The State of Parabix: A Research Agenda

Robert D. Cameron

School of Computing Science
Simon Fraser University

January 15, 2018

Rob Cameron (SFU) Parabix Status January 15, 2018



Outline

@ Parabix Overview

© Kernels

e Pipeline Implementation and Compilation

@ More Kernels

Rob Cameron (SFU) Parabix Status January 15, 2018 2/22



Outline

@ Parabix Overview

Rob Cameron (SFU) Parabix Status January 15, 2018 3/

N
N



Parabix Technology

Parabix Concept

@ Parabix employs bitwise data parallelism to achieve high-performance
text processing.

e XML parsing [HPCA 2012].
@ Regular expression matching [PACT 2014].

@ Process 128 bytes at a time using 128-bit SSE2 registers on all
Intel/AMD 64-bit processors.

@ Process 256 bytes at a time using 256-bit AVX2 technology.

Rob Cameron (SFU) Parabix Status January 15, 2018 4 /22



Parabix Technology

Parabix Concept

@ Parabix employs bitwise data parallelism to achieve high-performance
text processing.

e XML parsing [HPCA 2012].
@ Regular expression matching [PACT 2014].

@ Process 128 bytes at a time using 128-bit SSE2 registers on all
Intel/AMD 64-bit processors.

@ Process 256 bytes at a time using 256-bit AVX2 technology.

Parabix Regular Expression Software

@ icgrep 1.0 employs Parabix methods in a full Unicode Level 1
“grep” search tool [IUC39, ICAPP2015].

o Gigabyte/sec regular expression search.

Rob Cameron (SFU) Parabix Status January 15, 2018 4 /22



Recent Advances

Parabix Toolchain

@ 100% dynamic compilation to LLVM IR.
@ Dynamic processor detection for AVX2.
Can target NVPTX back end (Nvidia GPUs).

o
@ Application construction using stream-processing kernels.
o

Multicore processing using segmented pipeline parallelism.

N
N

Rob Cameron (SFU) Parabix Status January 15, 2018 5/



Recent Advances

Parabix Toolchain

@ 100% dynamic compilation to LLVM IR.
@ Dynamic processor detection for AVX2.
Can target NVPTX back end (Nvidia GPUs).

o
@ Application construction using stream-processing kernels.
o

Multicore processing using segmented pipeline parallelism.

Regular Expression Improvements

@ Star-Normal Form

@ Log2 Bounded Repetitions

Rob Cameron (SFU) Parabix Status January 15, 2018 5/22



Technology Roadmap: Parabix OS

Parabix Shell plus Core Utilities

@ Parabix versions of grep, sed, awk, cut, wc, head, tail, join, ...

Parabix shell: dynamic pipelining using pipeline parallelism.
Goal: high performance OS for big data applications.

Compression, transcoding, etc., built-in.

Design for use with Linux or Darwin kernel.

N
N

Rob Cameron (SFU) Parabix Status January 15, 2018 6/



Technology Roadmap: Parabix OS

Parabix Shell plus Core Utilities

@ Parabix versions of grep, sed, awk, cut, wc, head, tail, join, ...

Parabix shell: dynamic pipelining using pipeline parallelism.

Goal: high performance OS for big data applications.

Compression, transcoding, etc., built-in.

Design for use with Linux or Darwin kernel.

Parabix Components for Unicode

@ Integrate high-level Unicode awareness into all core utilities.

@ Unicode properties and regular expression support throughout.

Rob Cameron (SFU) Parabix Status January 15, 2018 6 /22



Parabix Languages and Compilers

Languages: Current Status

@ Grammars: regexps, character classes, Unicode properties.

@ Pablo stream language: operations on arbitrary-length bit streams.
o LLVM IR: high-level assembly language for stream processing kernels.
°

Pipeline protolanguage: mapping stream sets to buffers, composing
kernels, scheduling computations.

Rob Cameron (SFU) Parabix Status January 15, 2018 7/

N
N



Parabix Languages and Compilers

Languages: Current Status

@ Grammars: regexps, character classes, Unicode properties.

@ Pablo stream language: operations on arbitrary-length bit streams.
o LLVM IR: high-level assembly language for stream processing kernels.
°

Pipeline protolanguage: mapping stream sets to buffers, composing
kernels, scheduling computations.

Compilers

@ Character class compiler: generate Pablo code.

Unicode property compiler: Pablo code for any Unicode property.
Regexp compiler: produce Pablo code for any regular expression.
Pablo compiler: produce Pablo Kernels in LLVM IR.

Kernel Pipeline Compilers: produce IR from a chain of kernels.

e 6 o

Rob Cameron (SFU) Parabix Status January 15, 2018 7/ 22



Outline

© Kernels

Rob Cameron (SFU) Parabix Status January 15, 2018 8/

N
N



Kernel Structure

o Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

Rob Cameron (SFU) Parabix Status January 15, 2018 9/

N
N



Kernels

Kernel Structure

o Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

v

Transposition Kernel

@ Input: 1 x i8: a single stream of 8-bit code units (e.g., UTF-8).

o Output: 8 x il: a set 8 of parallel bit streams (basis bit streams).

Rob Cameron (SFU) Parabix Status January 15, 2018 9/

N
N



Kernels

Kernel Structure

@ Kernels are computational abstractions for text stream processing.

@ Kernels process input stream sets, producing output stream sets.

Transposition Kernel

@ Input: 1 x i8: a single stream of 8-bit code units (e.g., UTF-8).

o Output: 8 x il: a set 8 of parallel bit streams (basis bit streams).

A\

Transposition Subkernels

@ Transposition can actually be divided into 3 stages.
o Stage 1: 1 x i8: to 2 x i4 (2 streams of nybbles).
@ Stage 2: 2 x i4: to 4 x i2 (4 streams of bit-pairs).
o Stage 3: 4 x i2: to 8 x i1 (basis bit streams).

Rob Cameron (SFU) Parabix Status January 15, 2018 9 /22



Regular Expression Kernels

Character Class Kernels

@ Kernel for the character classes of a regexp: e.g., a[0-9]* [z9]

@ Input: 8 x il: the 8 basis bit streams.
@ Output: 3 x i1: 3 bit streams for [a], [0-9], [z9]
°

Dynamically generated by the Parabix Character Class compiler.

Rob Cameron (SFU) Parabix Status January 15, 2018 10 / 22



Regular Expression Kernels

Character Class Kernels

o Kernel for the character classes of a regexp: e.g., a[0-9]* [z9]

@ Input: 8 x il: the 8 basis bit streams.
@ Output: 3 x i1: 3 bit streams for [a], [0-9], [z9]
°

Dynamically generated by the Parabix Character Class compiler.

@ Kernel for the matching logic: e.g., a[0-9]*[z9]
@ Input: 3 x il: character class streams
@ Output: 1 x i1: a bit stream of matches found.

@ Dynamically generated by the Parabix Regular Expression compiler.

e Future: generate begin/end pairs for substring capture.

Rob Cameron (SFU) Parabix Status January 15, 2018 10 / 22



Modular icgrep Kernels

Line Break Kernel

@ Kernel for Unicode line breaks

@ Input: 8 X i1: the 8 basis bit streams.
@ Output: 1 x i1: line breaks for any of LF, CR, CRLF, LS, PS, ---

@ Currently implemented within regexp compiler: should factor out.

Rob Cameron (SFU) Parabix Status January 15, 2018 11 /22



Modular icgrep Kernels

Line Break Kernel

Kernel for Unicode line breaks

@ Input: 8 X i1: the 8 basis bit streams.
@ Output: 1 x i1: line breaks for any of LF, CR, CRLF, LS, PS, ---
°

Currently implemented within regexp compiler: should factor out.

Match Scanning Kernel
@ Kernel to generate matched lines.

@ Three inputs:

e 1 x i8: source byte stream
e 1 x i1l: matches bit stream
o 1 x il: line break bit stream

@ Output: 1 x i8 matched line output stream.

o’

Rob Cameron (SFU) Parabix Status January 15, 2018 11 /22



Kernel Composition: Pipelines

Kernels + StreamSets = Programs

@ Name the stream sets used as inputs and outputs to each kernel.

@ Compose a program as a sequence of kernels.

Rob Cameron (SFU) Parabix Status January 15, 2018 12 / 22



Kernel Composition: Pipelines

Kernels + StreamSets = Programs

@ Name the stream sets used as inputs and outputs to each kernel.

@ Compose a program as a sequence of kernels.

A 7-Stage icgrep Program

ByteData = MMapSource(FileName)
BasisBits = Transpose(ByteData)
LineEnds = UnicodeLineBreaks(BasiBits)
CharacterClasses = CC_compiler<regexp>(BasisBits)
Matches = RE_compiler<regexp>(CharacterClasses)
MatchedLines = MatchScanner (ByteData, LineEnds, Matches)

StdoutSink (MatchedLines)

Rob Cameron (SFU) Parabix Status January 15, 2018 12 / 22



Outline

e Pipeline Implementation and Compilation

Rob Cameron (SFU) Parabix Status January 15, 2018 13 / 22



Stream Sets and Buffers

@ A stream set type is of the form N x iK

@ N streams of items, each item of width K bits

@ All streams in a set are of the same length L (may be unknown).

Rob Cameron (SFU) Parabix Status January 15, 2018 14 / 22



Stream Sets and Buffers

Stream Sets

@ A stream set type is of the form N x iK

@ N streams of items, each item of width K bits

@ All streams in a set are of the same length L (may be unknown).

Buffers
Buffers are storage for segments of stream sets.

@ All of the streams of a set are stored in a single buffer.
@ Stream sets are stored block-at-a-time (significant for N > 1)
(]

Different buffering strategies.

o Full stream length (mmap)

o Fixed length circular buffer.

o Fixed length buffer with copyback.

e Expanding buffer (expands as needed).

Rob Cameron (SFU) Parabix Status January 15, 2018 14 / 22



Pipeline Compilation

Pipeline Requirements

@ Buffers are allocated for all streams.
@ Internal states allocated for all kernels.

@ Kernels are compiled to process data in defined buffers.

Rob Cameron (SFU) Parabix Status January 15, 2018 15 / 22



Pipeline Compilation

Pipeline Requirements

@ Buffers are allocated for all streams.
@ Internal states allocated for all kernels.

@ Kernels are compiled to process data in defined buffers.

Pipeline Compiler Status

@ Four basic compilers have been built:
e Sequential single-core pipeline.
o Multithread pipeline (pure pipeline parallelism).
o Segmented pipeline parallel (threads execute alternating segments).
o GPU-CPU hybrid pipeline.

@ All compilers need work!!

Rob Cameron (SFU) Parabix Status January 15, 2018 15 / 22



Experimental Pipeline Compilers

Pipeline Parallel Compiler

@ Each kernel is compiled to a separate thread function.
@ Lock-free synchronization through monotonic positions.
o Balance between pipeline stages is problematic.

o Retired.

Rob Cameron (SFU) Parabix Status January 15, 2018 16 / 22



Experimental Pipeline Compilers

Pipeline Parallel Compiler

@ Each kernel is compiled to a separate thread function.

@ Lock-free synchronization through monotonic positions.
o Balance between pipeline stages is problematic.
@ Retired.

NVPTX Pipeline Compiler
@ Kernels compiled to PTX code to run on NVidia GPUs.
@ Can now compile first 4 icgrep stages to GPU.

@ Currently only a single workgroup of 64 threads: 4096 position SIMT.
@ MatchedLineScanner compiles to CPU.
o Further work: combined GPU/CPU compilers.

Rob Cameron (SFU) Parabix Status January 15, 2018 16 / 22



Segmented Pipeline

Combined Data and Pipeline Parallelism

@ Input divided into logical segments.

@ Allocate segments to P cores in round robin fashion.
@ Core i responsible for all segments n such that n mod P = i.
@ Each core executes a full pipeline for its segment.

@ For any pipeline stage s and segment i + 1, core (i + 1) mod P can
proceed as soon as core ¢ mod P completes stage .

Workload balanced between cores as long as no stage requires more
than 1/P of the total time to process a segment.

Now the default for all applications.

Rob Cameron (SFU) Parabix Status January 15, 2018 17 / 22



Compiler Issues

Buffer Allocation and Management

@ Current compilers too naive: assume a common segment size across
kernels.

Workable for some applications, e.g., icgrep.

In general, buffer sizing and discipline depends on kernel properties.

Kernels may use lookahead on a input stream set.

o Input buffer must have additional room for lookahead blocks.

o Preceding kernels must process ahead of their lookahead-dependent
kernels.

o Circular buffering must be used.

@ Kernels may have an expansion factor, e.g. 4/3 expansion for radix64
kernels.

Kernels may have variable-length output, e.g., u8ul6.

Rob Cameron (SFU) Parabix Status January 15, 2018 18 / 22



Compiler Issues

Kernel Contracts

@ Kernels must be implemented to respect contractual requirements of
the pipeline compilers.

@ Report number of produced items in each output stream set.

@ Report consumed positions for each input stream set.
@ Declare and adhere to stream set attributes.

o FixedRate attribute: - automate processing rate
o BoundedRate: sets limit on buffer size
o Lookahead attribute

Rob Cameron (SFU) Parabix Status January 15, 2018 19 / 22



Compiler Issues

Kernel Contracts

@ Kernels must be implemented to respect contractual requirements of
the pipeline compilers.

@ Report number of produced items in each output stream set.
@ Report consumed positions for each input stream set.

@ Declare and adhere to stream set attributes.

o FixedRate attribute: - automate processing rate
o BoundedRate: sets limit on buffer size
o Lookahead attribute

Synchronization

@ Multithreading requires appropriate synchronization.

@ T-thread segment parallel compiler currently has a race condition.

e Buffer output struct may be modified by producer in thread ¢ + 1 before
all consumers in thread t have accessed it.

Rob Cameron (SFU) Parabix Status January 15, 2018 19 / 22



Outline

@ More Kernels

Rob Cameron (SFU) Parabix Status

20 / 22



Parallel Deletion Kernels

Bit Stream Compression Kernel

@ Two inputs:

e Nxil: bit streams to compress
o 1 x i1: deletion mask stream

@ Output: Nxil: compressed output streams

input[1] 10101000101010101011

input[2] 11100111100000110001
deletion mask 00111000001101000110

output[l] 100001011011

output[2] 111111001101

@ Provides a general approach to stream filtering.

e Example:

Rob Cameron (SFU) Parabix Status January 15, 2018 21 /22



Transcoding Kernels

UTF-8 to UTF-16 Logic Kernel

@ Input: 8 x il: the 8 basis bit streams.

@ Three outputs:
e 16 x il: UTF-16 parallel bit streams
e 1 x i1: deletion mask stream
o 1 xi1: UTF-8 error stream
@ Only one logical output code unit position for 2 or 3 byte UTF-8
sequence, 2 positions for 4-byte sequences.

@ Deletion mask marks positions to be removed from output stream.

Rob Cameron (SFU) Parabix Status January 15, 2018 22 /22



	Parabix Overview
	Kernels
	Pipeline Implementation and Compilation
	More Kernels

