
1

Lecture Overview

Methods and Interfaces

 Methods review

 Interfaces

 Example: using the sort interface

 Anonymous fields in structs

 Generic printing using the empty interface

Maps

 Creating a map

 Accessing elements of a map

 Missing keys

 Deleting elements of a map

 Limitations on keys

 Processing a map with a for-loop

 Sample program

2

Methods and Interfaces

One of the novel features of Go is its use and

implementation of interfaces. They provide many of the

same benefits of object-oriented programming, but without

explicit classes as in C++ or Java.

Methods

Recall that a method is a special kind of Go function.

Consider this code:

type Rectangle struct {

 width, height float64

}

// area() is a method

func (r Rectangle) area() float64 {

 return r.width * r.height

}

// perimeter() is a method

func (r Rectangle) perimeter() float64 {

 return 2 * (r.width + r.height)

}

http://golang.org/
http://golang.org/

3

// main is a function

func main() {

 r := Rectangle{width:5, height:3}

 fmt.Printf("dimensions of r: width=%d,height=%d\n",

 r.width, r.height)

 fmt.Printf(" area of r: %.2f\n", r.area())

 fmt.Printf(" perimeter of r: %.2f\n",

 r.perimeter())

}

We know area() and perimeter() are methods

because they have a special parameter written in brackets

before their name. Essentially, this lets us pass in one value

to the function in a special way.

In main, notice how the usual dot-notation is used for calling

methods, e.g. r.area() calls the area method on r.

Often, the objects are passed to methods by reference. For

example:

func (r *Rectangle) inflate(scale float64) {

 r.width *= scale

 r.height *= scale

}

4

The inflate method does not make a copy of the

rectangle sent to it. Instead, it passes r by reference so that

r is actually changed. Note that there is no change in the

syntax for how the fields of r are accessed: the regular dot-

notation is used. Similarly, inflate is called the same way,

e.g. r.inflate(2.2). There is no special -> operator as

in C/C++.

Interfaces

When you first see Go methods, you might ask yourself why

one parameter is singled-out as special. Why not just pass

it along with the other parameters? For example, what is the

difference between these two functions:

// called as r.area()

func (r Rectangle) area() float64 {

 return r.width * r.height

}

// called as area(r)

func area(r Rectangle) float64 {

 return r.width * r.height

}

http://golang.org/

5

The only difference here is the syntax, e.g. calling

r.area() versus area(r) for the regular function.

However, syntax is not the main reason Go uses methods.

Go has methods to allow for interfaces. For example:

type Shape interface {

 area() float64

 perimeter() float64

}

The name of this interface is Shape, and it lists the

signatures of the two methods that are necessary to satisfy

it. For example, the area and perimeter methods we

wrote above for Rectangle satisfy this interface. We say

that a Rectangle implements the Shape interface.

Notice that only the signatures of the methods are listed in

the interface. The bodies of the required functions are not

mentioned at all. The implementation is not part of the

interface.

Methods with those signatures are considered to be an

instance of Shape. For example, suppose we add this code:

http://golang.org/
http://golang.org/

6

type Circle struct {

 radius float64

}

func (c Circle) area() float64 { // a method

 return 3.14 * c.radius * c.radius

}

func (c Circle) perimeter() float64 { // a method

 return 2 * 3.14 * c.radius

}

Circle objects implement the Shape interface because of

they have area and perimeter methods associated with

them.

Now we can write code that works on any value

implementing an interface. For example:

func printShape(s Shape) {

 fmt.Printf(" area: %.2f\n", s.area())

 fmt.Printf(" perimeter: %.2f\n", s.perimeter())

}

The input to printShape is of type Shape, i.e. s is any

object that implements the Shape interface. We can call it

like this:

7

func main() {

 r := Rectangle{width:5, height:3}

 fmt.Println("Rectangle ...")

 printShape(r)

 c := Circle{radius:5}

 fmt.Println("\nCircle ...")

 printShape(c)

}

An interesting detail about Go interfaces is that you don’t

need to tell Go that a struct implements a particular

interface: the compiler figures it out for itself. This contrasts

with, for example, Java, where you must explicitly indicate

when a class implements an interface.

Example: Using the Sort Interface

Lets see how we can use the standard Go sorting package.

Suppose we want to sort records of people. In practice, such

records might contain lots of information (such as a person’s

name, address, email address, relatives, etc.), but for

simplicity we will use the following basic structure called

Person:

http://golang.org/
http://golang.org/
http://en.wikipedia.org/wiki/Java_(programming_language)
http://golang.org/
http://golang.org/pkg/sort

8

type Person struct {

 name string

 age int

}

For efficiency, lets sort a slice of pointers to Person objects;

this will avoid moving and copying strings. To help with this,

we define the type People as follows:

type People []*Person // slice of ptrs to People objs

It turns out that it’s essential that we create the type People.

The code we write below won’t compile if we directly use

[]*Person instead. That’s because the []*Person type

does not satisfy the sort.Interface interface we’ll be

using. We will add methods on People that make it

implement sort.Interface.

For convenience, here’s a String method that prints a

People object:

func (people People) String() (result string) {

 for _, p := range people {

 result += fmt.Sprintf("%s, %d\n", p.name, p.age)

 }

 return result

}

9

The name of this is String(), and it returns a string

object. A method with this signature is special: print functions

in the fmt package will use it for printing.

Now we can write code like this:

users := People{

 {"Mary", 34},

 {"Lou", 3},

 {"Greedo", 77},

 {"Zippy", 50},

 {"Morla", 62},

}

fmt.Printf("%v\n", users) // calls the People String

method

To sort the items in the users slice, we must create the

methods listed in sort.Interface:

10

type Interface interface {

 // number of elements in the collection

 Len() int

 // returns true iff the element with

 // index i should come

 // before the element with index j

 Less(i, j int) bool

 // swaps the elements with indexes i and j

 Swap(i, j int)

}

This interface is pre-defined in the sort package. Notice

that this is a very general interface. It does not even assume

that you will be sorting slices or arrays!

Three methods are needed:

func (p People) Len() int {

 return len(p)

}

func (p People) Less(i, j int) bool {

 return p[i].age > p[j].age

}

11

func (p People) Swap(i, j int) {

 p[i], p[j] = p[j], p[i]

}

Less is the function that controls the order in which the

objects will be sorted. By examining Less you can see that

we will be sorting people by age, from oldest to youngest.

With these functions written, we can now sort users like

this:

users := People{

 {"Mary", 34},

 {"Lou", 3},

 {"Greedo", 77},

 {"Zippy", 50},

 {"Morla", 62},

}

fmt.Printf("%v\n", users)

sort.Sort(users)

fmt.Printf("%v\n", users)

To change the sort order, modify Less. For instance, this

will sort users alphabetically by name:

12

func (p People) Less(i, j int) bool {

 return p[i].name < p[j].name

}

Another way to sort by different orders is shown in the

examples section of the Go sort package documentation.

The trick there is to create a new type for every different

order you want to sort.

Anonymous Fields in structs

Go lets you create new structs built from previously defined

structs. For example:

type Point struct {

 x, y int

}

type Color struct {

 red, green, blue uint8 // each ranges from 0 to 255

}

type ColoredPoint struct {

 Point // these two fields don't have names;

 Color // they are anonymous

}

http://golang.org/pkg/sort/
http://golang.org/

13

ColoredPoint has two different fields, but

neither has a name: they are anonymous. We

can use a ``ColoredPoint like this:

cp := ColoredPoint{Point{10, 5}, Color{120, 0, 0}}

fmt.Println(cp.x)

fmt.Println(cp.red)

This is an example of composition: a ColoredPoint is

composed (i.e. made up of) two other objects.

We won’t go any further into any of the details of this idea.

However, it is worth mentioning that it can, among other

things, essentially simulate inheritance as done in

languages like Java and C++.

A Generic Printing Function with the Empty Interface

One of the most important interfaces in Go is the empty

interface, which has type interface{}. interface{}

means that a type has 0 or more methods associated with,

thus all types implement it. This means you can use

interface{} to pass values of any type.

http://golang.org/

14

For example, suppose we have this interface:

type Displayer interface {

 toString() string

}

Then we can write a function called display that is similar

in spirit to fmt.Print:

// x can be a value of any type --- all types

// implement the empty interface

func display(x interface{}) {

 switch val := x.(type) {

 case string:

 fmt.Println("\"" + val + "\"")

 case int, int32, int64, float32, float64:

 fmt.Println(val)

 case Displayer:

 fmt.Println(val.toString())

 default:

 fmt.Println("can't display: unknown type!")

 }

}

The switch structure in this function is called a type switch

because it does different things depending upon the type of

x. It lets us write code like this:

15

type Point3d struct {

 x, y, z float32

}

func (p Point3d) toString() string {

 return fmt.Sprintf("(%v, %v, %v)", p.x, p.y, p.z)

}

func main() {

 display(3.55)

 display("apple")

 display(Point3d{2.3, -4.2, 3})

}

Any type that implements the Displayer interface can be

printed in a reasonable way by display.

Here is the entire program:

package main

import (

 "fmt"

)

type Displayer interface {

 toString() string

}

16

// x can be a value of any type ---

// all types implement the empty interface

func display(x interface{}) {

 switch val := x.(type) {

 case string:

 fmt.Println("\"" + val + "\"")

 case int, int32, int64, float32, float64:

 fmt.Println(val)

 case Displayer:

 fmt.Println(val.toString())

 default:

 fmt.Println("can't display: unknown type!")

 }

}

type Point3d struct {

 x, y, z float32

}

func (p Point3d) toString() string {

 return fmt.Sprintf("(%v, %v, %v)", p.x, p.y, p.z)

}

func main() {

 display(3.55)

 display("apple")

 display(Point3d{2.3, -4.2, 3})

}

17

Maps

Maps are a very useful data structure that store (key, value)
pairs in a way that lets you efficiently retrieve any pair if you
know its key.

Creating a Map

Here is a map that stores the names of candidates for an
election and the number of votes they’ve received so far:

votes := map[string] int {"Yan":4, "Jones":2,

 "White":2}

On the right side of := is a map literal. Its type is

map[string]int, and the map itself is specified using

key:value pairs (similar to the notation used in languages like
Python, JavaScript, and JSON).

You can also create a map using the make function. Here is

an alternative way to create the votes map:

votes := make(map[string]int)

 // creates an empty map

votes["Yan"] = 4

votes["Jones"] = 2

votes["White"] = 2

18

Accessing Elements of a Map

You access a particular value using a key, e.g.
votes["yan"] evaluates to 4. If you want to add 1 vote for

Jones, you can do it like this:

votes["Jones"]++ // add 1 to the value associated

with "Jones"

To add a new item to the map, assign it like this:

votes["Harper"] = 3

If the key "Harper" already happened to be in votes, then

this statement would just set its value to 3.

Missing Keys

If you try to access the value for a key that doesn’t exist, then
the zero- value associated with the value’s type is returned.
For example:

fmt.Println(votes["Kennedy"]) // prints 0, because

 // "Kennedy" is not a key

This presents a problem: how can you distinguish between
a key that doesn’t exist, and a key that is paired with 0? The
solution Go provides is to return an optional flag indicating
whether or not the key was found:

http://golang.org/

19

k, ok := votes["Kennedy"]

if ok {

 fmt.Printf("%v\n", k)

} else {

 fmt.Println("no candidate by that name")

}

It’s entirely up to the programmer to check this flag!

A common use of this is to test if a given key is in a map. For
instance:

_, present := votes["Kennedy"]

 // _ is the blank identifier; we use it

 // here because we don't care about the

 // associated value

If present is true, they "Kennedy" is a key in the list. If

it’s false, then Kennedy is not in the list.

Deleting Items in a Map

To delete a key and its associated value from a map, use
the built-in delete function:

delete(votes, "Yan")

If "Yan" happened to not be a key in votes, then this

statement doesn’t modify the map.

20

Limitations on Keys

Not all data types are allowed to be keys in a map. Any data
type that supports equality, such as integers, floats, strings,
pointers, structs, and arrays can be used as a key. But,
slices and other maps cannot be keys because they do not
have equality defined for them.

Processing a Map with a For-loop

It’s easy to process every element of a map using a ranged
for-loop:

for key, value := range votes {

 fmt.Printf("votes[\"%s\"] = %d\n", key, value)

}

Or if you just want the keys:

for key := range votes {

 fmt.Printf("votes[\"%s\"] = %d\n", key,

votes[key])

}

21

Questions

1. What is the type of a map whose keys are integers and
whose values are booleans.

2. What are two different data types that cannot be used
as keys in a map?

3. Can nil be a key in a map? If no, why not? If yes, then

what is the type for a map that can have nil as a key?

4. Write a function that takes a map of type
map[string]int as input, and returns the key and

value of the pair with the greatest key.
5. Write a function that takes a map of type
map[string]int as input along with a target string

val, and returns a slice containing all the keys whose

value equals val.

Sample Program

The following program is based on an idea from the XKCD
comic strip. It asks the user to type in some words, and then
it checks to see which of those words are in
xkcdWordlist.txt, a file of the 3000 or so most common

English words.

A map is a good data structure for this problem because
testing if a word is in it can be done in O(1) time, on average.
If, instead, you used a slice, then the retrieval would take
O(n) time on average.

https://xkcd.com/
file:///C:/Users/Tom/Documents/Work/Courses%20and%20Teaching/383/383summer2017Toby/383summer2017/website/build/html/_downloads/xkcdWordlist.txt

22

package main

import (

 "bufio"

 "fmt"

 "io/ioutil"

 "os"

 "strings"

)

func main() {

 //

 // load all the words into a map

 //

 var dictionary map[string]bool =

 make(map[string]bool)

 // read entire file into one slice of bytes

 allBytes, err :=

 ioutil.ReadFile("xkcdWordlist.txt")

 if err != nil {

 panic("no word file to read!")

 }

 // convert the byte slice to a string

 bigString := string(allBytes)

 // split the string into words

 words := strings.Split(bigString, " ")

 // add the words to the dictionary

 for _, w := range words {

 dictionary[w] = true

 }

23

 fmt.Printf("%v words in dictionary\n",

 len(dictionary))

 //

 // check words typed by the user

 //

 console := bufio.NewReader(os.Stdin)

 for {

 // print a prompt

 fmt.Print("--> ")

 // read, as a slice of bytes, the entire

 // line of text entered by the user

 lineBytes, _, _ := console.ReadLine()

 // fmt.Printf("(input=\"%v\")\n", lineBytes)

 // convert the line to a string

 line := string(lineBytes)

 // split the string into words

 userWords := strings.Split(line, " ")

 // fmt.Printf("(%v)\n", userWords)

 // check each word to see if it is in

 // the dictionary

 for _, w := range userWords {

 if _, exists := dictionary[w]; !exists {

 fmt.Printf("\"%v\" is too complex!\n",

 w)

 }

 }

 } // for

}

ge

