ENSC327

Communications Systems 19: Random Processes

School of Engineering Science Simon Fraser University

Outline

Random processes

□ "Stationary" and "Wide Sense Stationary" Random Processes

Autocorrelation of random processes

Random Process

- □ A deterministic process has only one possible function of how the process evolves under time, i.e. has only one *realization*.
- □ In a stochastic or random process there could be many realizations, determined by some probability distribution.
- Many time-varying signals are random in nature:
 - Noises
 - Image, audio: usually unknown to the receiver.
 - Stock prices
- Random process represents the mathematical model of these random signals.
- Definition: A random process (or stochastic process) is a collection of random variables indexed by time.
- □ Notation:

X(t,s)

- s: sample point in the sample space (outcome of the random experiment)
- t: time.
- **\square** Simplified notation: X(t)

Random Process vs RV

- Random variable: an outcome is mapped to a number.
- Random process: If the outcome of a random experiment is a random function of time, then we have a random process.

Random Processes (Cont.)

- □ For a fixed sample point s_j , $X(t, s_j)$ is a realization or a sample function of the random process.
- □ Notation:

$$X(t, s_j)$$
 or simply $x_j(t)$.

- □ The set of all possible sample functions is called the "ensemble".
- Example: The song played on a specific radio station at 7:30 AM can be considered as a random process.
 - □ Sample Space: Set of all possible songs
 - □ Sample functions: waveforms representing song number j, x_i (t).

□ For a fixed time t_0 , the outcome of a Random experiment is a **random variable**. denoted by $X(t_0)$. Example: The price of Apple's stock at 12pm each day.

□ For a fixed sample point, s_j , the outcome is a **function of time**, x_j (*t*). Example: Apple's stock \neg price from 9:30 am to 4:00 pm on a specific day.

□ For a fixed s_j and t_0 , $X(t_0, s_j) = x_j(t_0)$ is a **number**.

 $X(t) = A \cos(\omega_0 t)$, where ω_0 is fixed and $A \sim U[0,1]$ (Uniform distribution).

Cumulative Distribution of a Random Process

- □ For a RV to be fully characterized we need to have its cdf or pdf.
- For two RVs to be fully characterized we need to have their joint cdf or pdf:
- A random process consists of one RV at each instant of time, t. => In general consists of infinite RVs. => to be fully characterized we need to have the k-fold joint cdf (or pdf)

$$F_{X(t_1),...,X(t_k)}(x_1,...,x_k) = P(X(t_1) \le x_1,...,X(t_k) \le x_k)$$

for any $t_1, ..., t_k$ and any real numbers $x_1, ..., x_k$.

- □ This makes the characterization of random processes impossible in general.
- □ Fortunately most random processes of interest can be modeled with certain features that makes them easier to characterize.

Stationarity

□ For a general RP, the k-fold joint pdf is time-dependent.

□ However if a RP is **"first-order stationary"**, then:

 $F_{X(t_1+\tau)}(x) = F_{X(t_1)}(x) \quad \text{for all } t_1 \text{ and } \tau.$

- This means that the cdf (and pdf) of the RP X(t) at a fixed time t, is independent of time.
- Consequently the mean and variance of the RP X(t) at each fixed time t, are also independent of time.
- A random process is called second-order stationary if the 2nd order CDF is independent of time origin:

$$F_{X(t_1+\tau)}, X(t_2+\tau)}(x_1, x_2) = F_{X(t_1)}, X(t_2)}(x_1, x_2) \text{ for all } t_1, t_2 \text{ and } \tau$$

□ A random process is called **strict-sense stationary** if :

$$F_{X(t_1+\tau)}, X(t_2+\tau), \dots, X(t_k+\tau)}(x_1, x_2, \dots, x_k) = F_{X(t_1)}, X(t_2), \dots, X(t_k)}(x_1, x_2, \dots, x_k).$$

for all k, τ , and t_1 , t_2 , ..., t_k , and for any k.

 $X(t) = A \cos(\omega_0 t)$, where ω_0 is fixed and $A \sim U[0,1]$ (Uniform distribution). Is X(t) first-order stationary?

IID Random Processes

- □ An example of a strictly stationary process is one in which all $X(t_i)$'s are mutually **Independent and Identically Distributed**.
- □ Such a random process is called **IID random process**.
- □ In this case,

$$F_{X(t_1),X(t_2)},...,X(t_k)}(x_1,x_2,...,x_k) =$$

- Since the joint pdf above does not depend on the times {ti}, the process is strictly stationary.
- □ An example of IID process is white noise (studied later)
 - Widely used in communications theory

Covariance of Random Processes

Recall: Covariance of two random variables:

$$Cov(X,Y) = E\{ [X - \mu_X] [Y - \mu_Y] \} = E\{XY\} - \mu_X \mu_Y$$

Consider $X(t_1)$ and $X(t_2)$: samples of X(t) at t_1 and t_2 .

 $X(t_1)$ and $X(t_2)$ are both random variables, so we can define their covariance:

$$Cov(X(t_1), X(t_2)) = E\{X(t_1)X(t_2)\} - \mu_{X(t_1)}\mu_{X(t_2)}$$

□ Now, if X(t) is second order (or higher) stationary, then:

Wide-Sense Stationarity (WSS)

- □ In many cases we do not require a random process to have all of the properties of the 2nd order stationarity.
- A random process is said to be wide-sense stationary or weakly stationary if and only if
 - Its mean is independent of time
 - Its covariance depends only on the time difference.

□ Note: SSS → WSS, 2nd order Stationary → WSS. But the inverse of these statements is not necessarily true.

Autocorrelation of a Random Processes

□ The autocorrelation function of a random process at t1 and t2 is defined as:

$$R_X(t_1, t_2) = E\{X(t_1)X^*(t_2)\} =$$

□ If X(t) is stationary to the 2nd or higher order, $R_X(t_1, t_2)$ only depends on the time difference t_1 - t_2 , so it can be written as a single variable function:

Properties of Autocorrelation Function

For real-valued wide-sense stationary X(t), we have:

1. $R_X(0) = E\{X^2(t)\}.$

2. $R_X(\tau)$ has even symmetry: $R_X(-\tau) = R_X(\tau)$. Proof:

3. $R_X(\tau)$ is maximum at the $\tau = 0$. **Proof**:

Autocorrelation (Cont.)

$$R_{X}(t,s) = E\{X(t)X^{*}(s)\} = R_{X}(t-s).$$

□ Autocorrelation is a measure of how fast a RP fluctuates:

Example 1

 $X(t) = A\cos(2\pi f t + \Theta)$

A and f: constant. Θ : uniform random variable in $[0, 2\pi]$.

Find the autocorrelation of X(t). Is X(t) wide-sense stationary?

Example 2

 $X(t) = A\cos(2\pi f t)$

A: uniform random variable in [0, 1], f: Constant Find the autocorrelation of X(t). Is X(t) WSS?

Example 3

- A random process X(t) consists of three possible sample functions:
 x₁(t)=1, x₂(t)=3, and x₃(t)=sin(t). Each occurs with equal probability.
 Find its mean and auto-correlation. Is it wide-sense stationary?
- **Solution:**