
1

Lecture Overview

Types

1. Type systems
2. How to think about types
3. The classification of types
4. Type equivalence

• structural equivalence

• name equivalence
5. Type compatibility
6. Type inference

[Scott, chapter 7]
[Sebesta, chapter 6]

2

Type Systems

Computers can interpret memory in many different ways, but

they never keep track of which interpretations are used for

which memory. Programming is orchestrating these

interpretations.

High-level languages, on the other hand, are built to keep

track of interpretations and ensure that each piece of

memory gets only one interpretation (ideally). This is a

tremendous help in avoiding errors of misinterpretation.

Types are associated with values in high-level languages.

These types provide context and help with error-checking.

A type system has:

1. a mechanism to define types and associate them with

language constructs

2. a set of rules for type equivalence, type compatibility,

and type inference.

Type equivalence details which types are considered the

same. Type compatibility states when a value of a certain

type can be used in a given context. Type inference defines

the type of an expression based on the types of its

constituent parts.

3

In languages with polymorphism, there is also a distinction

between the type of an expression (the static type) and the

type of the object to which it refers (the dynamic type). For

instance, in java, a variable of type List may dynamically refer

to an instance of type ArrayList (which is a subclass of List).

Type checking is the process of ensuring that a program

conforms to the language’s type compatibility rules.

A language is strongly typed if it prohibits, in an enforceable

way, any operation to any object that is not designed to

support that operation. One hears comparatives with

strongly typed: “Pascal is more strongly typed than C.” and

“Pascal is almost strongly typed.”

A language is statically typed if all type checking can be

performed at compile time.

A language is dynamically typed if the type checking is all

performed at run time. Dynamically scoped languages tend

to be dynamically typed.

4

How to think about types

Types can be thought of from 3 points of view:

1. Denotational. Here we consider a type as a set of values.

Anything with one of the values in the set has the type.

2. Constructive. Here we consider a type either a primitive

type (built-in to to language) or one created by applying

type constructors to primitive types. A type constructor

describes how to create a new type from given type(s)—

for instance, “array of” is a type constructor in many

languages, as is “record” (struct) or “class”.

3. Abstraction-based. Here, a type is an interface consisting

of a consistent set of operations with consistent

semantics (meaning).

5

The Classification of Types

• Boolean. Typically one byte with 0 representing false

and 1 representing true.

• Numeric.

o distinguished based on length?

o allows signed and unsigned?

o integer

o floating

o rational (Scheme, Common Lisp)

o fixed-point (Ada)

o complex

• Character. Sometimes considered a numeric type.

Typically 1 or 2 bytes.

• Enumeration.

o type-compatible with integer (C)

o integer-based type incompatible with integer

(Modula)

o interface-based type consisting of singletons

(java)

6

• Subrange. Based on a contiguous subset of a base

type. The base type can be numeric, character,

enumeration, or any type with a complete ordering.

type percent_vote = 0..100;

 weekday = Monday..Friday;

• Strings. Often a reference type containing a

reference (pointer) to a heap-allocated record.

String records can be as simple as a null-terminated

list of characters, or they may have header

information, e.g. the length of the string.

• Composite types. These are types constructed with

a type constructor.

o Records. A collection of fields, each of which

has a simpler type. Equivalent of math tuples.

Simple objects can be considered records

with their own subroutines.

o Variant records. Allows different types of data

to occupy the same space, but only one at a

time!

o Arrays. The most common composite type.

7

o Sets. A set type is the powerset of its base

type, which must usually be discrete.

o Pointers. Pointers are reference types: the

value of a pointer is a reference to the

pointed-at object.

o Lists. Like arrays, contain a sequence of

elements, but without indexing. Typically

recursively defined.

o Files. Like arrays, but often can only be

accessed sequentially. Intended to represent

data on mass storage devices.

o Subclasses. These are types that use a special

type constructor to inherit the properties of

its base class (in addition to any other

properties it declares).

8

Type equivalence

There are two principal ways of defining type equivalence.

They are structural equivalence and name equivalence.

Two types are structurally equivalent if they are composed of

the same parts and constructed in the same manner. The

following three types are all structurally equivalent.

 struct {int a, b;}

 struct {
 int a, b;
 }

 struct {
 int a;
 int b;
 }
But consider the following type:

 struct {
 int b;
 int a;
 }

In ML, that type is equivalent to the earlier three. In most

languages, it is not.

9

Structural equivalence is a very implementation-oriented

concept, and it fails to distinguish between types that are

coincidentally the same but conceptually different.

type student = record
 name, address: string
 age: integer

 type school = record

name, address: string
 age: integer

 x: student;
 y: school;

 x := y;

Most programmers would probably want to be informed if

they assigned a value of type school to a variable of type

student.

The solution is name equivalence. If the programmer wrote

two type definitions, they probably want them to represent

different types. In name equivalence, each type definition

defines a different type.

10

name equivalence

Some languages allow type aliasing, or giving another name

to a type.

 TYPE stack_element = INTEGER;

If the language considers these two types to be distinct, then

it is said to have strict name equivalence. If they are

considered equivalent, then the language is said to have

loose name equivalence. Pascal-family languages use loose

name equivalence. A problem with this is as follows:

TYPE celsius_temp = REAL;
 fahrenheit_temp = REAL;

 VAR c: celsius_temp;
 f: fahrenheit_temp;
 …
 f := c;

That’s legal in Pascal.
Ada allows both loose name equivalence and strict name
equivalence, at the behest of the programmer. A subtype
(keyword: subtype) is equivalent to the base type, and a
derived type (keyword: type) is not.

subtype stack_element is integer;
type fahrenheit_temp is new integer;

11

The BRANDED keyword in Modula-3 has much the same
effect as Ada’s subtype.

Type compatibility

Most languages do not require equivalence of types in most
contexts; they require compatibility instead. For instance, in
 a := expression;
the type of the expression must be compatible with that of a.
The types of the operands of + must both be compatible with
integers, or both be compatible with the floating-point type.

The definition of type compatibility differs from language to
language. Whenever a language allows nonequivalent types
to be compatible, it must perform implicit type conversions
(called coercions) behind the scenes.

Coercions are controversial because they allow types to be
mixed without the explicit intent of the programmer. They
weaken type security (the prevention of type errors). The
languages C and C++ are notoriously coercive, and has a
programmer-extensible set of coercions (as does Scala).

Fortran allows arrays to appear as operands for its arithmetic
operators. C allows arrays and pointers to be intermixed.

12

Many languages have a generic reference type that can hold
a reference to any object. In C and C++, this is void *; in
Modula-3 it is refany; in C#, object. Since a variable of this
type can hold any reference, no type-checking is needed
when assigning to such a variable.

But if a generic reference type is assigned to a specific
reference type, then either type safety suffers or a type check
must be performed.

void *v = some_ptr;
double *d;
…
d = v; // is v really a double* ?

This cannot, in general, be type-checked statically. The trend
is to make dynamic type checks.

To do this, one must make the objects self-descriptive. That
is, each object contains an indication of its type. Then the
run-time system can check to see if this assignment is legal
and issue an error (and generally halt) if it is not. This is now
common in object-oriented languages.

13

Type inference

Type checking ensures that an operator’s operands or a
function’s arguments have the correct types. But what
determines the type of the overall expression?

Generally arithmetic operators give a result that is the same
type as the operands, and functions give the return type that
was declared with the function. However, operations on
subranges and on composite objects do not necessarily
preserve the type of the operand.

Suppose we have
 type Atype = 0..20;
 var a, b: Atype;
then what is the type of the expression a+b ? Is it another
Atype, or is it some new type with a range of 0 to 40? Both
could be reasonable answers. If we also have variable c as an
Atype, the assignment
 c := a + b;
needs a dynamic check to ensure that a+b fits into an Atype.

Operations on some composite types offer similar challenges.
In Ada, “cat” is a three-character array, and “alog” is a four-
character array. The expression “cat” & “alog” is a seven-

14

character array (In Ada, as in Go, the size of an array is part of
its type.)

Functional languages often have parametric polymorphic
operators, where typechecking requires the inference of
what the parameters are. For instance, the operator map
may take a left operand of type List<T> for some type T, and a
right operand of type Proc<T→S> for types T and S. (I.e. the
right operand is a procedure that maps a T to an S.) The type
T in the left and right arguments must match, and the result is
of type List<S>. The signature of map is therefore:

 (List<T>, Proc<T→S>) → List<S>

An example of map is:

 [1.23, 3.5, -2.7] map floor

where the result would be the integer array
 [1, 3, -3]
Here, the compiler would see that the left argument was
List<floating>, and know that T must be floating. Then it
would see the right argument is Proc<floating→int>, and
verify that the T in this expression is also floating, and that S
is an int. It would conclude that the result is of type List<S>,
which is List<int>.

15

This is simple type unification, as the compiler has to unify
(ensure the sameness of) the type T in both arguments. ML,
Miranda, and Haskell have this type of sophisticated type
inferencing.

