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N-1
Collocation minimize sy, t) + Z (st i) (an — 1)

subjectto  vi €{0,1,..., N — 1},

* No numerical integration ' S
9(si,q:) =20

* Directly approximates x(t) and u(t)

* Piecewise: eg. Hermite-Simpson method
* Global: eg. Pseudospectral methods

* Impose dynamics constraints at discrete time points (“collocation
points”)




Hermite-Simpson Collocation

x; and u; are decision

* Discretize time: bo <t < <ty =ty h:=ti 4 — f/ variables
x; = x(t;), u; = u(t;)

* (Assume scalar x for now, and ) write  x(t) = b; o + b; 1 (t — t;) + b; ,(t — t;)* + b; 3(t — t;)3, t € [t;, tiiq]
x(t) = big + 2bio(t — t;) +3bis(t —t)?,  t € [ty tiyq]

1. Some algebra: At t; and t;,1:
x@)]  n

x(tl) f(xirui)
x(tiz1) Xit+1
% (ti ) U (Rivr, wivd)]

* Obtain coefficients in terms of decision variables by taking inverse

1 0 0 0
0 1 0 0

—3/h2 —-2/h 3/h? —1/h Xj11

| 2/h3  1/h?  —=2/h3  1/R?JLf (X1, Uige))




Dynamics Constraint

2. Choice of collocation points: bttt
2
Uip1 T U;

ui,C = 2

© Plugintc: Xic=Dbjo+ bi,l(ti,c — ti) + b, (ti,c — ti)z + b; 3 (ti,c — ti)3
. 2
Xic=biy +2b5(t;c —t;) +3bis(t;c — t;)

3. Dynamics constraint at collocation points:
Xic — f(xi,c; ui,c) =0

* Xjc X;c dependon b;,b;q, b; o, b; 3

* b0, by, bio, biz depend on x;, x; 4, Uy, Ujyq 1 0 0 0 X;

* u;. dependson u;, U4 1| | O 1 0 0 f(x,uy)

—|-3/h* —-2/h 3/h* —1/h X1
2/h®  1/h*  =2/h®  1/h? | If (Xis1, Uis1)




Hermite-Simpson collocation

e Optimization problem with simple integration

mlmmlze h(xy, ty) + z c(x ug, ) (Eip1 — &) Xic = bio + b (tic —t;) + bio(tic — ti)z + bz (tic — ti)3
{xl}l, 1{ul i= 1 5
Xic = biq + 2b;p(tic — t;) + 3b3(tic — ;)
subjectto Vi €{0,1,..,N — 1},

bi g 1 0 0 0 X
_f(xi,C'ui,C =0 bll] I 0 1 0 0 }l f(xiu;) \

b -3/h* -2/h  3/h* -1/h X1
] ) > i,2
g(xl'ul)—o b; 5 2/h*  1/n*  =2/h* 1/h* 1Lf (i1, Uig1)
Ui T U;

Ujc = 5




Hermite-Simpson collocation

e Optimization problem, with simple integration
N-1
minimize  hCoy,tn) + ) C( g 6) (e — 1)
(e gt =
subjectto Vi €{0,1,..,N — 1},
xi,c - f(xi,c' Uic) = 0

g(xi, u’i) =0

* Key difference from shooting methods
* Dynamics constraint: no numerical integration




Pseudospectral Methods

* Represent entire state trajectory as sum of weighted basis functions
* Chebyshev polynomials, Legendre polynomials, etc.

* Pros:
* Fewer decision variables
 Numerically more accurate

* Cons:
* Dense optimization problems




N-1

miniqmize [(x(ty), ty) + Z c(x(t;), qi, ti) (tiv1 — ti)
. . i—0

Receding Horizon Control |wsiectto wieqor,. .n-1

X(tipq) = x(&) + f(x(t), q;) (41 — t;)
g(x(t;),q;) =0

* Start from x,, initial state; solve optimization
g provides control from time steps 0 to N — 1 € not necessary a long time horizon
* Apply control only at time step 0

Obstacle

Goal
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Receding Horizon Control

* Main requirement
* Computation must be fast enough compared to re-planning frequency
* Re-planning frequency varies greatly depending on application
* Agile mobile vehicles: milliseconds to a second
* Building temperature control: minutes to hours

 Theoretical considerations

* Recursive feasibility: feasible first optimization problem = feasible kth optimization
problem

* Performance guarantees: eg. goal satisfaction

* Special popular case
* Model-predictive control: uses a model of the system




Optimal Control

* Open-loop solutions
 Differential flatness
e Shooting methods
* Collocation

* Receding horizon control:
* Apply first part of the open-loop solution
* Resolve open-loop optimization

* Relevant software packages
e Optimization: cvx, Gurobi, SeDuMi, Mosek, Cplex, Matlab (fmincon)
 Shooting/collocation: casadi, ACADO, Matlab bvp4c (and similar)
e Receding horizon control: ACADO, Matlab (MPC toolbox)




