NSTRUCTION

-
e —

rIFERS

DEN

|
i

COMPILER

[ER R I
i | i

. -, g ".. B . N lﬁ 1‘ i . T lu, 5 ™ i, - - S] -
: : . i i - - i . 2 3 ; | !
- RN . e == T - : 0 i " : i
g . ' \ . i : ' i : i 1
i " : ! B [i i : | . ; |)
3 : = v .. - -t) | OSSR S . e = e - - ——t
' ! : i i .]) f
‘ ;) 0 ! [) {
L EENNC . mceen LN S e : i g : ! !
; : : ! P . ¥ <SR 7 I S H
; ! ! i - it | H . ;
N ! i 1
, i

B et et S, i

e e,

m
1
o
i
]
i
i
J
.

[S i i :) ! ! _
i : i e oL S e o L. ! B . = S S i I ” b
. P 3 ! ! } | * ,? ' ; ¢
e T SRS N S I i . i] : i . ! H : M i . _ m Aﬁ ;
I A A SRl D e == e i el e e SETE
; i 1 i _ ! i i i “, |
T Bm e i : | e :] |] i i

- -
H
H
!
i
1
i
i
—
|
4

i |

oo | T

1 P m z._.ﬂ _
»%Ema :

SCANNING PARSING vPe-
TOKENIZATION ecee

Productions are expressions constructed from terms and the following
operators, in increasing precedence:

| alternation same as regular expressions
() grouping same as regular expressions
[l option (0 or 1 times) like ? in regular expressions
{} repetition (0 to n times) like * in reg. expressions

L.ower-case production names are used to identify lexical tokens. Non-terminals are in
CamelCase. Lexical tokens are enclosed in double quotes or back guotes .

The form a .. b represents the set of characters from a through » as alternatives. The horizontal
ellipsis .. is also used elsewhere in the spec to informally denote various enumerations or code
snippets that are not further specified. The character .. (as opposed to the three characters . .) is
not a token of the Go language.

Source code representation

Source code is Unicode text encoded in UTF-8.
But you can think in and use ASCII.

The text is not canonicalized, ...

.. A byte order mark may be dizallowed anywhere else in the source.

Notation = -

The syntax is specified using Extended Backus-Naur Form (EBNF):

Production

production name "=" | Expression] "." .
Expression = Alternative { "|" Alternative } .

Alternative = Term { Term } .

Term = production name | token [".." token]
| Group | Option | Repetition

Group = "(" Expression ")"
Option = "[" Expression "]" .
Repetition = "{" Expression "}"

Identifiers

Identifiers name program entities such as variables and types. An
identifier is a sequence of one or more letters and digits. The first
character in an identifier must be a letter.

identifier = letter { letter | unicode digit } .

a
_ X9
ThisVariableIsExported

of3

Some identifiers are predeclared.

foliow the handy link. You'll see that things like int and printin
are predeclared.

Characters

The following terms are used to denote specific Unicode character
classes:

newline = /* the Unicode code point U+000A */ .

unicode char /* an arbitrary Unicode code point

except newline */ .

unicode letter = /* a Unicode code point classified as
"Letter" */ .

unicode digit /* a Unicode code point classified as

"Number, decimal digit" */ .

In The Unicode Standard 8.0, Section 4.5 "General Category" defines a set of character categories. Go treats all characters in any of the Letter categories Lu, LI, Lt, Lm, or Lo as Unicode letters,
and those in the Number category Nd as Unicode digits.

Letters and digits

The underscore character (U+005F) is considered a letter.

letter = unicode letter | " " .
decimal digit = "0" .. "9" .
octal digit = "O" .. "7"

UmNIQH@.Hﬁ - :O- - :@: _ __-.p: s :m._: _ :m: - -“m:

Lexical elements .
Comments

Comments serve as program documentation. There are two forms:

1. Line comments start with the character sequence // and stop at the
end of the line.

H[M\n]*\n alphabet in red

regular expression metacharacters in green

2. General comments start with the character sequence /* and stop
with the first subsequent character sequence * /.

A Rt A A Y

A comment cannot start inside a rune or string literal, or inside a
comment.

A general comment containing no newlines acts like a space.

a = foo/* hello */+bar
becomes a := foo +bar

(there’s an old C trick:
#define real_add(x,y) x/**/_real + y/* */ real

then z_real = real_add(a, b);
becomes z_real =a/* */_real + b/* */ _real;
which becomes z real = a_real + b _real;

because C comments act like no characters.)

Any other comment acts like a newline.

(Important for their semicolon-elimination strategy.)

Tokens

Tokens form the vocabulary of the Go language. There are four
classes: identifiers, keywords, operators and punctuation, and literals.

S\Q \. &. m mnm Om_ formed from spaces (U+0020), horizontal tabs (U+0008), carriage returns (U+000D), and newlines (U+000A), mm m@ : o q-ma mxom U.ﬂ
as it separates tokens that would otherwise combine into a single
token.

Also, a newline or end of file may trigger the insertion of a semicolon.
yikes!

While breaking the input into tokens, the next token is the longest
sequence of characters that form a valid token.

usual rule. You don’t want the program text
134.2

to yield the three numbers
1, 3,and 4.2

Semicolons

The formal grammar uses semicolons " ; " as terminators in a number of productions. Go programs may omit most of these
semicolons using the following two rules:

1. When the input is broken into tokens, a semicolon is automatically
inserted into the token stream immediately after a line's final token if
that token is
. an identifier
- an integer, floating-point, imaginary, rune, or string literal
- one of the keywords break, continue, fallthrough, or

return

- one of the operators and punctuation ++, —--,), 1, or }

2. To allow complex statements to occupy a single line, a semicolon
may be omitted before a closing ") " or "} ".

This seems to be a parsing rule (“omission allowed”) vs. the previous
rule as a lexical analysis rule (“automatically inserted”).

To reflect idiomatic use, code examples in this decument elide semicolons using these rutes.

Keywords

The following keywords are reserved and may not be used as identifiers.

break
case
chan

const

continue

Operators and punctuation

default

defer
else
fallthrough

for

func
go
goto
if

import

interface
map
package
range

return

select
struct
switch

type

var

The following character sequences represent operators (including assignment operators) and punciuation:

-+

&

A

<<

>>

&&

<

1= (

<= [

L]

-

Integer literals

An integer literal is a sequence of digits representing an integer
constant. An optional prefix sets a non-decimal base: 0 for octal, 0x or
0X for hexadecimal. In hexadecimal literals, letters a~f and a-F
represent values 10 through 15.

int 1lit = decimal lit | octal 1lit | hex lit

decimal lit = ("1" .. "9") { decimal digit } .

octal lit = "0" { octal digit }

hex 1it = "0" ("x" | "X") hex digit { hex digit } .
42

0600

OxBadFace

170141183460469231731687303715884105727

Note that negative humbers are handled by the unary — operator.

Floating-point literals

A floating-point literal is a decimal representation of a floating-point

constant. It has an integer part, a decimal point, a fractional part, and
an exponent part.

The integer and fractional part comprise decimal digits; the exponent
part is an e or E followed by an optionally signed decimal exponent.

One of the integer part or the fractional part may be elided; one of the
decimal point or the exponent may be elided.

float 1it = decimals "." [decimals] [exponent] |
decimals exponent |

" "

." decimals [exponent]

decimals = decimal digit { decimal digit } .
exponent = ("e" | "E") ["+" | "-"] decimals
0.

72.40 6.67428e-11

072.40 // == 72.40 1E©6

2.71828 .25

1l.e+0 .12345E+5

Imaginary literals

An imaginary literal is a decimal representation of the imaginary part of
a complex constant. It consists of a floating-point literal or decimal
integer followed by the lower-case letter i.

imaginary lit = (decimals | float 1it) "i"

0i

0111 // == 111
0.1

2.718281

l.e+01
6.67428e-111
1E61

.251

.12345E+51

Rune literals

A rune literal represents a rune constant, an integer value identifying a
Unicode code point.

A rune literal is expressed as one or more characters enclosed in
single quotes, asin 'x' or '\n".

Within the quotes, any character ...

String literals

A siring literal represents a siring constant obtained from concatenating a sequence of characters, |—l —..— m q.m m —.m go .—..o —-Bm “ _..m<< m._“—..m 3 @
literals and interpreted string literals.

Raw string literals are character sequences between back quotes, as
in " foo...backslashes have no special meaning and the string may
Oo 3 ﬂm m : —..— mE_ m : mm = Carriage return characters (') inside raw string literals are discarded from the raw string value,

Interpreted string literals are character sequences between double
quotes, as in "bar"...with backslash escapes interpreted as they are

_ : H.C —J m _ _.ﬂm q.m _m (except that \ ' Is illegal and \ " is legal), with the same resirictions. The three-digit octal {\nnn) and two-digit hexadecimal {(\xnn) escapes represent

individual bytes of the resulting string; ali other escapes represent the {possibly multi-byte) UTF-8 encoding of individual characfers. Thus inside a string literal \ 377 and \xFF represent a single
byte of value 0xFF=255, while ¥, \u0GFF, \UDOQOOOFF and \xc3\xbf represent the two bytes Oxc3 Oxbf of the UTF-8 encoding of character UJ+00FF

string lit = raw string lit | interpreted string lit .
raw_string lit = "7 { unicode char | newline } """ .
interpreted string lit = """ { unicode value | byte value } '"°

This is a modern string constant definition, having both raw and
interpreted styles.

CHOMSKY HIFRARCH

ONS

O DecoaBLE (RE) TM

| CONTEX-SENSITIVEE | BA o(NB— ¥
2 CONTEXT-FREE PpA N-abMLK

3 REGULAR LANG. DFA N9a, &uwﬂ

DEeTERMINISTIC. FIN\TE
AUTOMKTON

PusHpowN AUTOMATON
LINEAR BOUNDED AF.
..cw.zo. MACHINE

CONTEXT-Free ORAMMAR (N[TyS,P)
N- Set of nonteriminals
T-Setof terminals Z:._..u&
S- Strt symbol SeN
P- Produchons
N— o< cap. iers - ninteminak

lovtresse = ferminals
_ od is P&Gg NvT.
DERIVATION:

sharts with 4= 8¢
CREATE ofy, FROM o

¢
ab
aa bb
aaa bbh
bgaﬂs»&

N=> aNb
N= ¢

