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Motivation: To study the noise performance of communication
systems (analog and digital) we need to learn about “Random
processes” (aka Stochastic Processes).

First, we start from *“deterministic” signals.

Required Background: Probability Theory, Concepts of
Energy signals & Power signals

Energy spectral density and autocorrelation for deterministic
signals(2.8)

Power spectral density and autocorrelation for deterministic
power signals

In chapter 8, we extend these definitions to random processes.



Background: Energy Signals vs Power Signals

O Definition of Power and energy for an arbitrary signal x(t):

O When is a signal an Energy signal?

O when is a signal a Power Signal?

O Periodic signals: Energy signal or Power signal?




FT Property: Correlation

0 Correlation Property: f g,(t)g,(t—7)dt < G,(f)G,(f)

a Proof:

0 Correlation measures the similarity between g, (t) and g, (t) shifted
by T seconds.




Rayleigh’s Energy Theorem (Parseval’s Theorem)

E={"Jg®)dt=]" [G(f) df

—> |G(f )\ can be viewed as energy density in freq domain.
Note that \G(f)\ is a real valued function. s




Autocorrelation of an Energy Signal (2.8)

O Autocorrelation function of a deterministic energy signal:
R (z) = x(t)X"(t—z)dt

O This is a measure of the similarity between x(t) and its shifted version x(t — 1).

O High autocorrelation =» high similarity between the signal and its shifted version
=» the signal ischanging ........................ ?

O Let’s compare the autocorrelation with energy:

R, (1) = foox(t)x*(t — 7)dt E,= joo |x(t)|?dt

— 0O




Example: Find the autocorrelation of rect(t)




Example: Find the autocorrelation of e " *‘u(t)




Energy Spectral Density for Energy Signals

O As we already know, if we apply Perseval’s theorem to the energy of a
signal in time domain, we get:

o |X(f)|? is the “Energy Spectral Density” or the “Energy Density
Spectrum” of the energy signal x(t) and is shown with:

P (f) = 1X(HI]?, Unit:




Wiener-Khintchine Theorem

O Theorem: For energy signals, the auto correlation function and the
energy spectral density function are Fourier Transform pairs:

Ry(2) —F— ()

Proof:
We already saw the correlation theorem:

[ agt-o)dt & G(f)G;(f)

Now replace both g, (t) and g, (t) with the same signal, x(t):

O Important results from the W-K theorem:
w,(0) = R (2)dr R,(0) = [ w,(f)df

a Proof: Home work!
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Graphical Illustration of Previous Results

v, (0) =[ R,()dr R(0) = y, (f)df

t R (7) area ) v, (f)
AK /K f

/T% — sy ()
> T N\M > f

11



Example

O Find the autocorrelation and energy spectral density of
X(t) = Asinc (t)
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Effect of Filtering

O How does filtering an energy signal affect its Energy spectral
density?

X(t) — h(t) —— y(t)
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Example

x(t) has a power spectral density function, ¥,.(f)= rect(g) (J/kHz), (frequency is in

kHz). The signal goes through an ideal BPF centered at 3 kHz with BW= 4 kHz.
What are the energies contained in the input signal and the output signal, in Jouls?

X(t) ——

' h(t)

— Yy(1)
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Cross-cotrrelation of energy signals

O The cross-correlation and cross spectral density functions, between two
deterministic energy signals:

R, (0 [ X0 (=t —— Py (D) = X () K3 ()

O Note: Cross spectral density can in general be a complex valued signal.
O What is the cross correlation between y(t) and x(t):

O Orthogonality: x(t) and y(t) are said to be orthogonal if their cross-
correlation at T = 0 is zero:

R, (0) = j: x(t)y"(t)dt = 0.
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Autocorrelation and Power Spectral Density
for Power Signals (2.9)

O Power signals have infinite energy but finite power.
O The “Autocorrelation of a Power signal” Is thus defined as:

R (z')—||m j ()X (t - 7)dt

T >

O The total power of the signal:
P=lim I X"t

T—00

o If we truncate x(t) to the interval of [-T,T]:

X(t), -T<x<T,
0, otherwise.

X (t) = x(t)rect(ziT) _ {

0 Then the power of x(t) can be written as :
P=lim-; I X (1) dt "

T >




Power Spectral Density (Cont.)

O Use Parseval’s theorem (Rayleigh Energy Theorem):

P=lim-+ J @ dt=lim - I X (F)df

T >0 T >0

O Exchange the limit and the integral:

= [lim g (0 J

T—o0

O Thus, we can define the “Power Spectral Density” of x(t):

S (f)—llm—\X (F)f

T

O Then:
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Power Spectral Density for Periodic Signals

O Periodic signals are power signals with a Fourier Series expansion:

X(t) = > X et <t<tg+T,| [X, =T—jTO x(t)e " dt| | @, =27 /T,

k=—o0

O The Autocorrelation function of a periodic signal is defined over one period of the
signal:

Ry(®) =1 [, x(Dx°(t— D) dt

O It can be shown that the Power Spectral Density function is:

Sx(F)= F{R (D} = Xkz—w 1Xk|* 6(f — K fo)
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Summary

O Deterministic Enerqy signals:

Rx(r)ifw X(t)X (t — 7)dt v, (f)=|X(f )\2

E :fw\x(t)\zdt =j_°;\X(f)\2df =fwwx(f)df

O Wiener-Kintchine Theorem:

R(7) & v () w0 =[ R()dr RO =] w,(f)df

O Deterministic Power signals (Aperiodic):
- 1 T 2 o0
.1 = — -
S.(1)=lim o=/ (1) P=lim-; [ x@fdt=[" s (f)df

T—00

T —>w

o Deterministic Power signals (Periodic):
R =% [Px@®x*(t =) dt ()= FARD} =5feen IXl? 8¢ — k o)

O In chapter 8, we will extend the autocorrelation, psd, and the Wiener-Khintchine
Theorem to random processes. 0
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