ENSC327 Communications Systems 2: Fourier Representations

School of Engineering Science Simon Fraser University

Outline

- \Box Chap 2.1 2.5:
 - Signal Classifications
 - Fourier Transform
 - Dirac Delta Function (Unit Impulse)
 - Fourier Series
 - Bandwidth
 - (Chap 2.6-2.9 will be studied together with Chap. 8)

Signal Classification: Deterministic vs Random

- Deterministic signals: can be modeled as completely specified functions, no uncertainty at all
 - Example: $x(t) = \sin(a t)$
- □ Random signals: take a random value at any time
 - Example: Noise-corrupted channel output
 - Probability distribution is needed to analyze the signal
 - It is more useful to look at the statistics of the signal:
 - □ Average, variance ...

Signal Classification: Periodic vs Aperiodic

■ Periodic: A signal x(t) is periodic if and only if we can find some constant T₀ such that

$$x(t+T_0) = x(t), -\infty < t < \infty.$$

- Fundamental period: the smallest T₀ satisfying the equation above.
- Aperiodic: Any signal not satisfying the equation is called aperiodic.

Signal Classification: Energy Signals vs Power Signals

Power and energy of arbitrary signal x(t):

Energy:

$$E = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

■Power: The average amount of energy per unit of time.

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

■ For a periodic signal:
$$P = \frac{1}{T} \int_{t_0}^{t_0+T} |x(t)|^2 dt$$

■What's the energy of a periodic signal?

■What's the power of an aperiodic and time limited signal?

Signal Classification: Energy Signals vs Power Signals

■ A signal is called an Energy Signal if its energy is finite

$$0 < E < \infty$$

$$\rightarrow$$
 x(t) = 0 at $\pm \infty$

$$\rightarrow$$
 P = 0

■ A signal is called a Power Signal if its power is finite

$$0 < P < \infty$$

■ Periodic Signal are

Types of Fourier Series and Transforms

- □ Continuous-time signals:
 - 1. Aperiodic: Fourier transform
 - 2. Periodic: Fourier series (and Fourier transform)
- □ Discrete-time signals:
 - 3. Aperiodic: Discrete-time Fourier transform
 - 4. Periodic: Discrete-time Fourier series (and Fourier transform)

Fourier Transform (FT)

For aperiodic, continuous-time signal:

$$G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt, \qquad g(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega)e^{j\omega t}d\omega$$

 ω : continuous angular frequency

■ In terms of frequency f (Recall $\omega = 2 \pi f$)

$$G(f) = \int_{-\infty}^{\infty} g(t)e^{-j2\pi ft}dt, \qquad g(t) = \int_{-\infty}^{\infty} G(f)e^{j2\pi ft}df$$

Amplitude and Phase Spectra

$$G(f) = |G(f)|e^{j\theta(f)}$$

|G(f)|: amplitude spectrum

 $\theta(f)$: phase spectrum

■ Important Property: If g(t) is real, then G(f) is conjugate symmetric:

$$G^*(f) = G(-f)$$
, or $|G(f)| = |G(-f)|$, $\theta(f) = -\theta(-f)$.

where "*" is the complex-conjugate operator.

□ Proof:

Properties of FT

Conjugation rule:

$$g(t) \leftrightarrow G(f) \rightarrow g^*(t) \leftrightarrow G^*(-f)$$

- Symmetry:
 - If g(t) is real and even, then G(f) is real and even.
 - \blacksquare If g(t) is real and odd, then G(f) is imaginary and odd.

Example: Symmetry Rule

Find the FT of the Unit rectangular function (or gate function):

$$rect(t) = \begin{cases} 1, & t \in [-0.5, 0.5] \\ 0, & \text{otherwise.} \end{cases}$$

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$
 (very useful in this course)

Properties of Fourier Transform (Cont.)

□ Dilation (or similarity or time scaling/frequency scaling):

$$g(at) \leftrightarrow \frac{1}{|a|}G(\frac{f}{a})$$
 (a is a real number)

□ Proof:

For
$$a > 0$$
, $\int_{-\infty}^{\infty} g(at)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} g(\tau)e^{-j2\pi f\frac{\tau}{a}}d\frac{\tau}{a} = \frac{1}{a}G(\frac{f}{a}).$

For a < 0:

$$\int_{-\infty}^{\infty} g(at)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} g(\tau)e^{-j2\pi f\frac{\tau}{a}}d\frac{\tau}{a} = -\frac{1}{a}G(\frac{f}{a}) = \frac{1}{|a|}G(\frac{f}{a})$$
Note the change of integral range when a<0.

□ Compress (expand) in time →

in frequency

Example of Dilation Property

■ Find the FT of the Rectangular Pulse of width T and compare with the FT of rect(t):

$$g(t) = A \operatorname{rect}(\frac{t}{T})$$

Uncertainty Principle of the FT

Narrow in time Wide in frequency

Wide in time Narrow in frequency

Properties of Fourier Transform (Cont.)

■ Reflection Property:

Apply the scaling property :
$$g(at) \leftrightarrow \frac{1}{|a|}G(\frac{f}{a})$$
 to find the FT of g(-t):

If in addition g(t) is real, G(f) is conjugate symmetric,

$$g(-t) \leftrightarrow G(-f) = G^*(f).$$

Properties of Fourier Transform (Cont.)

■ Duality:

$$g(t) \leftrightarrow G(f) \rightarrow G(t) \leftrightarrow g(-f)$$

□ Proof:

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{j2\pi ft}df \qquad \longrightarrow \qquad g(-t) = \int_{-\infty}^{\infty} G(f)e^{-j2\pi ft}df$$

Since t and f are independent variables, by ignoring their physical meanings, we can interchange t and f:

$$g(-f) = \int_{-\infty}^{\infty} G(t)e^{-j2\pi ft}dt$$

This means that the FT of G(t) is g(-f).

Example of Duality Property

Apply the duality property to find the FT of $g(t) = A \operatorname{sinc}(2Wt)$ Solution:

The sign or "signum" function (sgn(t))

(Note: This example is useful later when we study single sideband (SSB) communications and Hilbert transform)

Given
$$\operatorname{sgn}(t) = \begin{cases} 1, & t > 0, \\ 0, & t = 0, \\ -1, & t < 0. \end{cases} \longrightarrow \frac{1}{j\pi f}$$

What's the FT of $\frac{1}{j\pi t}$?

Properties of Fourier Transform (Cont.)

■ Time shifting (delay):

$$g(t) \leftrightarrow G(f) \implies g(t-t_0) \leftrightarrow G(f)e^{-j2\pi f t_0}$$

(Time delay only affects the phase spectrum.)

□ Frequency shifting:

$$g(t) \leftrightarrow G(f) \implies g(t)e^{j2\pi f_0 t} \leftrightarrow G(f-f_0)$$

■ Very useful in the study of communication systems (modulation):

Example of Frequency Shifting

What is the FT of
$$g(t) = rect(\frac{t}{T})\cos(2\pi f_c t)$$
?

This is a modulation technique called amplitude modulation. The effect is that the spectrum (Fourier Transform) of rect(T/t) gets shifted to $\pm f_c$.

Properties of Fourier Transform (Cont.)

□ Differentiation:

$$\frac{d^n x(t)}{dt^n} \leftrightarrow (j2\pi f)^n X(f)$$

□ Proof:

Start from
$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df$$

$$\frac{dx(t)}{dt} = \int_{-\infty}^{\infty} X(f) \frac{de^{j2\pi ft}}{dt} df = \int_{-\infty}^{\infty} (j2\pi f \ X(f)) e^{j2\pi ft} df$$

- $\rightarrow dx(t)/dt \leftrightarrow (j2\pi f)X(f)$
- \rightarrow Each derivative operation creates one more term of $j2\pi f$

This property is used in FM demodulation

Convolution

- □ Convolution: (Recall)The convolution operation describes the input-output relationship of a linear time-invariant (LTI) system (ENSC 380, 383)
- □ The convolution of two signals is defined as

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t)*h(t)$$

- □ The formula is related to the properties of LTI system and impulse response.
- Note: it is very easy to make mistake about this formula. Please be very careful, as it may appear in the exam.
- More on this later.

Properties of Fourier Transform (Cont.)

Convolution property (one of the most useful properties of FT)

Let
$$g_1(t) \leftrightarrow G_1(f)$$
, $g_2(t) \leftrightarrow G_2(f)$,

then
$$g_1(t) * g_2(t) = \int_{-\infty}^{\infty} g_1(\tau) g_2(t-\tau) d\tau \iff G_1(f) G_2(f)$$

Time domain convolution

frequency domain product

Proof: Let
$$x(t) = \int_{-\infty}^{\infty} g_1(\tau) g_2(t-\tau) d\tau$$
,
 $X(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_1(\tau) g_2(t-\tau) d\tau e^{-j2\pi ft} dt$
 $= \int_{-\infty}^{\infty} g_1(\tau) e^{-j2\pi f\tau} \int_{-\infty}^{\infty} g_2(t-\tau) e^{-j2\pi f(t-\tau)} dt d\tau = G_1(f) G_2(f)$

Properties of Fourier Transform (Cont.)

Modulation:

$$g_1(t) \leftrightarrow G_1(f), \quad g_2(t) \leftrightarrow G_2(f),$$

$$\Rightarrow g_1(t)g_2(t) \leftrightarrow \int_{-\infty}^{\infty} G_1(\lambda)G_2(f-\lambda)d\lambda = G_1(f)*G_2(f)$$

Time domain product → frequency domain convolution

Rayleigh's Energy Theorem (Parseval's Theorem)

$$\int_{-\infty}^{\infty} |g(t)|^2 dt = \int_{-\infty}^{\infty} |G(f)|^2 df$$

Proof:

$$\int_{-\infty}^{\infty} |g(t)|^{2} dt = \int_{-\infty}^{\infty} g(t)g^{*}(t)dt = \int_{-\infty}^{\infty} g(t)\int_{-\infty}^{\infty} G^{*}(f)e^{-j2\pi ft}dfdt$$

$$= \int_{-\infty}^{\infty} G^{*}(f)\int_{-\infty}^{\infty} g(t)e^{-j2\pi ft}dtdf = \int_{-\infty}^{\infty} G^{*}(f)G(f)df = \int_{-\infty}^{\infty} |G(f)|^{2}df$$

We can calculate the total energy of a signal in either domain.

Energy (Cont.)

Can we find the energy of the signal g(t) with the time period $[t_1, t_2]$ directly from it's FT?

Dirac Delta Function (Unit Impulse)

The Dirac delta function $\delta(t)$ is defined as a function satisfying two conditions:

$$\delta(t) = 0$$
 for $t \neq 0$.

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

- \bullet $\delta(t)$ is an even function: $\delta(-t) = \delta(t)$.
- □ The definition implies the sifting property of Delta function:

$$\int_{-\infty}^{\infty} g(t)\delta(t-t_0)dt =$$

Dirac Delta Function (Cont.)

 \square Since $\delta(t)$ is even function, we can rewrite this as

$$g(t_0) = \int_{-\infty}^{\infty} g(t)\delta(t - t_0)dt = \int_{-\infty}^{\infty} g(t)\delta(t_0 - t)dt.$$

□ Changing the variables, we get the convolution:

$$\int_{-\infty}^{\infty} g(\tau)\delta(t-\tau)d\tau = g(t), \quad \text{or } g(t) * \delta(t) = g(t).$$

- The convolution of $\delta(t)$ with any function is that function itself.
- □ This is called the replication property of the delta function.

Linear and time-invariant system

- Linearity: a system is linear if the input $a_1x_1(t) + a_2x_2(t)$ leads to the output $a_1y_1(t) + a_2y_2(t)$, where y1, y2 are the output of x1 and y2 respectively.
- □ Time-invariant system: a system is time-invariant if the delayed input $x(t-t_0)$ has the output $y(t-t_0)$, where y(t) is the output of x(t).

A system is LTI if it's both linear and time-invariant.

LTI System (Cont.)

$$\delta(t) \longrightarrow \frac{\text{LTI}}{\text{System}} \longrightarrow h(t)$$

- □ A linear and time-invariant system is fully characterized by its output to the unit impulse, which is called impulse response, denoted by h(t).
- The output to any input is the convolution of the input with the impulse response:

LTI System (Cont.)

□ Proof of the convolution expression:

We start from the sifting property:

$$x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau$$

- □ This can be viewed as the linear combination of delayed unit impulses.
- By the properties of LTI, $\delta(t-\tau) \rightarrow h(t-\tau)$ the output of x(t) will be the linear combination of delayed impulse responses:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

LTI System (Cont.)

Fourier Transform of the delta function

Applications of the Unit Impulse Function

■ FT of DC signal:

$$g(t) = 1 \leftrightarrow G(f) = \delta(f)$$
.

(i.e., DC signal only has 0 frequency component).

- □ Proof:
 - We know:

$$g(t) = \delta(t) \iff G(f) = 1$$

apply the duality property the above

Applications of the Unit Impulse Function (Cont.)

- □ (Intuitively: A pure complex exponential signal only has one frequency component)
- □ Proof:

Applications of the Unit Impulse Function (Cont.)

Find the FTs of $\cos 2\pi f_0 t$ and $\sin 2\pi f_0 t$

Fourier Series

■ Suppose x(t) is periodic with period T0:

Let
$$\omega_0 = 2\pi / T_0$$
:

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_0 t}, \quad t_0 \le t < t_0 + T_0$$

$$X_{k} = \frac{1}{T_{o}} \int_{T_{o}} x(t) e^{-jk\omega_{o}t} dt$$

- Represent x(t) as the linear combination of fundamental signal and harmonic signals (or basis functions)
- \square X_k : Fourier coefficients.

Fourier Series (cont.)

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\omega_o t}$$

■ Example: Find the Fourier series expansion of

$$x(t) = \cos(\omega_0 t) + \sin^2(2\omega_0 t)$$

■ Method 1: Use the definition

$$X_{k} = \frac{1}{T_{o}} \int_{T_{o}} x(t) e^{-jk\omega_{o}t} dt$$

■ Method 2: use trigonometric identity and Euler's theorem:

$$\cos(\omega_0 t) = \frac{1}{2} \left(e^{j\omega_0 t} + e^{-j\omega_0 t} \right)$$
$$\sin^2(2\omega_0 t) = \frac{1}{2} \left(1 - \cos 4\omega_0 t \right) = \frac{1}{2} - \frac{1}{4} \left(e^{j4\omega_0 t} + e^{-j4\omega_0 t} \right)$$

Definitions of Bandwidth (Chap 2.3)

- Bandwidth: A measure of the extent of significant spectral content of the signal in positive frequencies.
 - The definition is not rigorous, because the word "significant" can have different meanings.
- □ For band-limited signal, the bandwidth is well-defined:

Low-pass Signals:

Bandwidth is W.

Bandpass signals

Bandwidth is 2W.

Definitions of Bandwidth (Cont.)

- □ When the signal is not band-limited different definitions exist:
 - □ Def. 1: Null-to-null bandwidth
 - Null: A frequency at which the spectrum is zero.

For low-pass signals:

Bandwidth is half of main lobe width (recall: only pos freq is counted in bandwidth)

For Bandpass signals:

Bandwidth = main lobe width

Definitions of Bandwidth (Cont.)

□ Def. 2: 3dB bandwidth

Low-pass Signals

Bandpass signals

 $|X(f)|^2$ drops to 1/2 of the peak value, which corresponds to 3dB difference in the log scale.

$$10\log_{10} 0.5 = -3dB$$

Definitions of Bandwidth (Cont.)

□ Def. 3: Root Mean-Square (RMS) bandwidth

$$W_{rms} = \left(\frac{\int_{-\infty}^{\infty} (f - f_c)^2 |G(f)|^2 df}{\int_{-\infty}^{\infty} |G(f)|^2 df}\right)^{1/2}$$

 f_c : center freq.

$$\overline{G}(f) = \frac{|G(f)|^2}{\int_{-\infty}^{\infty} |G(f)|^2 df}$$
: Normalized squared spectrum.

since
$$\int_{-\infty}^{\infty} \overline{G}(f) df = 1$$
.

The RMS bandwidth is the standard deviation of the normalized squared spectrum.

Final Note on Bandwidth

- Radio spectrum is a scarce and expensive resource:
 - US license fee: ~ \$77 billions / year
- □ Communication system companies try to provide the desired quality of service with minimum bandwidth.