_{i+1})$; re-solve the optimization
 - Obtain control from time steps i + 1 to i + N
 - Apply control at time step i + 1
 - Repeat

- $\begin{array}{ll} \underset{q}{\text{minimize}} & l(x(t_{N}), t_{N}) + \sum_{i=0}^{N-1} c(x(t_{i}), q_{i}, t_{i})(t_{i+1} t_{i}) \\ \text{subject to} & \forall i \in \{0, 1, \dots, N-1\}, \\ & x(t_{i+1}) = x(t_{i}) + f(x(t_{i}), q_{i})(t_{i+1} t_{i}) \\ & g(x(t_{i}), q_{i}) \geq 0 \end{array}$
- Start from x_0 , initial state; solve optimization
 - q provides control from time steps 0 to $N 1 \leftarrow$ not necessary a long time horizon
 - Apply control only at time step 0
- Now, the state is at $x(t_{i+1})$; re-solve the optimization
 - Obtain control from time steps i + 1 to i + N
 - Apply control at time step i + 1
 - Repeat

- Main requirement
 - Computation must be fast enough compared to re-planning frequency
 - Re-planning frequency varies greatly depending on application
 - Agile mobile vehicles: milliseconds to a second
 - Building temperature control: minutes to hours
- Theoretical considerations
 - Recursive feasibility: feasible first optimization problem ⇒ feasible kth optimization problem
 - Performance guarantees: eg. goal satisfaction
- Special popular case
 - Model-predictive control: uses a model of the system

Optimal Control

- Open-loop solutions
 - Differential flatness
 - Shooting methods
 - Collocation
- Receding horizon control:
 - Apply first part of the open-loop solution
 - Resolve open-loop optimization
- Relevant software packages
 - Optimization: cvx, Gurobi, SeDuMi, Mosek, Cplex, Matlab (fmincon)
 - Shooting/collocation: casadi, ACADO, Matlab bvp4c (and similar)
 - Receding horizon control: ACADO, Matlab (MPC toolbox)