CMPT 419/983 Fall 2019 Assignment 1

- Due date: Sept. 30
- Submit zip file to CourSys

1) A simplified set of equations of motion for the Earth and an orbiting satellite is given by

$$
\begin{aligned}
& \ddot{r}=r \dot{\theta}^{2}-\frac{k}{r^{2}}+u_{1}, \\
& \ddot{\theta}=-\frac{2 \dot{r} \dot{\theta}}{r}+\frac{1}{r} u_{2},
\end{aligned}
$$

where r represents the Earth-satellite distance measured from their centres, and θ represents the phase of the orbit. k is a positive constant.
a) Derive a state space model of this system in the form of a first-order ordinary differential equation.
b) What are the equilibrium points of the state space model, under zero control input, $u_{1}=u_{2}=0$? Give a physical interpretation of the result.
Equilibrium points and physical interpretation, zero-input case
c) What are the equilibrium points of the state space model, under $u_{1}=\frac{k}{x_{1}^{2}}, u_{2}=$ 0 ? Give a physical interpretation of this control set point and of the equilibrium points.
d) Linearize the model with respect to a reference orbit given by $r(t) \equiv \rho, \theta(t)=$ $\omega t, u_{1}=u_{2}=0$
e) Numerically integrate the ODE, with $u_{1}(t), u_{2}(t) \equiv 0$, using your own implementation of RK4. Plot the state trajectory and intuitively explain the behaviour. Please attach your code.

Use parameters for the international space station orbiting the Earth:

- $r(0)=410 \mathrm{~km}+6378 \mathrm{~km}$, which represents an orbit 410 km above the earth's surface,
- $\dot{r}(0)=0 \mathrm{~m} / \mathrm{s}$,
- $\theta(0)=0$,
- $\dot{\theta}(0)=2 \pi / T$, where $T=92.68$ minutes, the orbital period
- $k=G M$, where $G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}, M=5.97 \times 10^{24} \mathrm{~kg}$.

2) The Lotka-Volterra Predator-Prey Model describes the interaction between a population of predators and a population of prey. Let x be the number of prey, and y be the number of predators, and the model describes the evolution of x and y as follows:

$$
\begin{aligned}
& \dot{x}=a x-b x y \\
& \dot{y}=-d y+c x y
\end{aligned}
$$

The interpretation of the parameters a, b, c, d are as follows:

- a represents the birth rate of prey,
- d represents the death rate of predators,
- b is the prey's susceptibility to predators, and
- c is the ability of predators to hunt prey.

Note that all parameters and states are strictly positive.
a) Find the (non-trivial) equilibrium of the system.
b) Let $V(x, y)=y^{a} e^{-b y} x^{d} e^{-c x}$. Show that $\dot{V}(x, y)=0$.
c) Prove that the system is stable around the equilibrium point.

Hint: Find the maximum of $V(x, y)$, by using the fact that $\log V(x, y)$ has the same maximum. In addition, consider the convexity of $\log V(x, y)$
3) Given the system $\dot{x}=A x+B u$, with $A=\left[\begin{array}{cc}1 & 0 \\ 1 & -2\end{array}\right], B=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, construct a linear state feedback controller so that the closed loop system is stable.
4) Consider the linear system $\dot{x}=A x$, with $A=\left[\begin{array}{cc}0 & 1 \\ -500 & -501\end{array}\right]$.
a) Determine conditions on the time step size that must be satisfied for the forward Euler method to be stable.
b) Repeat the above two steps for the backward Euler method.

