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Outline

o Chap21-2.5:
= Signal Classifications
Fourier Transform
Dirac Delta Function (Unit Impulse)
Fourier Series
Bandwidth

= (Chap 2.6-2.9 will be studied together with Chap. 8)




Signal Classification: Deterministic vs Random

O Deterministic signals: can be modeled as completely
specified functions, no uncertainty at all

= Example: x(t) = sin(a t)

0 Random signals: take a random value at any time
= Example: Noise-corrupted channel output
= Probability distribution is needed to analyze the signal
= Itis more useful to look at the statistics of the signal:

Average, variance ...

Random noise e(t)

@

X(t) "/ > y(t): random




Signal Classification: Periodic vs Aperiodic

O Periodic: A signal x(t) Is periodic if and only If we
can find some constant To such that

X(t+To) = X(t), -0o< t <co. t  t+To

O Fundamental period: the smallest To satisfying the
eguation above.

O Aperiodic: Any signal not satisfying the equation is
called aperiodic.




Signal Classification: Energy Signals vs Power
Signals

Power and enerqy of arbitrary signal x(t):

mEnergy: . %
Y E=lim[ kol dt=[" x) ot
T—oow

mPower: The average amount of energy per unit of time. p = Iim%.ﬂ \X(t)\zdt

T—o0

= For a periodic signal: p _ ir"” ‘X(t)‘zdt
t

m\What’s the energy of a periodic signal?

m\What’s the power of an aperiodic and time limited signal?




Signal Classification: Energy Signals vs Power Signals

O Asignal is called an Energy Signal if its energy is finite

O<E<w

=2>X(t) =0 at +oo
=2>P=0

O Asignal is called a Power Signal if its power is finite

O<P<w

O Periodic Signal are




Types of Fourier Series and Transforms

Continuous-
time signals

Discrete-time
signals

1 2 3 4

O Continuous-time signals:

= 1. Aperiodic: Fourier transform

m 2. Periodic: Fourier series (and Fourier transform)
O Discrete-time signals:

= 3. Aperiodic: Discrete-time Fourier transform

= 4. Periodic: Discrete-time Fourier series (and Fourier transform) 7




Fourier Transform (FT)

O For aperiodic, continuous-time signal:

G(w) = ["; gt)e 1dt, g(t) = i fOOOG(a))ej“’tda)

w: continuous angular frequency

O Interms of frequency f (Recall o =2 n f)

G(f)=[ g(t)e > dt, g(t)= [ G(f)e*"df




Amplitude and Phase Spectra

G(f)=|G(f)'"" G(f)|:amplitude spectrum
@(f): phasespectrum

O Important Property: If g(t) is real, then G(f) is conjugate symmetric:

G'(f)=G(~f), or [G(f)|=|G(~F)|, O(f)=-6(-F).

where “*” is the complex-conjugate operator.

O Proof:




Properties of FT

O Conjugation rule:

g(t) & G(f) 5 g'(t) & G (H)
m  Symmetry:
m If g(t) is real and even, then G(f) is real and even.
m If g(t) is real and odd, then G(f) is imaginary and odd.
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Example: Symmetry Rule

O Find the FT of the Unit rectangular function (or gate function):

_ 1
rect(t) = {1, te[-0.5, 0.5]

otherwise. R
-0.5 0.5
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4

sinc(x) = Smg( ) (very useful in this course)
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Properties of Fourier Transform (Cont.)

O Dilation (or similarity or time scaling/frequency scaling) :
g(at) < iG(i) (ais a real number)
d

a

o Proof:

Fora>0, [ g(at)e*"dt=" g(r)e " ad” ———G(—)

a a
Fora<ao:
[ g(@e dt= [ “g()e M Z--26()=6C)
o S a a a

\

O Compress (expand) in time =» In frequency

Note the change of integral range when a<0.
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Example of Dilation Property

O Find the FT of the Rectangular Pulse of width T and
compare with the FT of rect(t) :

&)

gt)=A rect(%)

|
t3]~

2|~



Uncertainty Principle of the FT

IG(H

g(@) AT

) Narrow in time
Wide in frequency

L 0 2 4 2
2 2 T T T
(@) (b)

FIGURE 2.2 (a) Rectangular pulse. (£) Amplitude spectrum.

()

G(f)

Wide In time
1 — + Narrow In frequency

-W 0 w

(@) (b)

FIGURE 2.8 (a) Sinc pulse g(2). () Fourier transform G(f). 14




Properties of Fourier Transform (Cont.)

O Reflection Property:

Apply the scaling property : g(at) <« G( ) to find the FT of g(-t):

ol

If in addition g(t) is real, G(f) is conjugate symmetric,

=) g(-t) & G(-f)=G(f).
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Properties of Fourier Transform (Cont.)

O Duality:
gt) « G(f) > G(t) & g(-f)
O Proof:

2= [ GNP s 8= [ G

Since t and f are independent variables, by ignoring their physical meanings,
we can interchange t and f:

g(-f) = wa(t)e‘jz”ﬂdt

This means that the FT of G(t) is g(-f).
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Example of Duality Property

Apply the duality property to find the FT of  g(t) = Asinc(2Wt)
Solution:
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The sign or “sighum” function (sgn(t) )

(Note: This example is useful later when we study single sideband (SSB)
communications and Hilbert transform)

(1, t>0, .
Given sgn(t)=<0, t=0, « —
-1, t<0. Jﬂf

1
What’s the FT of —?
Jt
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Properties of Fourier Transform (Cont.)

O Time shifting (delay): |
gt) « G(f) = g(t-t,) < G(f)el*"

(Time delay only affects the phase spectrum. )
O Frequency shifting:

g(t) < G(f) == g(t)e”™ <« G(f-f,)

O Very useful in the study of communication systems (modulation):

y

IX(f- o)

I 5 f

0 0 fo '
Low freq signal High freq signal

TIX()
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Example of Frequency Shifting

t
What is the FT of 9(t)= Ifect(;) cos(2Af t) ? I

This is a modulation technique called amplitude modulation. The effect is
that the spectrum (Fourier Transform) of rect(T/t) gets shifted to +f. . 20




Properties of Fourier Transform (Cont.)

O Differentiation: d"x(t)

el (j2A )" X(f)

o Proof:

Start from x(t) = ro X (f)el*™df

dX('[) J‘ X(f)de“ﬁt =f:o(j272f X(f))ejzm‘tdf

> dx(t)/dt « (j2af )X (f)

=>» Each derivative operation creates one more term of j2zf

This property is used in FM demodulation
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Convolution

x(t) —— h(t) — y(1

O Convolution: (Recall)The convolution operation describes the input-output
relationship of a linear time-invariant (LTI) system (ENSC 380, 383)

O The convolution of two signals Is defined as

y(t)= [ h(@)xt-z)dr = [ x(z)h(t-7)dz = x(t) *h(t)

O The formula is related to the properties of LTI system and impulse response.

O Note: it is very easy to make mistake about this formula. Please be very
careful, as it may appear in the exam.

O More on this later.
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Properties of Fourier Transform (Cont.)

0 Convolution property (one of the most useful properties of FT)
Let g,(t) < G,(T), 9,(1) <> G, (1),

then g,(1)*9,() =] 8,(7)g,(t-7)dr < G,(f)G,(f)

Time domain convolution =2 frequency domain product

Proof: Let x(t) = f g,(7)g,(t—7)dr,

X =] [ 0:(r)g,(t-r)dre > dt

[ 0@ [ g,(t-r) e Iddr =6,(F)5,(1)
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Properties of Fourier Transform (Cont.)

o Modulation: g,t) & G,(f), g,t) oG, (f),

=> 9,(1)9,() © [ G(AG,(f -2)d1=G,(f)*G,(f)

Time domain product = frequency domain convolution
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Rayleigh’s Energy Theorem (Parseval’s Theorem)

ji\g(t)\zdt — j:\e(f)\zdf

Proof:

[ Jo®dt=[ g®g t)dt=

_ [‘; G*(f) j_“; g(t)e > dtdf =

3 g(t)f G"(f)e 1™ df dt

| GT(f)G(f)df =[ |G(f)] df

We can calculate the total energy of a signal in either domain.
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Energy (Cont.)

Can we find the energy of the signal g(t) with the time period
[tq,t,] directly from it’s FT?
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Dirac Delta Function (Unit Impulse)

O The Dirac delta function §(t) is defined as a function satisfying two

conditions:
o(t)=0 fort=0. L oM
[ stydt=1 0
O =» 5(t) i1s an even function: o(-t) = 5(t) .
O The definition implies the sifting property of Delta function:
[ gs(t—t)dt = 0t,)  g(t)
5(t _to)
I

[
>

L

27




Dirac Delta Function (Cont.)

O Since 4(t) is even function, we can rewrite this as

0(t,) = | g()s(t-t)dt = gt)s(t, —t)dt.

O Changing the variables, we get the convolution:

foo g(z)o(t—-7)dz=g(t), or g(t)*o(t) =g(t).

O =» The convolution of 6(t) with any function is that function itself.

O This is called the replication property of the delta function.
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Linear and time-invariant system

LTI
X(t > > t
¥ System y©

O Linearity: a system is linear if the input a,%,(t) +a,X, (t)
leads to the output &Y, (1) +a,Y,(t) |
where y1, y2 are the output of x1 and y2 respectively.

O Time-invariant system: a system Is time-invariant if
the delayed input x(t—t,) has the output y(t-t;),

where y(t) Is the output of Xx(t).

A system is LTI if it’s both linear and time-invariant.

29




LTI System (Cont.)

5(t) —|smem—— h(t)

O A linear and time-invariant system is fully characterized by its output to the
unit impulse, which is called impulse response, denoted by h(t).

O The output to any input is the convolution of the input with the impulse
response:

X(t) —— h(t) —— y(v)

30



LTI System (Cont.)

O Proof of the convolution expression:
We start from the sifting property:

X(t)= [ x(r)s(t-r)dr
O This can be viewed as the linear combination of
delayed unit impulses.
O By the properties of LTI, oJ(t—7)—>h(t—-7)

the output of x(t) will be the linear combination of
delayed impulse responses:

y(t)= | x(z)h(t-7)dz

31



LTI System (Cont.)

LTI

LTI

LTI

LTI

Lo

LTI




Fourier Transform of the delta function

33



Applications of the Unit Impulse Function

o FT of DC signal: gt)=1 & G(f)=0o(f).
(i.e., DC signal only has 0 frequency component).
O Proof:
= We know:

gt)=5(t) < G(f)=1

= apply the duality property the above

34



Applications of the Unit Impulse Function
(Cont.)

o FTof gizt. el 5 §5(f - f,).

O (Intuitively: A pure complex exponential signal only has one frequency
component)

O Proof:

35



Applications of the Unit Impulse Function (Cont.)

Find the FTs of cos 2zft and sin 2af t




Fourier Series

O Suppose x(t) is periodic with period TO:
Let w, =27/T,:

X(t)= D XM, t<t<ty+T,

k=—o0

— 1 _jka)ot
X, == jTO x(t)e™ ket g

O Represent x(t) as the linear combination of fundamental signal and
harmonic signals (or basis functions)

O Xi: Fourier coefficients.
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Fourier Series (cont.) x(t)= 3 X, ek

k=—0

O Example: Find the Fourier series expansion of

X(t) = cos(aw,t) +sin® (2aw,t)
O Method 1: Use the definition

_1 ket
X, = fL x(t)e dt

O Method 2: use trigonometric identity and Euler’s theorem:
1, . _
cos(wyt) = =(e!™®" +e 1
(eo5t) = ( )

1 1

sin® (2w, t) = %(1— cosdayt) = E_Z(EMCOOt 4 o i4at )
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Definitions of Bandwidth (Chap 2.3)

O Bandwidth: A measure of the extent of significant spectral content of the
signal in positive frequencies.

= The definition is not rigorous, because the word “significant” can have
different meanings.

O For band-limited signal, the bandwidth is well-defined:

Low-pass Signals: Bandpass signals
X 1 X(F)
¢ A
b i > f
-W W 0" feW g ferw

Bandwidth i1s W. Bandwidth is 2W.
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Definitions of Bandwidth (Cont.)

0 When the signal is not band-limited different definitions exist:

O Def. 1. Null-to-null bandwidth
= Null: A frequency at which the spectrum is zero.

For low-pass signals: For Bandpass signals:
X(f) 1 X(f)
N\ / /N f N\ i i aN f
VARG I ARV (VRN S A VA
< sl k—
Bandwidth is half of main lobe width Bandwidth = main lobe width

(recall: only pos freq is counted in bandwidth)

40




Definitions of Bandwidth (Cont.)

O Def. 2: 3dB bandwidth

Low-pass Signals Bandpass signals
X(® A M X(F) A

14: Al+2 A AlA2

ZAN AN SN/ W S WA Af

AV VAN o |V VY
bandvi/idth bandwidth

‘ X (f )‘2 drops to 1/2 of the peak value, which corresponds to 3dB
difference in the log scale.

10log,,0.5=-3dB

41



Definitions of Bandwidth (Cont.)

O Def. 3: Root Mean-Square (RMS) bandwidth

1/2

A O
\ [ [e(f) df

f. :center freq.
Gy
[ le(f)[ df

W._ =

rms

J

G(f)= : Normalized squared spectrum.
since [~ G(f)df =1.

The RMS bandwidth is the standard deviation of the normalized
squared spectrum. 42




Final Note on Bandwidth

O Radio spectrum is a scarce and expensive resource:
= US license fee: ~ $77 billions / year

O Communication system companies try to provide the desired quality of
service with minimum bandwidth.

43
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