
Assignment 1: Practice with Go

The following questions are meant as practice for learning some of the basic features of Go. Write all your solution

code in a package named a1 (i.e. the first line of your Go program files should be package a1).

Each question will be marked as follows:

• 1 mark for correctness of the function

• 1 mark for writing a Go-style test function that will run when the command “go test” is called and automatically

run test cases on the function to help verify its correctness.

Also, to get this second mark, we want to see that you use Go features in appropriate way, and have not done

something extremely inefficient, or that is bad in some significant way. The marker will run your code by typing

go test at the command line, so please be sure your program works correctly.

Your test functions must be completely automated, i.e. no human intervention should be needed to check that the

output is correct. Use if-statements to ensure that your functions are returning the correct results.

You may import any standard Go packages you need in this program. Write all other code yourself: don’t use any

packages or code from outside of the Go standard library. Please clearly cite the source of any ideas you used in this

work.

Please submit your final files on the CS Submission Server as a zipped folder called a1.zip. You will need at least

two Go files: one for the functions, and one for the testing code that will be run when “go test” is called.

Hint: Begin by learning how to use “go test”, and write the test functions as you go.

1. (2 marks) Implement a function called countPrimes(n) that returns the number of primes less than, or equal

to, the int n. For example, countPrimes(5) should return 3, countPrimes(10000) should return 1229,

and countPrimes(-6) should return 0.

2. (2 marks) Implement a function called countStrings(filename) that reads the contents of the file named

filename, and returns a map[string]int whose keys are all the different strings in the file, and the

corresponding values are the number of times the key occurs in the file.

For example, suppose you have this text file named sample.txt:

The big big dog

ate the big apple

Then countStrings("sample.txt") should return this map[string]int:

http://golang.org/
http://golang.org/
https://golang.org/pkg/testing/
http://golang.org/
http://golang.org/
http://golang.org/
http://golang.org/
https://golang.org/pkg/testing/

{"The":1, "the":1, "big":3, "dog":1, "ate":1, "apple":1}

Note that case matters: strings like the and The, which differ only in the case of some letters, are considered

different strings.

3. (2 marks) Here’s a simple way to represent a moment in time:

type Time24 struct {

 hour, minute, second uint8

}

// 0 <= hour < 24

// 0 <= minute < 60

// 0 <= second < 60

Implement the following functions and methods:

1. The function equalsTime24(a, b) returns true if a and b are exactly the same time, and false

otherwise.

2. The function lessThanTime24(a, b) returns true, if time a comes strictly before b, and false

otherwise.

3. The method (not a function!) t.String() that converts a Time24 to a human-readable string. It

has this signature:

func (t Time24) String() string {

 // ...

}

The returned string should have the form “hh:mm:ss”. For example:

t := Time24{hour: 5, minute: 39, second: 8}

fmt.Println(t) // "05:39:08"

Notice that each number is written as 2-digits, possibly with a leading 0. Thus the returned string will

always be the same length.

Also, notice that you don’t need to call t.String() inside fmt.Println. That’s because the

signature for String implements the fmt.Stringer interface, and functions like fmt.Print know

to call String() on objects that implement it.

4. The method (not a function!) t.validTime24() returns true if t is a valid Time24 object (i.e. it

meets the constraints listed in the comments below the struct), and false otherwise.

5. The function minTime24, which returns the earliest time in a slice of Time24 objects. It has this

signature:

func minTime24(times []Time24) (Time24, error)

https://golang.org/pkg/fmt/#Stringer

If times is empty, then Time24{0, 0, 0} is returned, along with an error object with a helpful

message.

If times has one, or more, items, then the smallest time is returned, and the error is nil.

4. (2 marks) Write a function called linearSearch(x, lst) that uses linear search to return the first index

location of x in the slice lst. It must work with (at least) both strings and ints as in these examples:

1. linearSearch(5, []int{4, 2, -1, 5, 0}) returns 3 and a nil error.

2. linearSearch(3, []int{4, 2, -1, 5, 0}) returns any integer and and an error object with a

helpful message (because 3 is not in the slice).

3. linearSearch("egg", []string{"cat", "nose", "egg"}) returns 2 and a nil error.

4. linearSearch("up", []string{"cat", "nose", "egg"}) returns any integer and and an

error object with a helpful message.

You can use helper functions, but you must have only one function named linearSearch. If the type of x is

not the same as the type of the elements in lst, then linearSearch should call panic with a helpful

message.

5. (2 marks) Implement a function the returns all the genetic sequences of length n using the bases A, C, G, and

T. It should have this signature:

func allGeneSeqs(n int) []string

For example:

1. allGeneSeqs(1) returns [A C T G].

2. allGeneSeqs(2) returns [AA AC AT AG CA CC CT CG TA TC TT TG GA GC GT

GG].

3. allGeneSeqs(3) returns [AAA AAC AAT AAG ACA ACC ACT ACG ATA ATC ATT

ATG AGA AGC AGT AGG CAA CAC CAT CAG CCA CCC CCT CCG CTA CTC CTT CTG

CGA CGC CGT CGG TAA TAC TAT TAG TCA TCC TCT TCG TTA TTC TTT TTG TGA

TGC TGT TGG GAA GAC GAT GAG GCA GCC GCT GCG GTA GTC GTT GTG GGA GGC

GGT GGG].

The exact order of the strings in the returned []string doesn’t matter. So, for example,

allGeneSeqs(2) could instead return [AC AT CA CC CT GT CG AG TA TC TT AA TG GA GC

GG].

If n <= 0, then return an empty []string.

Of course, for large values of n, allGeneSeqs will take too much time and memory to actually run.

Nonetheless, the method you use to calculate the genetic sequences should work with any int greater than

0, if given enough time and memory.

