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Outline

 Chap 2.1 – 2.5:
 Signal Classifications
 Fourier Transform
 Dirac Delta Function (Unit Impulse)
 Fourier Series
 Bandwidth

 (Chap 2.6-2.9 will be studied together with Chap. 8)
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Signal Classification: Deterministic vs Random

 Deterministic signals: can be modeled as completely 
specified functions, no uncertainty at all
 Example: x(t) = sin(a t)

x(t)

Random noise e(t)

y(t): random 

 Random signals: take a random value at any time
 Example: Noise-corrupted channel output
 Probability distribution is needed to analyze the signal
 It is more useful to look at the statistics of the signal:

 Average, variance …
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Signal Classification: Periodic vs Aperiodic

 Periodic: A signal x(t) is periodic if and only if we 
can find some constant T0 such that 

x(t+T0) = x(t), -∞< t <∞. 

 Fundamental period: the smallest T0 satisfying the 
equation above.

 Aperiodic: Any signal not satisfying the equation is 
called aperiodic.

……

t        t + T0



Power and energy of arbitrary signal x(t):
Energy:

Power: The average amount of energy per unit of time.

 For a periodic signal: 

What’s the energy of a periodic signal?

What’s the power of an aperiodic and time limited signal?

5

Signal Classification: Energy Signals vs Power 
Signals
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 A signal is called an Energy Signal if its energy is finite

 A signal is called a Power Signal if its power is finite

 Periodic Signal are 

Signal Classification: Energy Signals vs Power Signals

x(t) = 0 at ±∞
P = 0

∞<< E0

∞<< P0
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Types of Fourier Series and Transforms

 Continuous-time signals:
 1. Aperiodic: Fourier transform
 2. Periodic: Fourier series (and Fourier transform)

 Discrete-time signals:
 3. Aperiodic: Discrete-time Fourier transform
 4. Periodic: Discrete-time Fourier series (and Fourier transform)

Continuous-
time signals

Discrete-time 
signals

Aperiodic Periodic

1 2

Aperiodic Periodic

3 4
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Fourier Transform (FT)

 For aperiodic, continuous-time signal:

ω:  continuous angular frequency
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 In terms of frequency f (Recall ω = 2 π f )
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Amplitude and Phase Spectra

 Important Property: If g(t) is real, then G(f) is conjugate symmetric:

where “*” is the complex-conjugate operator.

 Proof:

).()(  ,)()(or      ),()(* fffGfGfGfG −−=−=−= θθ
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f
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Properties of FT

 Conjugation rule:



 Symmetry:
 If g(t) is real and even, then G(f) is real and even.
 If g(t) is real and odd,  then G(f) is imaginary and odd.

)(      )(* -fGtg *↔)(      )( fGtg ↔
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Example: Symmetry Rule

 Find the FT of the Unit rectangular function (or gate function): 
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(very useful in this course)
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Properties of Fourier Transform (Cont.)

 Dilation (or similarity or time scaling/frequency scaling) :

 Proof:

 Compress (expand) in time   in frequency
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For a < 0:

Note the change of integral range when a<0.
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Example of Dilation Property

 Find the FT of the Rectangular Pulse of width T and 
compare with the FT of rect(t) :

)rect( 
T
tAg(t) =
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Uncertainty Principle of the FT

Narrow in time
Wide in frequency

Wide in time
Narrow in frequency
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Properties of Fourier Transform (Cont.)

 Reflection Property:
Apply the scaling property : to find the FT of g(-t):

If in addition g(t) is real, G(f) is conjugate symmetric,
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Properties of Fourier Transform (Cont.)

 Duality:



 Proof:

)(     )( fgtG −↔

Since t and f are independent variables, by ignoring their physical meanings, 
we can interchange t and f:
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Apply the duality property to find the FT of 
Solution:

17

)2(sinc )( WtAtg =

Example of Duality Property
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The sign or “signum” function (sgn(t) )

(Note: This example is useful later when we study single sideband (SSB) 
communications and Hilbert transform)
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Properties of Fourier Transform (Cont.)

 Time shifting (delay):

(Time delay only affects the phase spectrum. )
 Frequency shifting:

 Very useful in the study of communication systems (modulation):

02
0 )(      )( πft-jefGttg ↔−)(      )( fGtg ↔
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Example of Frequency Shifting

What is the FT of                                       ?)2cos()()( tf
T
trecttg cπ=

This is a modulation technique called amplitude modulation. The effect is 
that the spectrum (Fourier Transform) of rect(T/t) gets shifted to ±𝑓𝑓𝑐𝑐 .
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 Differentiation:

 Proof:

This property is used in FM demodulation
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Properties of Fourier Transform (Cont.)
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Convolution

 Convolution: (Recall)The convolution operation describes the input-output 
relationship of a linear time-invariant (LTI) system (ENSC 380, 383)

 The convolution of two signals is defined as

 The formula is related to the properties of LTI system and impulse response.

 Note: it is very easy to make mistake about this formula. Please be very 
careful, as it may appear in the exam.

 More on this later.
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 Convolution property (one of the most useful properties of FT)
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Time domain convolution  frequency domain product

Properties of Fourier Transform (Cont.)
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 Modulation:    ),()(   ),()( 2211 fGtgfGtg ↔↔
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Time domain product  frequency domain convolution

Properties of Fourier Transform (Cont.)
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Rayleigh’s Energy Theorem (Parseval’s Theorem)

We can calculate the total energy of a signal in either domain.

Proof:
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Energy (Cont.)
Can we find the energy of the signal 𝑔𝑔(𝑡𝑡) with the time period  
𝑡𝑡1, 𝑡𝑡2 directly from it’s FT?
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Dirac Delta Function (Unit Impulse)

 The Dirac delta function δ(t) is defined as a function satisfying two 
conditions:
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  δ(t) is an even function: δ(-t) = δ(t) .
 The definition implies the sifting property of Delta function:
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Dirac Delta Function (Cont.)

 Since δ(t) is even function, we can rewrite this as

.)()()()()( 000 ∫∫
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 Changing the variables, we get the convolution:
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  The convolution of δ(t) with any function is that function itself. 

 This is called the replication property of the delta function.
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Linear and time-invariant system

 Linearity: a system is linear if the input
leads to the output                            ,
where y1, y2 are the output of x1 and y2 respectively.

x(t) y(t)

)()( 2211 txatxa +
)()( 2211 tyatya +

 Time-invariant system: a system is time-invariant if 
the delayed input                 has the output               ,
where y(t) is the output of x(t).

A system is LTI if it’s both linear and time-invariant.

)( 0ttx − )( 0tty −

LTI 
System
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LTI System (Cont.)

 A linear and time-invariant system is fully characterized by its output to the 
unit impulse, which is called impulse response, denoted by h(t).

 The output to any input is the convolution of the input with the impulse 
response:

)(tδ )(thLTI 
System
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∫
∞

∞−
−= ττδτ dtxtx )()()(

 Proof of the convolution expression:
We start from the sifting property:

 This can be viewed as the linear combination of 
delayed unit impulses.

 By the properties of LTI, 
the output of x(t) will be the linear combination of 
delayed impulse responses:
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LTI System (Cont.)
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LTI System (Cont.)
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Fourier Transform of the delta function
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Applications of the Unit Impulse Function

 FT of DC signal:  
(i.e., DC signal only has 0 frequency component).

 Proof: 
 We know:

 apply  the duality property the above

1G(f)      )()( =↔= ttg δ

).()(      1g(t) ffG δ=↔=



35

 FT of              :

 (Intuitively: A pure complex exponential signal only has one frequency 
component)

 Proof:

tfje 02π ).(    0
2 0 ffe tfj −↔ δπ

Applications of the Unit Impulse Function 
(Cont.)



Find the FTs of                  and   tf02cos π tf02sin π

Applications of the Unit Impulse Function (Cont.)
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Fourier Series

 Suppose x(t) is periodic with period T0:

0 0 0( ) ,    ojk t
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 Represent x(t) as the linear combination of fundamental signal and 

harmonic signals (or basis functions)

 𝑋𝑋𝑘𝑘: Fourier coefficients. 

:/2Let  00 Tπω =
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Fourier Series (cont.)

 Example: Find the Fourier series expansion of

 Method 1: Use the definition

2
0 0( ) cos( ) sin (2 )x t t tω ω= +

1 ( ) o
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jk t
k T
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X x t e dt
T
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0 0

1 1 1sin (2 ) 1 cos 4
2 2 4

j t j tt t e eω ωω ω −= − = − +

( )0 0
0

1cos( )
2

j t j tt e eω ωω −= +

 Method 2: use trigonometric identity and Euler’s theorem:
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Definitions of Bandwidth (Chap 2.3)

 Bandwidth: A measure of the extent of significant spectral content of the 
signal in positive frequencies.
 The definition is not rigorous, because the word “significant” can have 

different meanings.
 For band-limited signal, the bandwidth is well-defined:

|X(f)|

f

W-W

Bandwidth is W.

|X(f)|

f
fc+Wfc-W

Bandwidth is 2W.

fc0

Low-pass Signals: Bandpass signals
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Definitions of Bandwidth (Cont.)

When the signal is not band-limited different definitions exist:

 Def. 1:  Null-to-null bandwidth
 Null: A frequency at which the spectrum is zero.

f

X(f)

0

Bandwidth is half of main lobe width
(recall: only pos freq is counted in bandwidth)

f

X(f)

0

Bandwidth = main lobe width

For low-pass signals: For Bandpass signals:
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 Def. 2:  3dB bandwidth

f

X(f)

0

bandwidth

f

X(f)

0

bandwidth

A
2/A

Low-pass Signals Bandpass signals

2)( fX drops to 1/2 of the peak value, which corresponds to 3dB 
difference in the  log scale.

A
2/A

dB35.0log10 10 −=

Definitions of Bandwidth (Cont.)
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 Def. 3:  Root Mean-Square (RMS) bandwidth
2/1
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The RMS bandwidth is the standard deviation of the normalized
squared spectrum.
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Definitions of Bandwidth (Cont.)
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Final Note on Bandwidth

 Radio spectrum is a scarce and expensive resource:
 US license fee: ~ $77 billions / year

 Communication system companies try to provide the desired quality of 
service with minimum bandwidth.
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