ENSC327 Communications Systems 10: Wideband FM

School of Engineering Science Simon Fraser University

Outline

- Required Background
- □ Spectrum of single tone, Wideband FM (4.5)
- Bessel Function
- **BW** of FM (4.6)

Required Background

- General form of PM or FM:
- □ Single tone FM:

□ Complex envelope of a bandpass signal, $s(t) = A_c \cos(2\pi f_c t + \phi(t))$

- □ Fourier Series expansion of a periodic signal:
 - If x(t) is periodic with period = T_0 , and Frequency = f_0 , then x(t) can be written as

$$x(t) = \sum_{n = -\infty}^{\infty} X_n e^{j2\pi n f_0 t} \qquad X_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi n f_0 t} dt$$

Complex Envelope of Single-Tone FM

 $s(t) = A_c \cos(2\pi f_c t + \phi(t))$

- **\square** Finding the FT of s(t) is not easy ($\phi(t)$ is inside the cosine).
- **D** To analyze the spectrum, we start with the **complex envelope** of s(t):

□ For the single tone FM, we have $s(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$

□ This is a periodic signal with $T = \frac{1}{f_m} \Rightarrow$ Can be expanded using Fourier Series.

Fourier Series Expansion of $\tilde{s}(t)$

D Fourier Series expansion of $\tilde{s}(t)$:

$$\widetilde{s}(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_m t}$$

where:

$$c_n = f_m A_c \int_{-1/(2f_m)}^{1/(2f_m)} e^{j\beta \sin(2\pi f_m t) - j2\pi n f_m t} dt$$

□ Let's make the change of variable, $x = 2\pi f_m t$, in the integral. Now we can write:

□ The above integral is in the form of a very famous function called the **Bessel Function.**

The Bessel Function

D The n-th order Bessel function of the first kind with argument β , $J_n(\beta)$, is defined as:

$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx)} dx$$

□ The Bessel function has many applications including:

□ Understanding and analysis of single tone FM modulation

EM wave propagation

Heat conduction in cylinders

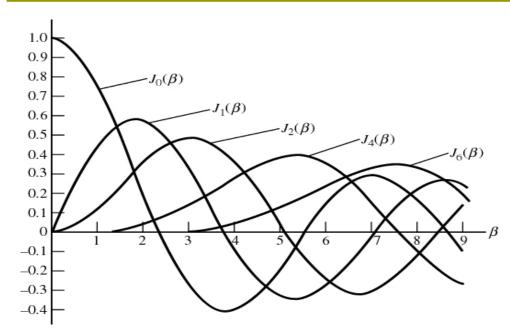
Solving Partial Differential Equations

(See: http://functionspace.com/topic/3564/

Interesting-Applications-of-Bessel-Functions)

Source: http://functionspace.com/topic/3564/I nteresting-Applications-of-Bessel-Functions

Bessel Function (Cont.)



$$J_n(\beta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx)} dx$$

□ Bessel function table can be found in Appendix 3 of Text. (See notes for a copy)

Properties of Bessel functions (cont.)

 $\square J_n(\beta) = J_{-n}(\beta) \text{ for } \boldsymbol{n} \text{ even.}$

 $\square J_n(\beta) = -J_{-n}(\beta) \text{ for } \boldsymbol{n} \text{ odd.}$

□ When β is very small: $J_0(\beta) \approx 1$, $J_1(\beta) \approx \beta/2$, $J_n(\beta) \approx 0$ n>1

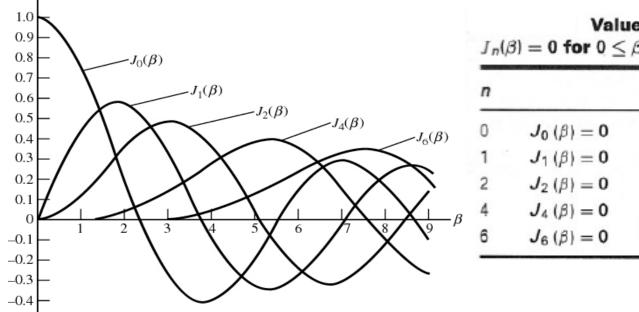
• Power distribution:

$$\sum_{n=-\infty}^{\infty} J_n^2(\beta) = 1.$$

\Box Limit of Bessel function for large *n*:

$$\lim_{n\to\infty}J_n(\beta)=0.$$

Properties of Bessel functions (cont.)



Values of β for Which $J_n(\beta) = 0$ for $0 \le \beta \le 9$

n		₿n 0	β _{n 1}	βnz
0	$J_0(\beta) = 0$	2.4048	5.5201	8.6537
1	$J_1(\beta) = 0$	0.0000	3.8317	7.0156
2	$J_2(\beta) = 0$	0.0000	5.1356	8.4172
4	$J_4(\beta) = 0$	0.0000	7.5883	_
6	$J_{6}\left(\beta\right)=0$	0.0000	_	

Zeros of the Bessel functions: For each n, what values of β result in $J_n(\beta) = 0$? (Use the above graph or table)

Spectrum of Single Tone FM using the Bessel Function

- □ Now, back to single-tone FM.
- □ From slide 5, we have:

$$c_n = \frac{A_c}{2\pi} \int_{-\pi}^{\pi} e^{j(\beta \sin x - nx)} dx =$$

$$\widetilde{s}(t) = A_c e^{j\beta\sin(2\pi f_m t)} =$$

□ Finally,

$$s(t) = \operatorname{Re}\left\{\widetilde{s}(t)e^{j2\pi f_c t}\right\} =$$

Single Tone FM Spectrum (Cont.)

• We just found:

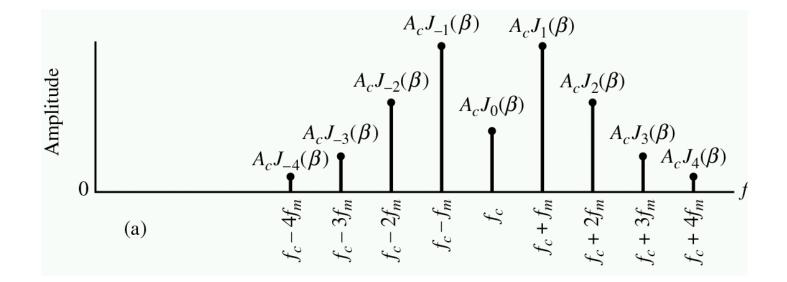
$$s(t) = A_c \sum_{n=-\infty}^{\infty} J_n(\beta) \cos 2\pi (f_c + nf_m) t$$

- □ Thus:
- S(f) =

- **Observations:**
 - □ The spectrum of "Single Tone FM" contains components at
 - **D** Theoretically the BW of single-tone FM is
 - However, because of properties of the Bessel func., the BW can be approximated by a limited value.

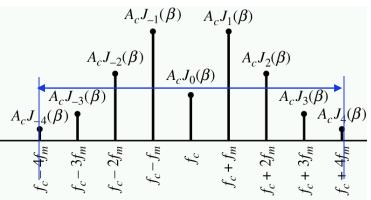
One sided spectrum of Single Tone FM

 Same spectrum as the one we drew on the previous page, only represented as one-sided (Amplitude of each component is doubled)



Bandwidth of Single Tone Wideband FM

• One approximation for limiting the BW of single tone FM is defined as the range of frequencies beyond which $J_n(\beta) < 0.01$ for all *n*.



□ Using this approximation we do the following:

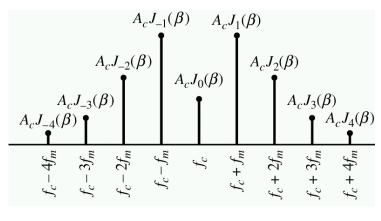
1- Use the Bessel function table to find the value of n_{max} that satisfies the above requirement.

2- The corresponding bandwidth is then:

Bandwidth of Single Tone FM (Cont.)

D Table 4.2 of text lists 2 n_{max} for different values of β :

β	2 n _{max}
0.1	2
0.3	4
0.5	4
1.0	6
2	8
5	16



\square Relationship between bandwidth (B) and frequency deviation (Δf):

Example

Find the bandwidth of a single tone FM modulated signal with $\beta = 5$ and frequency of message (single tone) = 15 kHz. What is the bandwidth with respect to Δf . **Draw the spectrum.**

Normalized Bandwidth with respect to β

- **D** Fig 4.9 of text shows the "normalized bandwidth" (B / Δf) w.r.t. β
- Observation: B/Δf approaches 2 as β increases.

(Recall that the range of the instantaneous frequency is $2\Delta f$.)

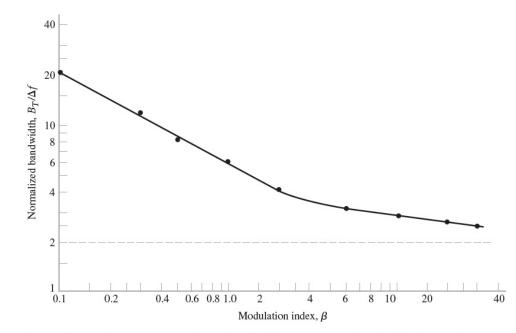


FIGURE 4.9 Universal curve for evaluating the one percent bandwidth of an FM wave.

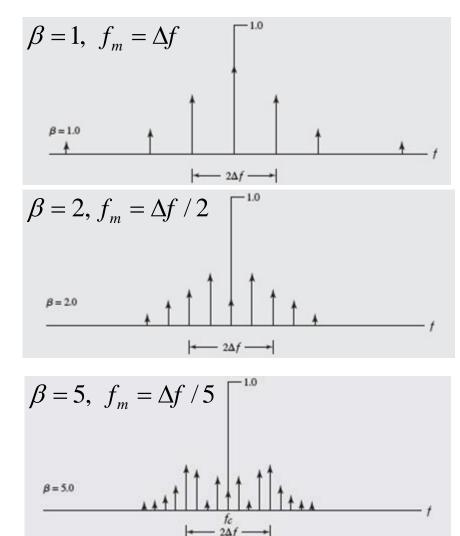
Effect of Message Amplitude on Spectrum

□ For a fixed message frequency, f_m , let's look at the effect of changing the message amplitude, A_m .

Observations:

Effect of Message Frequency on Spectrum

- Now let's fix the message amplitude, A_m , and change message frequency, f_m .
- Observations:



Carson's Rule for Single Tone FM

- Carson's rule is an approximation to FM's BW, which applies to both single tone FM and FM with an arbitrary modulating message.
- □ For single tone message:

Carson's Rule:
$$B = 2 \Delta f + 2 f_m = 2 \Delta f (1 + \frac{1}{\beta})$$

D For very small β :

D For very large β :

□ For $1 \le \beta \le 20$, Carson's rule is an under-estimation of the BW.

Carson's Rule for General FM (Message=m(t))

• For FM with arbitrary message m(t) with bandwidth W:

Carson's Rule: $B = 2 (\Delta f + W)$

• New definition:

Deviation Ratio: $D = \Delta f / W = k_f \max|m(t)| / W$ (This is a generalization of $\beta = \Delta f / f_m$)

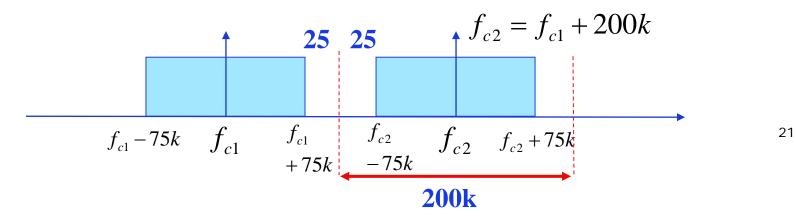
• Carson's rule can be written as:

$$B = 2 (D+1)W$$

Example

□ In FM radio, the max message bandwidth is W = 15kHz, and the allowed max frequency deviation is $\Delta f = 75$ KHz. What is the BW of FM radio channels as per Carson's rule? Compare with the previous example which used single tone.

In practice, 200 kHz is allocated. This leaves a 25 kHz guard region above and below the carrier freq to reduce the interference with other FM channels.



APPENDIX 3

Bessel Functions

A3.1 Series Solution of Bessel's Equation

In its most basic form, Bessel's equation of order n is written as

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - n^{2})y = 0$$
(A3.1)

which is one of the most important of all variable-coefficient differential equations. For each order n, a solution of this equation is defined by the power series

$$J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m \left(\frac{1}{2}x\right)^{n+2m}}{m!(n+m)!}$$
(A3.2)

The function $J_n(x)$ is called a *Bessel function of the first kind of order n*. Equation (A3.1) has two coefficient functions—namely, 1/x and $(1 - n^2/x^2)$. Hence, it has no finite singular points except the origin. It follows therefore that the series expansion of Eq. (A3.2) converges for all x > 0. Equation (A3.2) may thus be used to numerically calculate $J_n(x)$ for n = 0, 1, 2, ... Table A3.1 presents values of $J_n(x)$ for different orders *n* and varying *x*. It is of interest to note that the graphs of $J_0(x)$ and $J_1(x)$ resemble the graphs of $\cos x$ and $\sin x$, respectively; see the graphs of Fig. 4.6 in Chapter 4.

$J_n(x)$									
$n \setminus x$	0.5	1	2	3	4	6	8	10	12
0	0.9385	0.7652	0.2239	-0.2601	-0.3971	0.1506	0.1717	-0.2459	0.0477
1	0.2423	0.4401	0.5767	0.3391	-0.0660	-0.2767	0.2346	0.0435	-0.2234
2	0.0306	0.1149	0.3528	0.4861	0.3641	-0.2429	-0.1130	0.2546	-0.0849
3	0.0026	0.0196	0.1289	0.3091	0.4302	0.1148	-0.2911	0.0584	0.1951
4	0.0002	0.0025	0.0340	0.1320	0.2811	0.3576	-0.1054	-0.2196	0.1825
5		0.0002	0.0070	0.0430	0.1321	0.3621	0.1858	-0.2341	-0.0735
6			0.0012	0.0114	0.0491	0.2458	0.3376	-0.0145	-0.2437
7			0.0002	0.0025	0.0152	0.1296	0.3206	0.2167	-0.1703
8				0.0005	0.0040	0.0565	0.2235	0.3179	0.0451
9				0.0001	0.0009	0.0212	0.1263	0.2919	0.2304
10					0.0002	0.0070	0.0608	0.2075	0.3005
11						0.0020	0.0256	0.1231	0.2704
12						0.0005	0.0096	0.0634	0.1953
13						0.0001	0.0033	0.0290	0.1201
14						<u> </u>	0.0010	0.0120	0.0650

TABLE A3.1	Table of	f Bessel	Functions ^a
------------	----------	----------	-------------------------------

^aFor more extensive tables of Bessel functions, see Abramowitz and Stegun (1965, pp. 358-406).