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Outline

 Motivation: To study the noise performance of communication 
systems (analog and digital) we need to learn about “Random 
processes” (aka Stochastic Processes). 

 First, we start from “deterministic” signals.
 Required Background: Probability Theory, Concepts of 

Energy signals & Power signals
 Energy spectral density and autocorrelation for deterministic 

signals(2.8)
 Power spectral density and autocorrelation for deterministic 

power signals
 In chapter 8, we extend these definitions to random processes.
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Background: Energy Signals vs Power Signals

 Definition of Power and energy for an arbitrary signal x(t):

 When is a signal an Energy signal?

 when is a signal a Power Signal?

 Periodic signals: Energy signal or Power signal? 



 Correlation Property:

 Proof:

 Correlation measures the similarity between 𝑔𝑔1(𝑡𝑡) and 𝑔𝑔2 𝑡𝑡 shifted 
by 𝜏𝜏 seconds.
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FT Property: Correlation 
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Rayleigh’s Energy Theorem (Parseval’s Theorem)
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Autocorrelation of an Energy Signal (2.8)

 Autocorrelation function of a deterministic energy signal:

 This is a measure of the similarity between 𝑥𝑥(𝑡𝑡) and its shifted version 𝑥𝑥(𝑡𝑡 − τ).

 High autocorrelation  high similarity between the signal and its shifted version 
 the signal is changing ……………………?
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 Let’s compare the autocorrelation with energy:
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Example: Find the autocorrelation of 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝒕𝒕)
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Example: Find the autocorrelation of 𝒆𝒆−𝜶𝜶𝜶𝜶𝒖𝒖(𝒕𝒕)
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 As we already know, if we apply Perseval’s theorem to the energy of a 
signal in time domain, we get:

 |𝑋𝑋 𝑓𝑓 |2 is the “Energy Spectral Density” or the “Energy Density 
Spectrum” of the energy signal 𝑥𝑥 𝑡𝑡 and is shown with:

𝜓𝜓𝑥𝑥 𝑓𝑓 = |𝑋𝑋 𝑓𝑓 |2, Unit : 

Energy Spectral Density for Energy Signals
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Wiener-Khintchine Theorem
 Theorem: For energy signals, the auto correlation function and the 

energy spectral density function are Fourier Transform pairs:

𝑅𝑅𝑥𝑥 𝜏𝜏 𝜓𝜓𝑥𝑥 𝑓𝑓
Proof: 
• We already saw the correlation theorem:

• Now replace both 𝑔𝑔1 𝑡𝑡 and 𝑔𝑔2 𝑡𝑡 with the same signal, 𝑥𝑥(𝑡𝑡):

 Important results from the W-K theorem:

 Proof: Home work!
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Graphical Illustration of Previous Results
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Example

 Find the autocorrelation and energy spectral density of 
)( sinc)( tAtx =



 How does filtering an energy signal affect its Energy spectral 
density?
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Effect of Filtering 

x(t) y(t)h(t)



𝑥𝑥 𝑡𝑡 has a power spectral density function, 𝜓𝜓𝑥𝑥 𝑓𝑓 = rect(𝑓𝑓
8
) (J/kHz), (frequency is in 

kHz). The signal goes through an ideal BPF centered at 3 kHz with BW= 4 kHz. 
What are the energies contained in the input signal and the output signal, in Jouls?
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Example

x(t) y(t)h(t)
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Cross-correlation of energy signals

 Orthogonality: x(t) and y(t) are said to be orthogonal if their cross-
correlation at 𝜏𝜏 = 0 is zero:

 The cross-correlation and cross spectral density functions, between two 
deterministic energy signals:

 Note: Cross spectral density can in general be a complex valued signal.
 What is the cross correlation between 𝑦𝑦(𝑡𝑡) and 𝑥𝑥(𝑡𝑡):
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Autocorrelation and Power Spectral Density 
for Power Signals (2.9)
 Power signals have infinite energy but  finite power.
 The “Autocorrelation of a Power signal” is thus defined as:

 The total  power of the signal: 

 If we truncate 𝑥𝑥 𝑡𝑡 to the interval of [-T,T]:

 Then the power of 𝑥𝑥 𝑡𝑡 can be written as :
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Power Spectral Density (Cont.)
 Use Parseval’s theorem (Rayleigh Energy Theorem):

 Exchange the limit and the integral:

 Thus, we can define the “Power Spectral Density” of 𝑥𝑥 𝑡𝑡 :

 Then: 
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Power Spectral Density for Periodic Signals

 Periodic signals are power signals with a Fourier Series expansion:

 The Autocorrelation function of a periodic signal is defined over one period of the 
signal:

𝑅𝑅𝑥𝑥 𝜏𝜏 = 1
𝑇𝑇0
∫0
𝑇𝑇0 𝑥𝑥 𝑡𝑡 𝑥𝑥∗ 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑑𝑑

 It can be shown that the Power Spectral Density function is:

𝑆𝑆𝑥𝑥 𝑓𝑓 = ℱ{𝑅𝑅𝑥𝑥 𝜏𝜏 } = ∑𝑘𝑘=−∞∞ |𝑋𝑋𝑘𝑘|2 𝛿𝛿(𝑓𝑓 − 𝑘𝑘 𝑓𝑓0)
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Summary

 Deterministic Power signals (Periodic):

𝑅𝑅𝑥𝑥 𝜏𝜏 = 1
𝑇𝑇0
∫0
𝑇𝑇0 𝑥𝑥 𝑡𝑡 𝑥𝑥∗ 𝑡𝑡 − 𝜏𝜏 𝑑𝑑𝑑𝑑 𝑆𝑆𝑥𝑥 𝑓𝑓 = ℱ{𝑅𝑅𝑥𝑥 𝜏𝜏 } =∑𝑘𝑘=−∞∞ |𝑋𝑋𝑘𝑘|2 𝛿𝛿(𝑓𝑓 − 𝑘𝑘 𝑓𝑓0)

 In chapter 8, we will extend the autocorrelation, psd, and the Wiener-Khintchine
Theorem to random processes.
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 Deterministic Energy signals:

 Wiener-Kintchine Theorem:

 Deterministic Power signals (Aperiodic):
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