
CMPT 419/983 Assignment 2 
 Due date: October 28, 2019 
 Submit zip file to CourSys 

1) Sequential Quadratic Programming. Use Sequential Quadratic 
Programming to solve the NLP, introduced in class. You may use any 
software to solve the quadratic subproblems. (The solution will be given 
in cvx). 

minimize sin(𝜋𝑥) sin(2𝜋𝑦)  
subject to −1 ≤ 𝑥 ≤ 1  

−1 ≤ 𝑦 ≤ 1  
 

a) Construct a quadratic subproblem that minimizes the quadratic 
approximation of the objective, subject to linearization of the constraints, 
centred around a given iterate 𝑥௞. 

b) Write code to solve the above quadratic subproblem using cvx. 

c) Write code to solve the entire NLP, starting from several different initial 
points 𝑥଴. Make a plot showing several sequences of {𝑥௞} starting these initial 
points. 

 



2) Differential Flatness. Consider the following simple model of the car (that 
is slightly more complex than the one introduced in class: 

𝑥̇ = 𝑣 cos 𝜃 

𝑦̇ = 𝑣 sin 𝜃 

𝜃̇ = 𝜔 

𝑣̇ = 𝑎 

The states consist of the position (𝑥, 𝑦), the heading 𝜃, and the 
longitudinal speed 𝑣. The controls are the turn rate 𝜔 and the longitudinal 
acceleration 𝑎. 

a) Show that the system is differentially flat by letting 𝑧 = (𝑥, 𝑦), and deriving 
the functions 𝛽 and 𝛾 such that  

(𝑥, 𝑦, 𝜃, 𝑣) = 𝛽൫𝑧, 𝑧̇, … , 𝑧(௤)൯, 
(𝜔, 𝑎) = 𝛾൫𝑧, 𝑧̇, … , 𝑧(௤)൯. 

b) Consider a maneuver given by the following initial condition at 𝑡 = 0 and final 
condition at 𝑡 = 𝑇 = 10: 
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Using the basis functions 𝜓଴(𝑡) = 1, 𝜓ଵ(𝑡) = 𝑡, 𝜓ଶ = 𝑡ଶ, 𝜓ଷ = 𝑡ଷ, 𝜓ସ = 𝑡ସ, we 
parameterize the flat outputs as follows: 

𝑥(𝑡) = ෍ 𝑏଴௜𝜓௜(𝑡)

ଷ

௜ୀ଴

 

𝑦(𝑡) = ෍ 𝑏ଵ௜𝜓௜(𝑡)

ଷ

௜ୀ଴

 

Write a system of equations in terms of the coefficients {𝑏଴௜} and {𝑏ଵ௜} such 
that the initial and final conditions are satisfied. 

 

c) Solve the above systems of equations using a software of your choice to 
obtain and plot the state and control trajectories.  

 



3) Multiple Shooting with Casadi. Consider a 
system involving an inverted pendulum on a 
cart. For this system, the state is (𝑥, 𝑣, 𝜃, 𝜔), 
representing the position of the cart, speed of 
the cart, angle of the pendulum, and angular 
speed of the pendulum, respectively. The initial 
state at time 𝑡 = 0 is (0,0,0,0). 

The problem parameters are as follows: 𝑀 = 0.5 
kg is the mass of the cart, 𝑚 = 0.2 kg is the 
mass of the pendulum, 𝑙 = 0.3 m is the half-length of the pendulum, 𝐼 =

0.006 kg∙m2  is the moment of inertial of the pendulum. 

We would like to apply a force 𝐹(𝑡) such that at time 𝑡 =  5 s, the cart is 
stopped at the origin, with the pendulum being stationary at the upright 
position, represented by the state (0,0, 𝜋, 0). At the same time, we would 

like to minimize the control effort, given by the integral ∫ 𝐹ଶ(𝑡)𝑑𝑡
ହ

௧ୀ଴
, while 

ensuring that the position of the cart stays within 1 m of the origin, |𝑥| ≤

1. The control is also limited by |𝐹(𝑡)| ≤ 0.2 at all times. 

The equations of motion are given by  

(𝑀 + 𝑚)𝑥̈ + 𝑏𝑥̇ + 𝑚𝑙𝜃̈ cos 𝜃 − 𝑚𝑙𝜃̇ଶ sin 𝜃 = 𝐹 

(𝐼 + 𝑚𝑙ଶ)𝜃̈ + 𝑚𝑔𝑙 sin 𝜃 = −𝑚𝑙𝑥̈ cos 𝜃 

where 𝑏 =  0.1 N/m/s is the coefficient of friction, and 𝑔 =  9.81 m/s/s is 
the acceleration due to gravity on Earth. In terms of a first-order ODE, we 
have 𝑥̇ = 𝑣, 𝜃̇ = 𝜔. The rest of the system dynamics, for (𝑣, 𝜔), can be 
implicitly written as 

ቂ
𝑀 + 𝑚 𝑚𝑙 cos 𝜃

𝑚𝑙 cos 𝜃 𝐼 + 𝑚𝑙ଶ ቃ ቂ
𝑣̇
𝜔̇

ቃ = ൤
−𝑏𝑣 + 𝑚𝑙𝜔ଶ sin 𝜃 + 𝐹

−𝑚𝑔𝑙 sin 𝜃
൨ 

a) Write down the associated optimal control problem. 

b) Discretize the optimal control problem using the multiple shooting method 
and write down the resulting nonlinear program. Use 𝑁 = 50 time intervals, 
forward Euler integration, and left endpoint first order integration (the same 
schemes as presented in the lecture). 



c) Using the Casadi toolbox, which can be found at 
https://github.com/casadi/casadi/wiki, solve the nonlinear program, and plot 
(𝑥(𝑡), 𝑣(𝑡), 𝜃(𝑡), 𝜔(𝑡)), and 𝐹(𝑡). A good starting point is the direct multiple 
shooting example at https://github.com/casadi/casadi/wiki/examples. 

  



4) Reachability Analysis. Consider a kinematic model of a fixed-wing aircraft 
flying in the presence of wind, given as follows: 

𝑥̇ = 𝑣 cos 𝜃 + 𝑑௫ 

𝑦̇ = 𝑣 sin 𝜃 + 𝑑௬ 

𝜃̇ = 𝑢 + 𝑑ఏ 

The state (𝑥, 𝑦, 𝜃) consists of 𝑥- and 𝑦- position, and heading 𝜃. The 
aircraft flies at a constant speed 𝑣 = 0.3 km/s, and controls its turn rate 𝑢, 
with |𝑢| ≤ 0.5 rad/s. The effect of wind is modeled by the disturbance 𝑑 =

൫𝑑௫ , 𝑑௬ , 𝑑ఏ൯ with |𝑑௫|, ห𝑑௬ห ≤ 50 m/s, and |𝑑ఏ| ≤ 0.005 rad/s. 

The aircraft aims to arrive at its next waypoint at 𝑥 = 2 km, 𝑦 = 2 km, 𝜃 =
ଷగ

଼
, with an acceptable tolerance of 200 m in distance and గ

ଵ଴
 in heading. 

We now proceed to compute all possible initial states and times that can 
reach the setpoint within tolerance at time 𝑡 = 0. 

a) What is the target set 𝒯 representing the acceptable set of states for 
reaching the waypoint within the tolerances? What is a suitable function 
𝑙(𝑥, 𝑦, 𝜃) such that 𝑙(𝑥, 𝑦, 𝜃) ≤ 0 ⇔ (𝑥, 𝑦, 𝜃) ∈ 𝒯? 

b) The value function 𝑉(𝑡, 𝑥, 𝑦, 𝜃) representing the set of states from which the 
aircraft can reach the target set within 𝒕 seconds is the solution to the HJI 
variational inequality 

min ൜
𝜕𝑉

𝜕𝑡
(𝑡, 𝑥, 𝑦, 𝜃) + min

௨∈𝒰
max
ௗ∈𝒟

𝜕𝑉

𝜕𝑥
(𝑡, 𝑥, 𝑦, 𝜃)ୃ𝑓(𝑥, 𝑦, 𝜃, 𝑢, 𝑑) , 𝑙(𝑥) − 𝑉(𝑡, 𝑥)ൠ = 0 

where 𝑓(𝑥, 𝑦, 𝜃, 𝑢, 𝑑) is given by the system dynamics. Determine the optimal 𝑢 
and 𝑑 optimizes the min-max expression. That is find an analytic expression 
for 𝑢∗ and 𝑑∗, where 

𝑢∗(𝑡, 𝑥, 𝑦, 𝜃) = arg min
௨∈𝒰

max
ௗ∈𝒟

∇𝑉(𝑡, 𝑥, 𝑦, 𝜃)ୃ𝑓(𝑥, 𝑦, 𝜃, 𝑢, 𝑑) 

𝑑∗(𝑡, 𝑥, 𝑦, 𝜃) = arg max
ௗ∈𝒟

∇𝑉(𝑡, 𝑥, 𝑦, 𝜃)ୃ𝑓(𝑥, 𝑦, 𝜃, 𝑢∗, 𝑑) 

and 𝑢 ∈ 𝒰 and 𝑑 ∈ 𝒟 represents the bounds on the control and disturbances. 
 



c) Compute 𝑉(𝑡, 𝑥, 𝑦, 𝜃) from 𝑡 = −10 to 𝑡 = 0 using the helperOC toolbox, which 
can be found at https://github.com/HJReachability/helperOC. A good starting 
point is tutorial.m. Use the visSetIm and proj functions to visualize the 
following: 𝑉(𝑡 = −10, 𝑥, 𝑦, 𝜃), 𝑉(𝑡 = −5, 𝑥, 𝑦, 𝜃), 𝑉(𝑡 = −10, 𝑥, 𝑦, 𝜃 = 0), 𝑉(𝑡 =

−10, 𝑥, 𝑦 = 0, 𝜃). 
 
For your computation, use the following recommended grid bounds and 
resolution: 𝑥 ∈ [−2,5] with 45 grid points, 𝑦 ∈ [−2.5,4] with 45 grid points, 𝜃 ∈

[−𝜋, 𝜋] with 35 grid points. 
 

 

 

 


