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Lecture Overview 
 
Types 

1. Type systems 
2. How to think about types 
3. The classification of types 
4. Type equivalence 

• structural equivalence 

• name equivalence 
5. Type compatibility 
6. Type inference 

 
[Scott, chapter 7] 
[Sebesta, chapter 6] 
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Type Systems 

Computers can interpret memory in many different ways, but 

they never keep track of which interpretations are used for 

which memory.  Programming is orchestrating these 

interpretations. 

High-level languages, on the other hand, are built to keep 

track of interpretations and ensure that each piece of 

memory gets only one interpretation (ideally).   This is a 

tremendous help in avoiding errors of misinterpretation. 

Types are associated with values in high-level languages. 

These types provide context and help with error-checking. 

A type system has: 

1. a mechanism to define types and associate them with 

language constructs 

2. a set of rules for type equivalence, type compatibility, 

and type inference. 

 

Type equivalence details which types are considered the 

same.  Type compatibility states when a value of a certain 

type can be used in a given context.  Type inference defines 

the type of an expression based on the types of its 

constituent parts. 



3 

 

In languages with polymorphism, there is also a distinction 

between the type of an expression (the static type) and the 

type of the object to which it refers (the dynamic type).  For 

instance, in java, a variable of type List may dynamically refer 

to an instance of type ArrayList (which is a subclass of List). 

 

Type checking is the process of ensuring that a program 

conforms to the language’s type compatibility rules. 

A language is strongly typed if it prohibits, in an enforceable 

way, any operation to any object that is not designed to 

support that operation.  One hears comparatives with 

strongly typed: “Pascal is more strongly typed than C.” and 

“Pascal is almost strongly typed.” 

A language is statically typed if all type checking can be 

performed at compile time. 

A language is dynamically typed if the type checking is all 

performed at run time.  Dynamically scoped languages tend 

to be dynamically typed. 
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How to think about types 

Types can be thought of from 3 points of view: 

1. Denotational. Here we consider a type as a set of values.  

Anything with one of the values in the set has the type. 

 

2. Constructive. Here we consider a type either a primitive 

type (built-in to to language) or one created by applying 

type constructors to primitive types.  A type constructor 

describes how to create a new type from given type(s)—

for instance, “array of” is a type constructor in many 

languages, as is “record” (struct) or “class”. 

 

3. Abstraction-based. Here, a type is an interface consisting 

of a consistent set of operations with consistent 

semantics (meaning). 
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The Classification of Types 

 

• Boolean. Typically one byte with 0 representing false 

and 1 representing true. 

 

• Numeric. 

o distinguished based on length? 

o allows signed and unsigned? 

o integer 

o floating 

o rational (Scheme, Common Lisp) 

o fixed-point (Ada) 

o complex 

 

• Character. Sometimes considered a numeric type.  

Typically 1 or 2 bytes. 

 

• Enumeration.   

o type-compatible with integer (C) 

o integer-based type incompatible with integer 

(Modula) 

o interface-based type consisting of singletons 

(java) 
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• Subrange.  Based on a contiguous subset of a base 

type.  The base type can be numeric, character, 

enumeration, or any type with a complete ordering. 

type percent_vote = 0..100; 

         weekday = Monday..Friday; 

 

• Strings.  Often a reference type containing a 

reference (pointer) to a heap-allocated record.  

String records can be as simple as a null-terminated 

list of characters, or they may have header 

information, e.g. the length of the string. 

 

• Composite types.  These are types constructed with 

a type constructor. 

 
o Records. A collection of fields, each of which 

has a simpler type.  Equivalent of math tuples. 

Simple objects can be considered records 

with their own subroutines. 

o Variant records. Allows different types of data 

to occupy the same space, but only one at a 

time! 

o Arrays. The most common composite type. 
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o Sets. A set type is the powerset of its base 

type, which must usually be discrete. 

o Pointers.  Pointers are reference types: the 

value of a pointer is a reference to the 

pointed-at object. 

o Lists.  Like arrays, contain a sequence of 

elements, but without indexing.  Typically 

recursively defined. 

o Files.  Like arrays, but often can only be 

accessed sequentially.  Intended to represent 

data on mass storage devices. 

o Subclasses. These are types that use a special 

type constructor to inherit the properties of 

its base class (in addition to any other 

properties it declares). 
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Type equivalence 

There are two principal ways of defining type equivalence.  

They are structural equivalence and name equivalence. 

Two types are structurally equivalent if they are composed of 

the same parts and constructed in the same manner.  The 

following three types are all structurally equivalent. 

  struct {int a, b;} 
 
  struct { 
   int a, b; 
  } 
 
  struct { 
   int a; 
   int b; 
  } 
But consider the following type: 

  struct { 
   int b; 
   int a; 
  } 
 
In ML, that type is equivalent to the earlier three.  In most 

languages, it is not.   
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Structural equivalence is a very implementation-oriented 

concept, and it fails to distinguish between types that are 

coincidentally the same but conceptually different. 

type student = record 
  name, address: string 
  age: integer 
 
 type school = record 

name, address: string 
  age: integer 
 
 x: student; 
 y: school; 
 
 x := y; 
  
Most programmers would probably want to be informed if 

they assigned a value of type school to a variable of type 

student. 

The solution is name equivalence.  If the programmer wrote 

two type definitions, they probably want them to represent 

different types.  In name equivalence, each type definition 

defines a different type. 
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name equivalence 

Some languages allow type aliasing, or giving another name 

to a type. 

 TYPE stack_element = INTEGER; 

If the language considers these two types to be distinct, then 

it is said to have strict name equivalence. If they are 

considered equivalent, then the language is said to have 

loose name equivalence.  Pascal-family languages use loose 

name equivalence.  A problem with this is as follows: 

TYPE celsius_temp = REAL; 
   fahrenheit_temp = REAL; 

 VAR c: celsius_temp; 
                 f: fahrenheit_temp;  
 … 
 f := c; 
   
That’s legal in Pascal. 
Ada allows both loose name equivalence and strict name 
equivalence, at the behest of the programmer.  A subtype 
(keyword: subtype) is equivalent to the base type, and a 
derived type (keyword: type) is not. 
 

subtype stack_element is integer; 
type fahrenheit_temp is new integer; 
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The BRANDED keyword in Modula-3 has much the same 
effect as Ada’s subtype. 
 
 
Type compatibility 
 
Most languages do not require equivalence of types in most 
contexts; they require compatibility instead.  For instance, in 
 a := expression; 
the type of the expression must be compatible with that of a. 
The types of the operands of + must both be compatible with 
integers, or both be compatible with the floating-point type. 
 
The definition of type compatibility differs from language to 
language.  Whenever a language allows nonequivalent types 
to be compatible, it must perform implicit type conversions 
(called coercions) behind the scenes. 
 
Coercions are controversial because they allow types to be 
mixed without the explicit intent of the programmer.  They 
weaken type security (the prevention of type errors).  The 
languages C and C++ are notoriously coercive, and has a 
programmer-extensible set of coercions (as does Scala). 
 
Fortran allows arrays to appear as operands for its arithmetic 
operators.  C allows arrays and pointers to be intermixed. 
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Many languages have a generic reference type that can hold 
a reference to any object.  In C and C++, this is void *; in 
Modula-3 it is refany; in C#, object.  Since a variable of this 
type can hold any reference, no type-checking is needed 
when assigning to such a variable. 
 
But if a generic reference type is assigned to a specific 
reference type, then either type safety suffers or a type check 
must be performed. 
 

void *v = some_ptr; 
double *d; 
… 
d = v;  // is v really a double* ? 
 

This cannot, in general, be type-checked statically.  The trend 
is to make dynamic type checks. 
 
To do this, one must make the objects self-descriptive.  That 
is, each object contains an indication of its type.  Then the 
run-time system can check to see if this assignment is legal 
and issue an error (and generally halt) if it is not.  This is now 
common in object-oriented languages. 
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Type inference 
 
Type checking ensures that an operator’s operands or a 
function’s arguments have the correct types.  But what 
determines the type of the overall expression? 
 
Generally arithmetic operators give a result that is the same 
type as the operands, and functions give the return type that 
was declared with the function.  However, operations on 
subranges and on composite objects do not necessarily 
preserve the type of the operand. 
 
Suppose we have 
 type Atype = 0..20; 
 var   a, b: Atype; 
then what is the type of the expression a+b ? Is it another 
Atype, or is it some new type with a range of 0 to 40?  Both 
could be reasonable answers.  If we also have variable c as an 
Atype, the assignment 
 c := a + b; 
needs a dynamic check to ensure that a+b fits into an Atype. 
  
Operations on some composite types offer similar challenges.  
In Ada, “cat” is a three-character array, and “alog” is a four-
character array.  The expression “cat” & “alog” is a seven-
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character array (In Ada, as in Go, the size of an array is part of 
its type.) 
 
Functional languages often have parametric polymorphic 
operators, where typechecking requires the inference of 
what the parameters are.  For instance, the operator map 
may take a left operand of type List<T> for some type T, and a 
right operand of type Proc<T→S> for types T and S.  (I.e. the 
right operand is a procedure that maps a T to an S.)  The type 
T in the left and right arguments must match, and the result is 
of type List<S>.   The signature of map is therefore: 
 
 (List<T>, Proc<T→S>) → List<S> 
 
An example of map is: 
 
 [1.23, 3.5, -2.7] map floor 
 
where the result would be the integer array 
 [1, 3, -3] 
Here, the compiler would see that the left argument was 
List<floating>, and know that T must be floating.  Then it 
would see the right argument is Proc<floating→int>, and 
verify that the T in this expression is also floating, and that S 
is an int.  It would conclude that the result is of type List<S>, 
which is List<int>. 
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This is simple type unification, as the compiler has to unify 
(ensure the sameness of) the type T in both arguments.  ML, 
Miranda, and Haskell have this type of sophisticated type 
inferencing. 
 

 
  

 


