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Outline

O Required Background

O Spectrum of single tone, Wideband FM (4.5)
O Bessel Function

0o BW of FM (4.6)




Required Background

O General form of PM or FM:
O  Single tone FM:

o Complex envelope of a bandpass signal, s(t) = A. cos(27f t + ¢(t))

O Fourier Series expansion of a periodic signal:
m If x(t)is periodic with period= Ty, and Frequency= f;, then x(t) can be written as
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Complex Envelope of Single-Tone FM

s(t) = A. cos(2xf t + ¢(t))
O Finding the FT of s(t) is not easy (¢(t) is inside the cosine).
O To analyze the spectrum, we start with the complex envelope of s(t):

o For the single tone FM, we have S(t) = A, cos(2xf t + Ssin(2ft))

1 :
O This is a periodic signal with T = r —> Can be expanded using Fourier
m

Series.




Fourier Series Expansion of 5(t)

O Fourier Series expansion of 5(t) :

§(t) _ Z CnejZﬂnfmt

N=—o0

: U(©2f) . ae _
where: _ M7 A Ipsin(27f nt)—j2mf ot
c.=f j e dt
: mA° ~1/(2 )
O Let’s make the change of variable, x = 2nf,,,t , in the integral. Now we can
write:

O The above integral is in the form of a very famous function called the Bessel
Function.




The Bessel Function

0 The n-th order Bessel function of the first kind with argument 8, /,,(8), is defined as:

J.(B) = i fﬂe LS

[0 The Bessel function has many applications including:
0 Understanding and analysis of single tone FM modulation
0 EM wave propagation

0 Heat conduction in cylinders
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O Solving Partial Differential Equations
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(See: http://functionspace.com/topic/3564/

Interesting-Applications-of-Bessel-Functions )

Source:
http://functionspace.com/topic/3564/I
nteresting-Applications-of-Bessel-
Functions




Bessel Function (Cont.)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
a1

0
-1
0.2
0.3
0.4

3,8 == [ ey

O Bessel function table can be found in Appendix 3 of Text. (See notes for a copy)




Properties of Bessel functions (cont.)

0 Jn(B) = J_n(B) for n even.

0 J,(B) = —]_n(B) for n odd.

O When Bisvery small:  Jo(B) 1, J1(B) = B/l2, Jo(B) =~ 0 n>1
o Power distribution: Y 32() =1,

N=—o0

0O Limit of Bessel function for large n: |y J,(8) =0.

nN—o0




Properties of Bessel functions (cont.)

Values of 3 for Which
InlBl=0for0<4<9

Jiy(f1=0 0.0000 7.6883
Je (Bl =0 0.0000 —

0
1
2 Jaif)=0 0.0000 5.1356
4
B

n Zno Fn1 Hnz
Jolf)=0 2.4048 5.6201 8.8537
Jig)=0 0.0000 3.8317 7.0156

8.4172

O Zeros of the Bessel functions: For each n , what values of S result in
J.(B) =0 ? (Use the above graph or table )



Spectrum of Single Tone FM using the Bessel
Function

ad  Now, back to single-tone FM.

3 From slide 5, we have:

C :ij‘ﬂej(ﬂsinxnx)dxz
27 o7

n

3 Thus:
g(t) _ Acejﬂsin(Zﬂfmt) _

a Finally,

s(t) = RefS (t)e ¥ |=
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Single Tone FM Spectrum (Cont.)

O We just found:

s(t) = A, iJn(,B) cos2z(f, +nf )t

o Thus:

S(f) =

O Observations:

O
O
O

The spectrum of “Single Tone FM” contains components at
Theoretically the BW of single-tone FM is

However, because of properties of the Bessel func., the BW can be
approximated by a limited value. 11



One sided spectrum of Single Tone FM

O Same spectrum as the one we drew on the previous page, only
represented as one-sided (Amplitude of each component is doubled)

ACJ—l(ﬁ) ACJ] (}B)

_qg) AC‘]—Z(ﬁ) ACJZ(ﬁ)
% ACJO(JB)
E AJ3(B) AJ5(B)
ACJ_4()3)I ‘ ] A J4(B)
0 1 | S
- F 528 T % ¥ 5 &5 F
N T A A

12




Bandwidth of Single Tone Wideband FM

O One approximation for limiting the BW of single tone FM is defined as the

range of frequencies beyond which J,,(B) < 0.01 for all n.
AJ_ (B AJ(B)

ACJ—Z(ﬁ) ACJQ(ﬁ)
Ado(B) ' |
AC‘]—3(ﬁ) ACJ3(ﬁ) -
ACJ4([5’)I ‘ ] AJIB)
Faddedddy
| | [ & g
O T

O Using this approximation we do the following:
1- Use the Bessel function table to find the value of n,,,, that

satisfies the above requirement.
2- The corresponding bandwidth is then:
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Bandwidth of Single Tone FM (Cont.)

O Table 4.2 of text lists 2 n,,,, for different values of £ :
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O Relationship between bandwidth (B) and frequency deviation (Af):
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Example

Find the bandwidth of a single tone FM modulated signal with f =5 and frequency of
message (single tone) = 15 kHz. What is the bandwidth with respect to Af. Draw the
spectrum.
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O Fig 4.9 of text shows the “normalized bandwidth” (B / Af ) w.r.t. B

O Observation: B/Af approaches 2
as [ increases.

40

(Recall that the range of the
Instantaneous frequency is 2Af.)

Normalized bandwidth, By/Af

1
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Modulation index, 8

TF1GURE 4.9  Universal curve for evaluating the one percent handwidth of an FM wave.

16




O For a fixed message frequency, f,,,, let’s look at the effect of changing
the message amplitude, A,,,.

p=1 or Af =f_

— 1.0

_

e H[ ‘h

O Observations:

f

p=2 or Af =2f_

— 1.0

i nﬂ"hh
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p=5 or Af =5f_

— 1.0

17



O Now let’s fix the message amplitude,

— 1.0

A, , and change message frequency, g =1 f = Af
fin i
O Observations: B=10 ‘ ‘
+ T !
f— 28—+
B=2f =Af/2 ["
=yt 1,
l— 2af—{
p=5 f =AF/5["

=30 ”iTHthHh“

o 28—




Carson’s Rule for Single Tone FM

O Carson’s rule Is an approximation to FM’s BW, which applies to both single
tone FM and FM with an arbitrary modulating message.

O For single tone message:
Carson’sRule: B =2Af +2 f,, = 2Af (1 +%)

O For very small g:
O For very large §:

O For1 < B < 20, Carson’s rule is an under-estimation of the BW.
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Carson’s Rule for General FM (Message=m(t))

0 For FM with arbitrary message m(t) with bandwidth W:
Carson’s Rule: B=2 (Af + W)

O New definition:
Deviation Ratio: D = Af /W = ks max|m(t)| /W
(This is a generalization of #=Af/f.)

o Carson’s rule can be written as:

B=2D+1DW

20




Example

O In FM radio, the max message bandwidth is W = 15kHz, and the allowed max frequency
deviation is Af =75 KHz. What is the BW of FM radio channels as per Carson’s rule? Compare
with the previous example which used single tone.

In practice, 200 kHz is allocated. This leaves a 25 kHz guard region above and below the carrier
freq to reduce the interference with other FM channels.

A 25 25 A fCZ — fCl + 200k
foy = 75K fcl fo fe fc2 fop + 75ki -
+75k | _— 75K :

»
»

200k
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BESSEL FUNCTIONS

I A3.1 Series Solution of Bessel’s Equation

In its most basic form, Bessel’s equation of order n is written as

d’y dy
2= 2 e
x i + X7 o n)y =10 (A3.1)

which is one of the most important of all variable-coefficient differential equations. For each
order n, a solution of this equation is defined by the power series

- 1 n+2m
&0 (_1) Ex

vizg  ml(n + m)!

In(x) = (A3.2)
The function J,(x) is called a Bessel function of the first kind of order n. Equation (A3.1)
has two coefficient functions—namely, 1/x and (1 — #%/x?). Hence, it has no finite sin-
gular points except the origin. It follows therefore that the series expansion of Eq. (A3.2)
converges for all x = 0. Equation (A3.2) may thus be used to numerically calculate J,(x)
forn = 0,1, 2,.... Table A3.1 presents values of [,(x) for different orders # and varying
x. It is of interest to note that the graphs of Jy(x) and Jj(x) resemble the graphs of cos x
and sin x, respectively; see the graphs of Fig. 4.6 in Chapter 4.

I TABLE A3.1 Table of Bessel Functions®

Ju(x)
n\* 0.5 1 2 3 4 6 8 10 12
0 0.9385  0.7652  0.2239 -0.2601 -0.3971 0.1506  0.1717 -0.2459  0.0477
1 0.2423  (.4401 0.5767  0.3391 -0.0660 -0.2767 0.2346  0.0435 -0.2234
2 0.0306  0.1149  0.3528  0.4861 0.3641 -0.2429 -0.1130 0.2546 -0.0849
3 0.0026  0.0196  0.1289  0.3091 0.4302  0.1148 -0.2911 0.0584  0.1951
4 0.0002  0.0025  0.0340  0.1320  0.2811 0.3576 —0.1054 -0.2196  0.1825
5 — 0.0002  0.0070  0.0430  0.1321 0.3621 0.1858 -0.2341 -0.0735
6 — 0.0012  0.0114  0.0491 0.2458  0.3376 -—0.0145 -0.2437
7 0.0002  0.0025  0.0152 0.1296  0.3206  0.2167 -—0.1703
8 — 0.0005  0.0040  0.0565  0.2235  0.3179  0.0451
9 0.0001 0.0009  0.0212  0.1263  0.2919 0.2304
10 — 0.0002  0.0070  0.0608  0.2075  0.3005
11 — 0.0020  0.0256  0.1231 0.2704
12 0.0005  0.0096  0.0634  0.1953
13 0.0001 0.0033  0.0290  0.1201
14 — 0.0010  0.0120  0.0650

3For more extensive tables of Bessel functions, see Abramowitz and Stegun (1965, pp. 358-406).
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