ENSC327 Communications Systems 22: Gaussian Processes and White Noise

School of Engineering Science Simon Fraser University

Outline

- Required Background:
 - **d** pdf of a Gaussian Random Variable:

• Covariance of two R.V.s :

- Gaussian Random Processes
 - N-dimensional Gaussian random vector
 - **Gaussian random processes**
- □ Noise (Normally referred to an unwanted R.P.)
 - □ White Noise
 - Guassian Noise
 - White Guassian Noise
 - □ Filtered White Noise

Joint Gaussian pdf

Assume X_i (i=1, ..., N) are n Gaussian random variables with means μ_{X_i} . The <u>Gaussian Random Vector</u> $\mathbf{X} = [X_1, X_2, ..., X_N]$ is completely specified by The <u>means</u> of individual R.V.s and all <u>pairwise covariances</u> among X_i.

□ The mean vector:

Covariance matrix:

$$\boldsymbol{\Lambda} = E\left\{ \begin{bmatrix} \mathbf{X} - \mu_{\mathbf{X}} \end{bmatrix}^T \begin{bmatrix} \mathbf{X} - \mu_{\mathbf{X}} \end{bmatrix} \right\} = E\left\{ \begin{bmatrix} X_1 - \mu_{X_1} \\ X_2 - \mu_{X_2} \\ \vdots \\ X_N - \mu_{X_N} \end{bmatrix} \begin{bmatrix} X_1 - \mu_{X_1} & X_2 - \mu_{X_2} & \dots & X_N - \mu_{X_N} \end{bmatrix} \right\}$$

□ The (i,j)-th entry of the covariance matrix is the covariance between Xi and Xj:

 $\implies \Lambda_{ij} =$

□ If X_i and X_j are uncorrelated for all $i \neq j$:

$$\boldsymbol{\Lambda} = \begin{bmatrix} \boldsymbol{\sigma}_{X_1}^2 & & & \\ & \boldsymbol{\sigma}_{X_2}^2 & & \\ & & \ddots & \\ & & & \boldsymbol{\sigma}_{X_N}^2 \end{bmatrix}$$

Important Reminder: In general, independent \rightarrow uncorrelated, but converse is not true. For Guasian R.V.s, independent \leftrightarrow uncorrelated.

Joint Gaussian pdf (Cont.)

D The joint pdf of the N-Dim Gaussian random vector X:

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{|2\pi\Lambda|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)\Lambda^{-1}(\mathbf{x}-\mu)^{T}} = \frac{1}{(2\pi)^{\frac{N}{2}}} e^{-\frac{1}{2}(\mathbf{x}-\mu)\Lambda^{-1}(\mathbf{x}-\mu)^{T}}$$

$|\Lambda|$: determinant of matrix Λ .

Important Property: the N-Dim Gaussian pdf only depends on the means of all Xi's and covariances between any two components. No higher order cross-correlations are needed.

Gaussian Random Processes

- □ A random process X(t) is a Gaussian process if for all k and all $\{t_1, t_2, ..., t_k\}$, $\{X(t_1), X(t_2), ..., X(t_k)\}$ are jointly Gaussian distributed.
- Properties of Gaussian Random Processes:
 - 1. The mean $\mu_{X(t)}$ and autocorrelation $R_X(t_1, t_2)$ give a complete description of a Gaussian process, regardless of its stationarity.
 - 2. If a Gaussian random process is WSS $(R_X(t_1, t_2) = R_X(t_1 t_2))$, then it is also strictly stationary, because the Gaussian pdf is only related to means and covariances.
 - 3. If a Gaussian random process is applied to an LTI system, the output is also a Gaussian process.

White Noise (8.10)

- White noise (or white process): A random process W(t) is called white noise if it has a constant power spectral density for all f.
- □ What's the power of white noise?

As long as the bandwidth of the noise is much wider than that of the signal, we can treat the noise as white noise.

- □ Significance of white noise:
 - □ Thermal noise is close to white in a large range of freqs.
 - Many processes can be modeled as output of LTI systems driven by a white noise.

Sw(f)

□ The psd of white noise is usually denoted as

$$S_W(f) = \frac{N_0}{2}.$$

- The 1/2 factor emphasizes that the spectrum extends to both positive and negative frequencies.
- □ The autocorrelation function of WSS white noise:

→ Different samples of white noise in time domain are

Gaussian Noise

- □ A noise process (random process), X(t), is called Gaussian noise (Gaussian R.P.) if the pdf of X(t) is Gaussian for all t.
- This says nothing of the correlation of the noise in time or of the spectral density of the noise:
 - Gaussian noise and white noise are two different concepts. Neither implies the other.

White Gaussian Noise

- White Gaussian noise: A white noise (constant power spectral density) with Gaussian distributed amplitude.
- Gaussian white noise is a good approximation of many realworld situations and generates mathematically tractable models.
- □ Samples of Gaussian white noise are independent:
 - Uncorrelated and independent are same for Gaussian pdf.

Filtered White Noise – Example 1

A white noise with zero mean and psd $N_0/2$ is filtered by an ideal lowpass filter of bandwidth B and unit gain. Find the auto-correlation and average power of the output noise.

Filtered White Noise – Example 2

• A white noise with zero mean and psd $\frac{N_0}{2}$ is filtered by an RC lowpass filter with: $H(f) = \frac{1}{1 + j2\pi fRC}$

Find the psd and autocorrelation of the output.

