
1

Lecture Overview

Prolog

1. Introduction

• Interaction

• Terms

2. Clauses and predicates

• Clauses

• Predicates

• Variables

3. Satisfying goals

2

Prolog

A standard free Prolog can be downloaded from

 http://www.swi-prolog.org

This is the version of prolog that we will use as reference

for lectures.

Prolog is a logic language. A prolog program is a collection

of facts and rules. Prolog uses these facts and rules to try

to prove goals, which are typically entered at a prolog

system prompt.

The system prompt is ?- and we will write this before any

user input. Like Haskell, we can store programs in files

and load them into Prolog, and we can type things at the

system prompt.

http://www.swi-prolog.org/

3

?- write(‘Hello, world!’).

Hello, world!
true

?-

To Prolog, “write(‘Hello, world’)” is a goal. A goal is

terminated by a period. Multiple goals can be separated

with commas. The “write…” goal has the side-effect of

writing a string to the output, but after that, it evaluates

to true. Prolog treats every goal as a theorem to prove.

Merely by executing the write, Prolog gets a true, so it

considers the goal accomplished (or the theorem proved).

Note that Prolog responds with the side-effect (the writing

of “Hello, world!”) and with the evaluation of the goal,

which is true. It follows that up with another system

prompt.

Here’s how to make a query out of multiple goals:

 ?- write(‘Hello!’), nl, write(‘Goodbye!’), nl.

4

The nl goal has the side-effect of printing a newline.

In order for the query to succeed (i.e. return true), each of

the constituent goals must succeed (in order).

Both write and nl are predefined by the Prolog system.

They are known as built-in predicates, or BIPs. Two other

BIPs are:

?- halt

which causes the Prolog system to terminate, and

 ?- statistics

which prints system statistics.

A Prolog program has components known as clauses, each

terminated with a period. A clause can be a fact or a rule.

For example:

 dog(fido).
cat(felix).

animal(X):-dog(X).

This program has three clauses. The first two are facts and

the last is a rule. The facts represent the statements “fido

5

is a dog” and “felix is a cat”. The rule represents “X is an

animal if X is a dog”. The operator :- is read as “if”. Note

the inclusion of a blank line for readability; Prolog ignores

such blanks.

If we keep the above program in a file, say, “prog1.pl”,

then we may load it into the Prolog system using the BIP

consult.

?- consult(‘prog1.pl’).

consult will succeed (return true) if the file exists and

contains a well-formed Prolog program.

Loading a program causes its clauses to be placed in a

storage area known as the Prolog database. Entering a

query causes Prolog to search its database for clauses with

which it can prove the goals of the query.

In the example, dog, cat, and animal are predicates. They

each take one argument. fido and felix are atoms (an

atom is a constant that is not a number). Finally, X is a

variable.

With the program consulted (loaded), we can query about

fido and felix:

6

?- animal(fido).
true

?- animal(felix).
false

?- cat(X).
X = felix.

In that last query, we are asking “is there a cat named X”

where X is a variable that can be filled in with anything.

Prolog responds by telling us that by assigning X to be

felix, we can make the query true.

If there are multiple assignments of a variable which will

make a query true, then Prolog prints one of them and

pauses. You can then type ; (semicolon) to get the next

assignment, or return if you don’t want to see the other

assignments.

Suppose we had the program

dog(fido)
dog(rover)

 cat(felix).

7

 cat(mittens).
cat(tom).
cat(phidippides).

Then if we had the query

?- cat(X).

Prolog would respond with

 X = felix

and if we pressed ; then it would print

 X = mittens

and if we again pressed ; it would print

 X = tom

and if we again pressed ; it would print

 X = phidippides.

 ?-

with the period and the prompt indicating that it was

finished and there were no more alternatives to list. We

could also use the BIP listing:

8

?- listing(cat).
cat(felix).
cat(mittens).
cat(tom).
cat(phidippides).

true.

listing causes Prolog to print the clauses that define

listing’s argument (in this case, cat), in the order in which

they were loaded into the database.

The query

 ?- cat(X),dog(Y).

gives all possible combinations of a cat and a dog.

X = felix,
Y = fido ;
X = felix,
Y = rover ;
X = mittens,
Y = fido ;
X = mittens,
Y = rover etc.

9

In contrast, the query

 ?- cat(X), dog(X)

gives all names which are both a cat and a dog. Since

there are no such names in the database, this query does

not succeed (it returns false).

Comments

Comments are written enclosed in /* … */ delimiters.

Data objects in Prolog

1. Numbers. Integers are allowed, possibly preceded by

a + or – sign. Floats are allowed as well.

2. Atoms. Atoms are constants without numerical

values. There are three ways in which an atom can be

written:

a. A sequence of letters, numerals, and underscores,

starting with a lower case letter.

b. Any sequence of characters enclosed in single

quotes.

10

c. Any sequence of one or more special characters

from a list that includes + - * / > < = & # @

3. Variables. A variable is a name used to stand in for a

term that is to be determined in a query. They can

also be used in facts and rules. A variable is written as

a sequence of letters, numerals, and underscores,

beginning with an upper case letter or underscore.

The special case of _ is reserved for the anonymous

variable.

4. Compound terms. A compound term is a structured

data type that begins with an atom called the functor.

The functor is followed by a sequence of one or more

arguments, which are enclosed in parentheses and

separated by commas.

 functor(t1, t2, … tn) (n ≥ 1)

 Think of a compound term as a record data structure.

The functor is the name of the record and the

arguments are the record fields.

 The number of arguments of a compound term is called

its arity.

11

 Each argument must be a term (of any kind).

5. Lists. A list is a term. Lists elements can be any terms,

and they are written enclosed in square brackets and

separated by commas.

[dog, cat, y, predi(A, b, c), [p, q, R], z]

 The empty list is written as [].

12

Clauses and Predicates

Apart from comments and blank lines, Prolog programs

consist of a succession of clauses. A clause can run over

more than one line or there may be several on the same

line. A clause is terminated by a period followed by a

whitespace character.

There are two types of clause: facts and rules. Facts are of

the form

 head.

where head is an atom or a compound term. head is

called the head of the clause. Here are some examples of

facts:

 canadaDay.
likes(john,mary).
likes(X,prolog).
dog(rover).

A rule is of the form:

 head:-t1,t2,…,tk. (k ≥ 1)

Here, head is again called the head of the clause (or the

head of the rule).

13

:- is called the neck of the clause (rule) and is sometimes

known as the neck operator. It is read as “if”.

t1,t2,…,tk is called the body of the clause (or rule). These

are conditions that must all be true for the head to be

true.

Another way to look at a rule is to consider the head to be

a goal that needs to be proven, and the body as subgoals

that each need to be shown true in order to establish the

goal.

Predicates

Unfortunately, the same name may be used as the functor

for compound terms of different arities. The name may

also be used as an atom. For instance, the following is

legal:

parent(victoria, albert).
parent(john).
animal(parent).

These are three distinct things all called parent. Don’t do

this, though, as it is confusing!

14

All the clauses for which the head has a given combination

of functor and arity comprise a definition of a predicate.

The clauses do not have to appear as consecutive lines of

the program but it makes the program easier to read if

they do.

For instance, in the program:

parent(victoria, albert).
parent(X, Y):-father(X, Y).
parent(X, Y):-mother(X, Y).
father(john, henry).
mother(jane, henry).

the first three clauses define a predicate with the name

parent, with arity two. We’ll sometimes write this as

parent/2. (But that’s not valid Prolog text, just a notation

we use when writing about Prolog.)

The query

 ?- listing(parent)

gives a listing of all of the clauses for the predicate parent

no matter what the arity.

15

Declarative and Procedural Interpretation of Rules

Rules have both a declarative and a procedural

interpretation. The rule

chases(X,Y):-dog(X), cat(Y), write(X), write(‘ chases ‘),
write(Y), nl.

has declarative interpretation:

 chases(X,Y) is true if dog(X) is true and cat(Y) is true
and write(X) is true, and …

but it also has the procedural interpretation:

to satisfy chases(X, Y), first satisfy dog(X), then satisfy
 cat(Y), then satisfy write(X), then …

Clauses that are atoms are interpreted declaratively.

canadaDay.
means
 canadaDay is true.

Users cannot redefine BIPs. Some BIPs are write/1, nl/0,
repeat/0, member/2, append/3, consult/1, and halt/0.

16

Simplifying entry of goals

In developing or testing programs it can be tedious to

enter repeatedly at the system prompt a lengthy series of

goals such as:

 ?-dog(X),large(X),write(X),write(‘ is a large dog’),nl.

A common technique is to define a predicate such as go/0

or start/0 with the above sequence of goals as the body of

the rule. For example,

 go:-dog(X),large(X),write(X),write(‘ is a large dog’),nl.

Then one only needs type the small predicate (e.g. go) to

get Prolog to try to achieve the goals.

Recursion

Recursion is frequently used when defining predicates.

Recursion can be direct or indirect. Here’s an example of

direct recursion:

 likes(john, X):-likes(X,Y),dog(Y)

(“John likes anyone who likes a dog.”)

17

Predicates

Predicates are relations between a number of values (its

arguments) which can be either true or false. This

contrasts with functions, which can evaluate to any type of

object (e.g. a number, a string, a point, etc.).

Loading clauses

As mentioned earlier, the BIP consult/1 causes Prolog to

read the clauses in the file given as consult’s argument. If

the same file is consulted again during a Prolog session,

then all the clauses from the first consultation are

removed from the database before the new

consultation’s clauses are loaded.

Square brackets are an abbreviation for consult/1:

 ?-[‘testfile1.pl].
means the same as

 ?-consult(‘testfile1.pl’).

Loading clauses from more than one file can have

interesting effects, particularly if both files try to define

the same predicate. (Only the last version of the predicate

will be kept.) So beware!

18

Variables

Variables can be used in the head or body of a clause, and

in goals entered at the system prompt. Their

interpretation depends on where they are used.

Variables in goals.

Variables in goals can be interpreted as “find values of the

variables that make the goal satisfied”. For example, the

goal

?-animal(A)
means to find values of A such that animal(A) is satisfied.

The lexical scope of variables is restricted to the clause in

which they are used. In the following program, there are

two different variables called X, one in each rule.

 dog(rover).
 large(rover).
large_animal(X):-animal(X),large(X).
animal(X):-dog(X).

19

Quantification.

If a variable appears in the head of a rule or a fact it is

taken to indicate that the rule or fact applies for all

possible values of the variable. Such a variable is said to

be universally quantified. For example,

animal(X):-dog(X).
means that for any value that X can take on, animal(X) is

true if dog(X) is true.

On the other hand, if a variable appears in the body of a

rule it is part of a goal that is satisfied if there exists a

value of the variable that satisfies the goal. Such a

variable is said to be existentially quantified. For

example,

 dogowner(X):-dog(Y),owns(X,Y)
means that for any value X can take on, X is a dogowner if
there exists a Y such that Y is a dog and X owns Y.

The anonymous variable.
Suppose you have a person predicate with fields for the

name, the gender, the occupation, and the city they live

in. You have several facts that look like:

 person(stacey, female, electrical engineer, vancouver).

20

You could write a rule for when a person is female:

 female(X):-person(X, female, A, B).

However, you really aren’t concerned with the values of A

and B here. In that case, you can use the anonymous

variable _ rather than a named variable.

 female(X):-person(X, female, _, _).

This usage is similar to Haskell. Note that there is no
assumption that the anonymous variables share the same
value. Each appearance of the anonymous variable
denotes a new variable.

21

Satisfying goals

We look more closely at how Prolog satisifies goals. The

process starts when the user types a query at the

command prompt.

The Prolog system attempts to satisfy each goal in the

query in turn, working from left to right. When a goal

involves variables, this generally involves binding them to

values. If all the goals succeed in turn, the whole query

succeeds, and the system will output the values of the

variables used in the query.

A call term is an atom or a compound term. It cannot be a

number, variable, or list. Every goal must be a call term.

Goals relating to BIPs are evaluated in a way predefined by

the Prolog system (consider write/1 and nl/0). Goals

relating to user-defined predicates are evaluated by

examining the database of rules and facts loaded by the

user.

Prolog attempts to satisfy a goal by matching it with the

heads of clauses in the database, working from top to

bottom.

For example, the goal

22

 ?-dog(X).
might be matched with the fact

dog(fido).

and give the output

 X = fido

Any goal that cannot be satisfied using the facts and rules

in the Prolog database fails. There is no intermediate

position, such as “unknown” or “not proven”. This means

that the database is assumed to have all knowledge about

the world (the “closed world assumption”).

Unification

Prolog uses a very general form of matching known as

unfication. (We’ve seen it before in type unification.)

Unification generally involves one or more variables being

given values in order to make two call terms identical; this

is known as binding the variables to the values. For

example, the terms dog(X) and dog(fido) can be unified by

binding variable X to the atom fido.

23

Initially, all variables are unbound. Unlike in most

langauges, once a variable is bound, it can be made

unbound again and then perhaps be bound to a new value

by the process of backtracking.

To unify two call terms, we follow the following algorithm:

if call terms are both atoms
 if they are the same atom
 succeed
 else
 fail

if call terms are not both compound terms
 fail

if call terms do not have the same functor and arity
 fail

if arguments to the call terms unify pairwise
 succeed
else
 fail

24

To unify other terms:

• Two numbers unify iff they are the same number.

• Two unbound variables always unify, with the two

variables becoming bound to each other.

• An unbound variable and a term that is not a variable

always unify, with the variable becoming bound to the

term.

• A bound variable is treated as the value to which it is

bound.

• Two lists unify iff they have the same number of

elements and their elements can be unified pairwise,

working from left to right.

• All other combinations of terms fail to unify.

Here are some examples of unification:

person(X, Y, Z)
person(john, smith, 27)

succeeds with X bound to john, Y bound to smith, and Z
bound to 27.

25

 person(john, Y, 23)
 person(X, smith, 27)

fails because 23 cannot be unified with 27.

 pred1(X, X, man)
 pred1(london, dog, A)

fails. In the first argument, X is unified with london,
resulting in X being bound to the value london. In the
second argument, X is treated as the value it is bound to
(london) and this cannot be unified with dog.

 pred2(X, X, man)
 pred2(london, london, A)

succeeds with X bound to london, and A bound to man.

 pred3(alpha, pred4(X, X, Y))
 pred3(P, pred4(no, yes, maybe))

fails because X cannot unify with both no and yes.

26

pred3(alpha, pred4(X, X, Y))
 pred3(P, pred4(no, no, maybe))

succeeds with P bound to alpha, X bound to no, and Y
bound to maybe.

Evaluating goals

Suppose that we have a database with the clauses:

 capital(london, england).
 european(england).
 pred(X, ‘european capital’) :-
 capital(X, Y), european(Y), write(X), nl.

and we wish to evaluate the query
 ?-pred(london, A).

The goal in the query will unify with the head of the rule in
the database, with X bound to london and A bound to
‘european capital’. Prolog now tries to evaluate the rule by
evaluating the terms in the body of the rule, in turn.

• First it tries to evaluate capital(X, Y), which due to X
being bound to london is interpreted as
capital(london, Y). To evaluate this, it looks for
matching terms in the database, and finds

27

capital(london, england), which matches (unifies) with
Y becoming bound to england. So capital(X, Y) is
satisfied.

• Next it tries to evaluate european(Y), which is treated
as european(england) because Y is bound to england.
This is matched to the fact european(england) in the
database. A match to a fact always succeeds, so
european(X, Y) is satisfied.

• Next it tries to evaluate write(X), which is treated as
write(london) because X is bound to london. write
writes london to the output and succeeds.

• Next it tires to evaluate nl. This writes a newline to
the output and succeeds.

Since all four goals on the right-hand side of the rule
succeeded, the rule itself succeeded, and the query
succeeds with A bound to ‘european capital’.

If at any time one of the predicates being evaluated fails,
then the Prolog system backs up to the previous predicate
and tries to find another way of satisfying it. If this fails, it
backs up again, etc. This process is known as backtracking.

28

Summary: evaluating a sequence of goals

Evaluate the goals in turn, working from left to right. If

they all succeed, the whole sequence of goals succeeds. If

one fails, go back through the previous goals in the

sequence one by one from right to left trying to resatisfy

them. If they all fail, the whole sequence fails. As soon as

one succeeds, start working through the goals from left to

right again.

Summary: evaluating/re-evaluating a goal

Search through the clauses in the database, working from

top to bottom (start at the top for evaluation, or after the

last clause matched for re-evaluation). Search until a

clause is found whose head matches with the goal. If the

matching clause is a fact, the goal succeeds. If it is a rule,

evaluate the sequence of goals in its body. If the sequence

succeeds, the goal succeeds. If not, continue searching

through the database for further matches. If the end of

the database is reached, the goal fails.

29

Renaming common variables

Sometimes in matching a term to another both will have a

variable in common. For example, suppose we are

matching

 farmer(john, X).

with

 farmer(X, smith).

We want this match to succeed.

Because of the lexical scoping of variables, these two Xs

actually refer to different variables. So Prolog

systematically replaces the variable names in the clause

being matched with variable names that do not appear

elsewhere. For instance, the above example could be

made into matching

 farmer(john, X).

with

 farmer(X_1239, smith)

where 1239 is some unique sequence number.

30

Declarative programming

It should be clear that the order in which the clauses

defining a predicate occur in the database and the order of

goals in the body of a rule are of vital importance when

evaluating a user’s query.

It is part of the philosophy of logic programming that

programs should be written to minimize the effect of

these two factors as much as possible. Programs that do

so are called fully or partly declarative.

Here’s a simple example of a fully declarative program:

 dog(fido). dog(rover). dog(ruff). dog(spike).
 cat(bill). cat(fluffy). cat(fuzzy). cat(hairy).

 large(rover). large(william). large(tweety).
 large(fluffy). large(hairy).

 large_animal(X):- dog(X), large(X).
 large_animal(Z):- cat(Z), large(Z).

We can rearrange the clauses in this program into any

order and still get the same results for any query. (The

31

results may be in a different order.) We can also

rearrange the subgoals in the rules defining

large_animal/1 without changing the results returned.

To contrast, here’s a nondeclarative program for signum:

 signum(X):-X>0, write(positive), nl.
 signum(0):-write(zero), nl.
 signum(X):-write(negative), nl.

This relies on the third clause only being reached when X is

negative (or not a number!). Putting the third clause in

first place would change the behaviour.

A better, declarative, way to write this is:

 signum(X):-X>0, write(positive), nl.
 signum(0):-write(zero), nl.
 signum(X):-X<0, write(negative), nl.

Now the order of the clauses makes no difference to the

result.

Keeping programs declarative greatly reduces the

likelihood of making errors that are hard to detect.

