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Lecture Overview 

• Deterministic Finite Automata (DFA) 

o accepting a string 

o defining a language 

• Nondeterministic Finite Automata (NFA) 

o converting to DFA (subset construction)  

o constructed from a regular expression 

• Regular expression for the language of a 

DFA 

 

Chapter 2 of text. 
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Deterministic Finite Automaton (DFA) 

(Q, , , q0, F) 

 

Q: Finite set of states (text uses S) 

: Finite alphabet 

: Transition function  Q ×  → Q 

q0: Start state  q0  Q 

F: Final states F  Q 

   

Typically, DFAs are specified by a transition diagrams. 

In a transition diagram, each state is drawn as a circle. 

Each transition (q, a) = q’ is drawn as an arrow from the 

circle for q to the circle for q’, labelled with a.  The start state 

has an arrow “from nowhere” pointing to it.  Final states are 

indicated by a double circle.  The alphabet is all transition 

arrow labels. 

 

q0   q1 

qd 

q2 
a b 

b 

b a a 

a,b 
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There is a convention that DFAs contain a “dead state” qd 

that has  ( qd, a) = qd for all elements a of the alphabet.  This 

state is not normally drawn on the transition diagram.  Then, 

any state q that does not have a transition arrow on symbol  

a   is assumed to have ( q, a) = qd.  Thus the above 

transition diagram is more usually and more simply drawn: 

 

 

  

q0   q1 q2 
a b 

b 
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Accepting a String 

Deterministic finite automata are given a string as input, and 

either accept or reject it. 

• The machine starts in state q0. 

• In step k, the machine reads the kth input character c 

and makes a transition from its current state q to the 

state ( q, c).  [On the diagram, it follows the arrow 

labelled with c.] 

• It stops when there is no more input. 

• If it stops in a final state, then it accepts the string, 

otherwise it rejects it. 

 

 

 

q0   q1 q4 
0..9 . 

q2 

0..9 

q3 
0..9 

0..9 

q1 

0..9 +, - 
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The language accepted by a DFA is simply the set of all 

strings accepted by the DFA. 

The language accepted by our first DFA can be 

characterized by the regular expression ab+.  The 

language accepted by the second DFA is characterized 

by the regular expression (+|-)?[0..9]+(. [0..9]+) . It 

recognizes signed integers and signed floats, where 

floats must have a digit before and after the decimal 

point. 

Exercises:  

• design a DFA to recognize the floats from the pika-1 

specification. 

• what does the following DFA recognize? 

 

 

  q1 
a 

q0 q2 

q1 

b a 

a 

a 

q3 

b b b 
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Nondeterministic Finite Automaton (NFA) 

(Q, , , q0, F) 

 

Q: Finite set of states (text uses S) 

: Finite alphabet 

: Transition function  Q × (  {}) → 2Q 

q0: Start state  q0  Q 

F: Final states F  Q 

 

NFAs are like DFAs, but… 

• You can have more than one outgoing arrow from a 

state that is labelled with the same character. 

• There are transitions on (arrows with label) , which 

can be taken at any time during the operation of the 

machine. 

• The machine accepts if there exists a path labelled with 

the input (and epsilons) from the start state to a final 

state.  
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Converting an NFA to a DFA  (Subset Construction) 

 

Given NFA (N, , N, n0, FN), we construct DFA  

(D, , D, d0, FD).   

• The alphabet for the machines is the same.   

• The DFA states D correspond to subsets of the 

NFA states N.   

• The DFA start state d0 corresponds to (“is”) the 

subset of N consisting of just n0, and what you 

can reach from n0 on -transitions. 

• The final states FD are those subsets of N that 

contain at least one final state of FN. 

• The transition function is the tricky part. 

q0   q1 q3 
c  

q2 
a 

q4 
o 

c 

q6 q5 
m 
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To find D(d, a): 

 d corresponds to a subset N’ of N.  Construct 

N(N’, a) as the union, over all n N’, of N(n, a).  

This gives a new subset N* of N.  Take the -closure 

of N*, which is all states reachable from a state of 

N* by a series of 0 or more -transitions.  D(d, a) is 

this -closure. 

 

In this example, if d = {q4, q10} and we have 

character c, then N* = N(d, c)  = {q5, q11, q14}.  

-closure(N*) = { q5, q6, q13, q11, q12, q14}. 

q10   q11 q13 
c  

q12 
a 

q14 
o 

c 

q16 q15 
m 

q
4

 q5 
c  

q6 

 

... 
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We could construct a state for every subset of N, 

and compute the transitions for every character 

from every state.   But this is O(|N| 2|N|||) 

information, which is huge.   

In practice, relatively few of the subsets correspond 

to states that the DFA can reach from the start 

state, so we take the approach of starting with the 

DFA start state and only expanding states 

corresponding to subsets that we reach. Expanding 

is computing the transition function for that state 

on each input symbol. 

 

Here’s the subset construction, from the text, but 

I’ve changed some variable names to protect the 

innocent: 
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d0 = -closure(n0) 

D = {d0}    // set of all states of DFA 

worklist = {d0}  // states discovered but not 

// expanded 

while (!worklist.isEmpty()) { 

 remove a state d from the worklist 

  

// expand state d: 

 for each character c  do 

  d’ = -closure(N(d,c)) 

  D[d, c] = d’ 

  if d’  D then 

   D = D  {d’} 

   add d’ to worklist 

  end if 

 end for 

end while 
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Example conversion of NFA to DFA 

 

First, d0 = -closure(q0) = {q0, q1, q3}.  The worklist 

starts with d0 on it, and it is immediately removed 

to be expanded. 

Note: we ignore the dead state of the NFA.  This 

halves the labour and does not affect the result. 

• N(d0, a) is empty so -closure(N(d0, a)) is also 

empty. An empty transition is interpreted as a 

transition to the DFA’s dead state. 

• N(d0, b) = {q4}.  Its -closure is {q4, q5, q6}.  This 

subset is not in the set D, so we name it d1, put 

it in D, and add it to the worklist. 

q0 

q1 

 

 

q5 

q3 
o 

q7 

q2 
c 

 
q6 

 

b 
q4 

 

 

 

a 
q8 

 
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• N(d0, c) = {q2}.  Its -closure is {q2, q5, q6}.  This 

subset is not in the set D, so we name it d2, put 

it in D, and add it to the worklist. 

We’re done expanding d0, and we now have d1 and 

d2 on the worklist. We choose d1 to expand next. 

• N(d1, a) = {q7}.  Its -closure is {q6, q7, q8}.  This 

subset is not in the set D, so we name it d3, put 

it in D, and add it to the worklist. 

• N(d1, b) and N(d1, c) are empty and give us 

transitions from d1 to the DFA’s dead state. 

We’re done expanding d1, and we now have d2 and 

d3 on the worklist. We choose d2 to expand next. 

• N(d2, a) = {q7}.  Its -closure is {q6, q7, q8}.  This 

subset is already in D (and called d3), so we do 

nothing further with it. 

• N(d2, b) and N(d2, c) are empty and give us 

transitions from d2 to the DFA’s dead state. 

We’re done expanding d2, and we now have only d3 

on the worklist. We expand d3 next. 
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• N(d3, a) = {q7}.  Its -closure is {q6, q7, q8}.  This 

subset is already in D (and called d3), so we do 

nothing further with it. 

• N(d3, b) and N(d3, c) are empty and give us 

transitions from d3 to the DFA’s dead state. 

• We’re done expanding d3, and we now have an 

empty worklist. We are done.  Here is the DFA 

that we constructed: 

 
 

This machine is not the simplest (the simplest has 

3 nondead states) but it’s not 28 states, which is 

what we would get if we used every subset of the 

NFA’s states. 

d0 

d2 

 

c 

d3 

d1 

b 

a 

a 

a 



14 
 

There is an algorithm that takes a DFA and 

constructs another DFA for the same language, but 

with a minimum number of states.  You can find this 

algorithm in your text. 

 

Constructing an NFA from a regular expression 

Also known as Thompson’s Construction. 

We construct an NFA recursively as we build the 

regular expression recursively.  For any symbol a, 

the NFA for a is: 

 

But we will be drawing them a bit differently.  The 

start state of an NFA will be on the left of a box, and 

the final state (there will only be one) will be on the 

right of the same box.  So our NFA above becomes: 

 

q0 q1 a  

q0 q1 a 



15 
 

We have a similar NFA for : 

 

We must construct NFAs for three operations: 

concatenation, alternation, and Kleene closure.  

Here is the machine for the concatenation αβ of 

regular expressions for α and β: 

 

q0 q1 
 

  

NFA for α 

  

NFA for β 
  

   
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And here is the machine for the alternation α|β: 

 

Finally, here is the machine for α*:

 

 

 

 

  

NFA for α 

  

NFA for β 

  

 

 

 

 

  

NFA for α 
  

  

 

 
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Now, we’ll do a simple example of Thompson’s 

Construction: c*(a|b) 

First we take the machine for c: 

 

and apply the construction for α* to it: 

 

So that’s the machine for c*.  Now we construct the 

machine for (a|b) by the construction for (α | β) 

applied to the machines for a and b: 

  c 

    
  

 

 

c 
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Now we apply the concatenation construction to 

the machines for a* and (b|c): 

  

  

  

 

 

 

 

a 

b 
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And that completes the construction of the NFA for 

c*(a|b). 

 

 

    
  

 

 

c 

 
 

   
 

   
 

    

 

 

 

 

a 

b 

 

 
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So far, we’ve seen that given a regular expression, 

you can construct an equivalent NFA for it.  By the 

subset construction, you can then get an equivalent 

DFA, and then an equivalent minimum-state DFA. 

 

 

DFAs are easy to implement: the transition function 

is just a table (2D array) listing a next state for a 

given state and input symbol.  Given a regular 

expression, one can construct this transition table 

for an equivalent minimum-state DFA; this is 

sometimes called compiling the regular expression.  

This operation is used in most libraries and 

applications that deal with regular expressions.  It is 

the way to speedily handle searching for instances 

of the regular expression.   

It is also the basis for automatic lexical analyzer 

generators; the programmer supplies the regular 

expressions for different tokens, and the generator 

Regular 

Expression 
NFA DFA Min-state 

DFA 
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combines them into a single big NFA and converts 

that to a minimum-state DFA. Then scanning can be 

done with one table-lookup per input character. 

 

DFAs can recognize any language that NFAs can.  

The converse is also true: DFAs are simply NFAs that 

don’t take advantage of the extra power NFAs have. 

NFAs can recognize any language a regular 

expression can.  Is the converse true? 

The answer is yes.  NFAs, DFAs, and regular 

expressions are equivalent in expressive power. 

 

We will prove that there is a regular expression 

equivalent to an arbitrary DFA. 

 

Kleene’s Construction 
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Given the DFA, we construct a three-dimensional 

table Rij
k.  The entry in Rij

k will be a regular 

expression for all of the paths from qi to qj in the 

DFA, using only intermediate states numbered k or 

less…i.e. using only intermediate nodes q0, q1,… qk. 

We construct starting with k=-1 (no intermediate 

nodes), then continuing with k=0, k=1, etc. up to 

k=n-1.  For k=-1,  

 Rij
-1 = the “or” of all symbols on edges from  

     qi to qj, with  also “or”ed in if i=j. 

 

To compute Rij
k for other k, consider a path from qi 

to qj that uses intermediate states numbered k or 

less.  If the path does not use state k, then it is 

accounted for in Rij
k-1.  If it does, then it must go on 

a path from qi to the first occurance of qk, followed 

by several cycles going from qk back to qk, followed 

by a last path section from qk to qi.   
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That is, all paths from i to j are described by αβ*γ. 

The paths in α are described by the regular 

expression Rik
k-1.  The cycles of β are described by 

the regular expression Rkk
k-1.  And the paths in γ are 

described by the regular expression Rkj
k-1. 

So Rij
k = Rij

k-1 | αβ*γ = Rij
k-1 | Rik

k-1 (Rkk
k-1)* Rkj

k-1 

Assuming a single final state qn-1, the regular 

expression equivalent to the DFA will be R0,n-1
n-1. 

Multiple final states are handled by “or”ing 

together the regular expressions for the individual 

final states. 

 

 

 

i j 

k 

α 

β 

γ 



24 
 

 


