
1

Lecture Overview

• Deterministic Finite Automata (DFA)

o accepting a string

o defining a language

• Nondeterministic Finite Automata (NFA)

o converting to DFA (subset construction)

o constructed from a regular expression

• Regular expression for the language of a

DFA

Chapter 2 of text.

2

Deterministic Finite Automaton (DFA)

(Q, , , q0, F)

Q: Finite set of states (text uses S)

: Finite alphabet

: Transition function Q × → Q

q0: Start state q0 Q

F: Final states F Q

Typically, DFAs are specified by a transition diagrams.

In a transition diagram, each state is drawn as a circle.

Each transition (q, a) = q’ is drawn as an arrow from the

circle for q to the circle for q’, labelled with a. The start state

has an arrow “from nowhere” pointing to it. Final states are

indicated by a double circle. The alphabet is all transition

arrow labels.

q0 q1

qd

q2
a b

b

b a a

a,b

3

There is a convention that DFAs contain a “dead state” qd

that has (qd, a) = qd for all elements a of the alphabet. This

state is not normally drawn on the transition diagram. Then,

any state q that does not have a transition arrow on symbol

a is assumed to have (q, a) = qd. Thus the above

transition diagram is more usually and more simply drawn:

q0 q1 q2
a b

b

4

Accepting a String

Deterministic finite automata are given a string as input, and

either accept or reject it.

• The machine starts in state q0.

• In step k, the machine reads the kth input character c

and makes a transition from its current state q to the

state (q, c). [On the diagram, it follows the arrow

labelled with c.]

• It stops when there is no more input.

• If it stops in a final state, then it accepts the string,

otherwise it rejects it.

q0 q1 q4
0..9 .

q2

0..9

q3
0..9

0..9

q1

0..9 +, -

5

The language accepted by a DFA is simply the set of all

strings accepted by the DFA.

The language accepted by our first DFA can be

characterized by the regular expression ab+. The

language accepted by the second DFA is characterized

by the regular expression (+|-)?[0..9]+(. [0..9]+) . It

recognizes signed integers and signed floats, where

floats must have a digit before and after the decimal

point.

Exercises:

• design a DFA to recognize the floats from the pika-1

specification.

• what does the following DFA recognize?

 q1
a

q0 q2

q1

b a

a

a

q3

b b b

6

Nondeterministic Finite Automaton (NFA)

(Q, , , q0, F)

Q: Finite set of states (text uses S)

: Finite alphabet

: Transition function Q × ({}) → 2Q

q0: Start state q0 Q

F: Final states F Q

NFAs are like DFAs, but…

• You can have more than one outgoing arrow from a

state that is labelled with the same character.

• There are transitions on (arrows with label) , which

can be taken at any time during the operation of the

machine.

• The machine accepts if there exists a path labelled with

the input (and epsilons) from the start state to a final

state.

7

Converting an NFA to a DFA (Subset Construction)

Given NFA (N, , N, n0, FN), we construct DFA

(D, , D, d0, FD).

• The alphabet for the machines is the same.

• The DFA states D correspond to subsets of the

NFA states N.

• The DFA start state d0 corresponds to (“is”) the

subset of N consisting of just n0, and what you

can reach from n0 on -transitions.

• The final states FD are those subsets of N that

contain at least one final state of FN.

• The transition function is the tricky part.

q0 q1 q3
c

q2
a

q4
o

c

q6 q5
m

8

To find D(d, a):

 d corresponds to a subset N’ of N. Construct

N(N’, a) as the union, over all n N’, of N(n, a).

This gives a new subset N* of N. Take the -closure

of N*, which is all states reachable from a state of

N* by a series of 0 or more -transitions. D(d, a) is

this -closure.

In this example, if d = {q4, q10} and we have

character c, then N* = N(d, c) = {q5, q11, q14}.

-closure(N*) = { q5, q6, q13, q11, q12, q14}.

q10 q11 q13
c

q12
a

q14
o

c

q16 q15
m

q
4

 q5
c

q6

...

9

We could construct a state for every subset of N,

and compute the transitions for every character

from every state. But this is O(|N| 2|N|||)

information, which is huge.

In practice, relatively few of the subsets correspond

to states that the DFA can reach from the start

state, so we take the approach of starting with the

DFA start state and only expanding states

corresponding to subsets that we reach. Expanding

is computing the transition function for that state

on each input symbol.

Here’s the subset construction, from the text, but

I’ve changed some variable names to protect the

innocent:

10

d0 = -closure(n0)

D = {d0} // set of all states of DFA

worklist = {d0} // states discovered but not

// expanded

while (!worklist.isEmpty()) {

 remove a state d from the worklist

// expand state d:

 for each character c do

 d’ = -closure(N(d,c))

 D[d, c] = d’

 if d’ D then

 D = D {d’}

 add d’ to worklist

 end if

 end for

end while

11

Example conversion of NFA to DFA

First, d0 = -closure(q0) = {q0, q1, q3}. The worklist

starts with d0 on it, and it is immediately removed

to be expanded.

Note: we ignore the dead state of the NFA. This

halves the labour and does not affect the result.

• N(d0, a) is empty so -closure(N(d0, a)) is also

empty. An empty transition is interpreted as a

transition to the DFA’s dead state.

• N(d0, b) = {q4}. Its -closure is {q4, q5, q6}. This

subset is not in the set D, so we name it d1, put

it in D, and add it to the worklist.

q0

q1

q5

q3
o

q7

q2
c

q6

b
q4

a
q8

12

• N(d0, c) = {q2}. Its -closure is {q2, q5, q6}. This

subset is not in the set D, so we name it d2, put

it in D, and add it to the worklist.

We’re done expanding d0, and we now have d1 and

d2 on the worklist. We choose d1 to expand next.

• N(d1, a) = {q7}. Its -closure is {q6, q7, q8}. This

subset is not in the set D, so we name it d3, put

it in D, and add it to the worklist.

• N(d1, b) and N(d1, c) are empty and give us

transitions from d1 to the DFA’s dead state.

We’re done expanding d1, and we now have d2 and

d3 on the worklist. We choose d2 to expand next.

• N(d2, a) = {q7}. Its -closure is {q6, q7, q8}. This

subset is already in D (and called d3), so we do

nothing further with it.

• N(d2, b) and N(d2, c) are empty and give us

transitions from d2 to the DFA’s dead state.

We’re done expanding d2, and we now have only d3

on the worklist. We expand d3 next.

13

• N(d3, a) = {q7}. Its -closure is {q6, q7, q8}. This

subset is already in D (and called d3), so we do

nothing further with it.

• N(d3, b) and N(d3, c) are empty and give us

transitions from d3 to the DFA’s dead state.

• We’re done expanding d3, and we now have an

empty worklist. We are done. Here is the DFA

that we constructed:

This machine is not the simplest (the simplest has

3 nondead states) but it’s not 28 states, which is

what we would get if we used every subset of the

NFA’s states.

d0

d2

c

d3

d1

b

a

a

a

14

There is an algorithm that takes a DFA and

constructs another DFA for the same language, but

with a minimum number of states. You can find this

algorithm in your text.

Constructing an NFA from a regular expression

Also known as Thompson’s Construction.

We construct an NFA recursively as we build the

regular expression recursively. For any symbol a,

the NFA for a is:

But we will be drawing them a bit differently. The

start state of an NFA will be on the left of a box, and

the final state (there will only be one) will be on the

right of the same box. So our NFA above becomes:

q0 q1 a

q0 q1 a

15

We have a similar NFA for :

We must construct NFAs for three operations:

concatenation, alternation, and Kleene closure.

Here is the machine for the concatenation αβ of

regular expressions for α and β:

q0 q1

NFA for α

NFA for β

16

And here is the machine for the alternation α|β:

Finally, here is the machine for α*:

NFA for α

NFA for β

NFA for α

17

Now, we’ll do a simple example of Thompson’s

Construction: c*(a|b)

First we take the machine for c:

and apply the construction for α* to it:

So that’s the machine for c*. Now we construct the

machine for (a|b) by the construction for (α | β)

applied to the machines for a and b:

 c

c

18

Now we apply the concatenation construction to

the machines for a* and (b|c):

a

b

19

And that completes the construction of the NFA for

c*(a|b).

c

a

b

20

So far, we’ve seen that given a regular expression,

you can construct an equivalent NFA for it. By the

subset construction, you can then get an equivalent

DFA, and then an equivalent minimum-state DFA.

DFAs are easy to implement: the transition function

is just a table (2D array) listing a next state for a

given state and input symbol. Given a regular

expression, one can construct this transition table

for an equivalent minimum-state DFA; this is

sometimes called compiling the regular expression.

This operation is used in most libraries and

applications that deal with regular expressions. It is

the way to speedily handle searching for instances

of the regular expression.

It is also the basis for automatic lexical analyzer

generators; the programmer supplies the regular

expressions for different tokens, and the generator

Regular

Expression
NFA DFA Min-state

DFA

21

combines them into a single big NFA and converts

that to a minimum-state DFA. Then scanning can be

done with one table-lookup per input character.

DFAs can recognize any language that NFAs can.

The converse is also true: DFAs are simply NFAs that

don’t take advantage of the extra power NFAs have.

NFAs can recognize any language a regular

expression can. Is the converse true?

The answer is yes. NFAs, DFAs, and regular

expressions are equivalent in expressive power.

We will prove that there is a regular expression

equivalent to an arbitrary DFA.

Kleene’s Construction

22

Given the DFA, we construct a three-dimensional

table Rij
k. The entry in Rij

k will be a regular

expression for all of the paths from qi to qj in the

DFA, using only intermediate states numbered k or

less…i.e. using only intermediate nodes q0, q1,… qk.

We construct starting with k=-1 (no intermediate

nodes), then continuing with k=0, k=1, etc. up to

k=n-1. For k=-1,

 Rij
-1 = the “or” of all symbols on edges from

 qi to qj, with also “or”ed in if i=j.

To compute Rij
k for other k, consider a path from qi

to qj that uses intermediate states numbered k or

less. If the path does not use state k, then it is

accounted for in Rij
k-1. If it does, then it must go on

a path from qi to the first occurance of qk, followed

by several cycles going from qk back to qk, followed

by a last path section from qk to qi.

23

That is, all paths from i to j are described by αβ*γ.

The paths in α are described by the regular

expression Rik
k-1. The cycles of β are described by

the regular expression Rkk
k-1. And the paths in γ are

described by the regular expression Rkj
k-1.

So Rij
k = Rij

k-1 | αβ*γ = Rij
k-1 | Rik

k-1 (Rkk
k-1)* Rkj

k-1

Assuming a single final state qn-1, the regular

expression equivalent to the DFA will be R0,n-1
n-1.

Multiple final states are handled by “or”ing

together the regular expressions for the individual

final states.

i j

k

α

β

γ

24

