ENSC327

Communications Systems 12: FM Demodulation: Frequency Discriminator

School of Engineering Science Simon Fraser University

Outline

- Required Background
- Overview of FM Demodulation methods
- Ideal Frequency Discriminator
- Practical Frequency Discriminator

Required Background

D FM Signal: $s(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau)$

To recover the message m(t) we need a circuit whose output is proportional to the difference of the instantaneous frequency from the carrier frequency:

Differentiation property of FT:

□ Application of "Complex envelope" concept in LTI systems:

Overview of FM Demodulation Methods

- □ Frequency discriminator (slope detector)
 - Balanced freq. discriminator
- □ Phase-locked loop (PLL) demodulator
- Quadrature detector (Not covered in this course)
 <u>http://en.wikipedia.org/wiki/Detector_%28radio%29#Quadrature_detector</u>

Ideal Freq. Discriminator

$$s(t) = A_c \cos(2\pi f_c t + 2\pi k_f \int_0^t m(\tau) d\tau)$$

□ Take the derivative of s(t):

```
• Where does m(t) show up?
```

Ideal Freq. Discriminator (cont.)

□ What is the frequency response of the "Differentiator"?

□ Practical problem with this system?

□ Practical solution?

Practical Freq. Discriminator

• For Positive f

$$H_1(f) = \begin{cases} j2\pi (f - (f_c - B_T / 2)), & f_c - B_T / 2 \le f \le f_c + B_T / 2, \\ 0, & \text{otherwise} \end{cases}$$

 $(H_1(f) \text{ for } f < 0 \text{ is defined using the conjugate symmetry property.})$

 In order to find the output of this filter for the input s(t), we convert the system to baseband using the concept of complex envelope

Practical Freq. Discriminator (cont.)

\Box Complex envelope of s(t):

Complex envelope of the differentiator :

$$H_{1}(f) = \begin{cases} j2\pi (f - (f_{c} - B_{T}/2)), & f_{c} - B_{T}/2 \le f \le f_{c} + B_{T}/2, \\ 0, & \text{otherwise} \end{cases}$$

Note: Eqs. 4.49 to 4.55 of text are missing a factor of 2!

Practical Freq. Discriminator (cont.)

- □ The complex envelope of the output is
 - **Frequency Domain:**

$$\widetilde{s}(t) \longrightarrow \widetilde{h}_1(t) \longrightarrow 2\widetilde{s}_1(t)$$

Time Domain:

Practical Freq. Discriminator (cont.)

□ From previous page, we get:

\Box Finally we can find $s_1(t)$:

$$\widetilde{s}_1(t) = j\pi A_c B_T \left[1 + \frac{2k_f}{B_T} m(t) \right] e^{j2\pi k_f \int_0^t m(\tau) d\tau}$$

■Envelope detection can be used if:

□ Output of the envelope detector:

Practical Freq. Discriminator

□ A DC offset remover is required to remove the DC component of $v_1(t) = \pi A_c B_T \left[1 + \frac{2k_f}{B_T} m(t) \right]$

- □ In commercial FM radio receivers, however, another filter, this time with a negative slope, is used to generate a second signal: $v_2(t) = \pi A_c B_T \left[1 - \frac{2k_f}{B_T} m(t) \right]$
- **D** The two signals are subtracted to result in the final output $4 \pi A_c k_f m(t)$.

FIGURE 4.13 Block diagram of balanced frequency discriminator.

This is a "balanced frequency discriminator" and is very similar to the FM demodulator commonly used in FM radio receivers referred to as Foster-Seeley Discriminator.