
1

Review Lecture

Introduction

Lexical analysis

Parsing

Semantic analysis

(Intermediate) Code generation

Intermediate Representations

Optimization

Instruction selection

Register Allocation

2

Introduction

Compilers translate code from one langauge

(generally a high-level one) into another (generally

a low-level or machine language).

Compilers are organized into phases. The phases of

a typical compiler are:

1. Lexical Analysis (scanning, tokenizing)

2. Syntax Analysis (parsing)

3. Semantic Analysis (typechecking+)

4. Intermediate Code Generation

5. Optimization

6. Target Code Generation

3

Compilers live in an environment with other related

programs, such as:

• linkers

• loaders

• assemblers

• debuggers

• editors

• Integrated Development Environments

Compilers are required to make code that is above

all correct, but also efficient, compact, and light on

power usage. Sometimes these cannot all be

achieved together.

4

Lexical Analysis

Lexical analysis is the dividing up of the input

character stream into tokens. This is often done by

characterizing the tokens as regular expressions.

Regular expressions can be found in the input

stream by DFAs or NFAs.

A deterministic finite automaton (DFA) is a

mathematical machine (Q, , , q0, F)

Q: Finite set of states

: Finite alphabet

: Transition function Q ×  → Q

q0: Start state q0  Q

F: Final states F  Q

q0 q1

qd

q2
a b

b

b a a

a,b

5

Nondeterministic Finite Automaton (NFA)

(Q, , , q0, F)

Q: Finite set of states (text uses S)

: Finite alphabet

: Transition function Q × (  {}) → 2Q

q0: Start state q0  Q

F: Final states F  Q

NFAs are like DFAs, but…

• You can have more than one outgoing arrow from a

state that is labelled with the same character.

• There are transitions on (arrows with label) , which

can be taken at any time during the operation of the

machine.

• The machine accepts if there exists a path labelled with

the input (and epsilons) from the start state to a final

state.

6

We can convert an NFA into a DFA by the subset

construction. We can convert a regular expression

into an NFA by Thompson’s construction. We can

convert a DFA into a regular expression by Kleene’s

construction.

Thus, DFAs, NFAs, and regular expressions all

characterize the same set of languages. They are

equivalent in power.

7

Parsing

Program syntax is most often described using a

context-free grammar (CFG).

A CFG is

G = (N, T, S, P)

N: Set of nonterminals (often capital letters)

T: Set of terminals (often lower-case letters and symbols)

S: Start symbol (element of N)

P: Productions of the form

 A → α

 where α is a string on NT{}.

This is the BNF form of productions (Backus-Naur Form). The

checkpoints use the EBNF (Extended BNF) form, where α can

be a regular expression on NT{}. This is just a shorthand

and does not change which languages have a grammar.

8

There are standard conventions for giving a grammar. We

only list the productions. N is taken to be the set of all

symbols on the left-hand side of any production. T is taken to

be the set of all other symbols appearing in productions. S is

taken to be the left-hand symbol of the first production.

A derivation in a grammar starts with α0 being the

start symbol, and in each step k it derives αk from

αk-1 by finding a nonterminal in αk-1 and replacing it

with the RHS of a production for that nonterminal.

The derivation halts if at some step k there are no

nonterminals remaining in αk-1.

E  T + E  T + T + E  T + T + T  F + T + T 

…  i + c * i + c * c

The language of a grammar is all possible sentences

that you can derive from the grammar.

A parse tree of a derivation is the tree one gets by

placing the RHS of a production used as a step in

the derivation below the LHS and as children of it.

9

Different derivations can lead to the same parse

tree, but different parse trees must lead to different

derivations.

 E

i F

T

c

+

T

E

F T + E

i

c

F * T

F

c

T

F *

10

It is the job of the parser to look at an input stream

(of tokens) and decide which derivation or parse

tree of the language that input stream belongs to, if

any.

To be suitable for predictive parsing, a grammar

must be left-factored.

E → T + E | T Not left-factored

 T → F * T | F

 F → (E) | c | i

E → T Y left-factored

Y → + E | 

T → F Z

Z → * T | 

F → (E) | c | i

It must also have no left-recursion. This is a

situation where some A α  …  A β

11

To remove direct left-recursion, we look at two

(left-factored) productions of the form:

 A → A α

 A → β

and convert them to:

 A → β A’

A’ → α A’

A’ → 

Removing indirect left-recursion involves an

algorithm that systematically visits the

nonterminals.

There are top-down and bottom-up parsers. Our

recursive descent parser is an example of top-

down. Bottom-up parsers are based on large tables

and are more flexible, but typically require a parser

generator to create.

12

Semantic analysis

Mostly, we discussed ad-hoc semantic analysis, but

we also saw attributed grammars. These are CFG’s

with rules for each production that define attributes

of grammar symbols. For example,

production rules

E1
 → (E2) E1.type := E2.type

 E1.isConstant := E2.isConstant

If a rule gives a grammar symbol an attribute, then

each instance of that grammar symbol in the parse

tree gets its own instance of that attribute. In the

above grammar, all E’s would get an attribute type

and an attribute isConstant.

If an attribute is computed from attributes of

symbols below it in the tree, it is called a

synthesized or synthetic attribute. If it is computed

using attributes of its siblings and its parents, it is

called an inherited attribute.

13

An attributed grammar is called L-attributed if

every attribute at a node is computable if one

knows the value of all the attributes of the node’s

children and all of the attributes of the node’s left

siblings.

Synthesized

Inherited

S-attributed

L-attributed

14

Intermediate Representations

• Graphical IR

o AST, high- or low-level

o Expression DAGs

• Linear IR

o 1-address code

o 3-address code

o basic blocks

o Static Single-assignment form

• Hybrid IR

o control-flow graphs

o call graphs

15

• One-address code. These model the

behaviour of accumulator or stack machines.

The resulting code is quite compact. Our ASM

code is a one-address code. Java, Smalltalk,

and Scala all compile to one-address code.

• Two-address code. These model a machine

with destructive operations (operations take

two operands and write the result over one of

them). Not popular or useful nowadays.

• Three-address code. These model a machine

where most operations take two operands

and produce a result. The resulting code

resembles code for a RISC machine. Very

popular.

In three-address code (3AC) most operations have

the form

 i = j op k

A record that stores this information is often called

a quadruple.

16

A basic block is a maximal set of consecutive linear

instructions that must be executed together. A

basic block starts with a leader that is either the

first instruction in a subroutine, a labelled

instruction (which can be the target of a jump or

branch), or the statement after a branch. A basic

block ends at the first branch, jump, or subroutine

call, return or other leader after its leader.

17

1 s = 0
2 j = 0
3 c = 8

4 loop: branch c == 0 exit

5 s = s + c
6 j = j + s
7 c = c - 1
8 jump loop

9 exit: k = j
10 return

18

If we add directed edges to show where program

control can go, we arrive at the control flow graph

(CFG) of the subroutine.

The CFG is a very common hybrid IR.

1 s = 0
2 j = 0
3 c = 8

4 loop: branch c == 0 exit

5 s = s + c
6 j = j + s
7 c = c - 1
8 jump loop

9 exit: k = j
10 return

19

Static Single-Assignment form

Static Single-Assignment (SSA) is a naming and

encoding discipline that encodes information about

the flow of control and flow of data. In SSA, a name

is only assigned to at one point in the code; each

name is defined by one operation.

SSA form contains special operations, called φ-

functions, at points where control-flow paths meet.

A φ-function selects whichever of its arguments was

last assigned to.

Original

x = 0
y = 0
while(x < 100)
 x = x + 1
 y = y + x

SSA

 x0 = 0
 y0 = 0

loop: x1 = φ(x0, x2)

 y1 = φ(y0, y2)
 if x1 ≥ 100 goto next
 x2 = x1 + 1
 y2 = y1 + x2

 goto loop

next:

20

Optimizations

There are two issues at the heart of every

optimization: safety and profitability.

Optimizations done on a single basic block are

called local optimizations.

Optimizations done on an area larger than a single

block but smaller than an entire procedure are

called regional optimizations.

Optimizations done on a single procedure are called

global optimizations.

Optimizations done on a bigger scale are called

interprocedural optimization.

We saw the regional optimization of loop induction

variable analysis.

21

Local optimization

We examined local value numbering (LVN).

a2 = b0 + a1
 b4 = a2 – d3

c5 = b4 + a2
 d4 = a2 – d3

And extended it with commutative operations,

constant folding, and algebraic identities.

22

Regional Optimization

Extended Basic Blocks (EBBs). An extended basic

block is a set of basic blocks B1, B2, … Bn in the

control flow graph (CFG), where B1 may have

multiple CFG predecessors and each other Bi has

just one, which is some Bj in the set.

Superlocal value numbering. Uses EBBs as a

starting structure. In a large EBB, each path from

root to leaf is analyzed as a single basic block.

B2

B0

B1

B3 B4

B5

B6

23

Loop unrolling. The oldest and best-known loop

transformation. Here, the loop body is replicated

and the logic controlling the loop is adjusted.

 do 80 i = 1, n
 sum = sum + a(i)
 80 continue

could become:

 n1 = mod(n, 2)
 if(n1 .eq. 1) then
 sum = sum + a(1)

 do 80 i = n1 + 1, n, 2
 sum = sum + a(i)
 sum = sum + a(i+1)
 80 continue

24

Global Optimization

Live variable analysis. A variable v is live at point p

if and only if there exists a path in the CFG from p to

a use of v along which v is not redefined.

Dominance. A CFG node Bi dominates Bj iff Bi lies on
every path from the entry node of the CFG to Bj.

node DOM(n)
B0 {0}
B1 {0,1}
B2 {0,1,2}
B3 {0,1,3}
B4 {0,1,3,4}
B5 {0,1,5}
B6 {0,1,5,6}
B7 {0,1,5,7}
B8 {0,1,5,8}

B0

B1

B2 B5

B6 B8

B7

B3

B4

25

𝑫𝑶𝑴(𝑛) = {𝑛} ∪ (⋂ 𝑫𝑶𝑴

𝑚 ∈preds(𝑛)

(𝑚))

with the initial conditions that DOM(n0) = {n0} and,
for all 𝑛 ≠ 𝑛0, DOM(n) = N. (N is the set of all
nodes of the CFG.)

Dominator Trees. The nodes that strictly dominate

n are DOM(n) – n. The closest strict dominator to n

is called its immediate dominator, and denoted

IDOM(n). The entry node has no immediate

dominator.

The dominator tree compactly encodes IDOM and

DOM information. It consists of edges (IDOM(n), n)

for each node n.

26

B0

B1

B2 B5

B6 B8

B7

B3

B4

Example CFG

B0

B1

B2 B5

B6 B8

B7

B3

B4

Dominator tree

27

Dominance Frontiers. The dominance frontier

DF(n) of a node n is all nodes m where

1. n dominates a predecessor of m, and

2. n does not strictly dominate m.

These are the nodes “just outside” the dominance

of n.

Static Single-Assignment Form

We saw how to translate normal 3AC into Maximal

SSA and into Semipruned SSA forms. Both involve

1. Placing -functions

2. Renaming

We also saw how to translate from SSA back to

normal 3AC. This involved splitting edges and

inserting new basic blocks inside them.

Finally, we saw Sparse Simple Constant

Propagation (SSCP), an optimization which

gains a great benefit from using SSA form. SSCP

is an optimistic algorithm.

28

Interprocedural Optimization

We looked at call graph computation, which is

difficult in the presence of indirect function calls.

We also had an overview of interprocedural

constant propagation (ICP).

Scalar Optimizations

Scalar optimization is optimization of code for a

single thread of control. We looked at these with

an eye towards five objectives:

• Eliminate useless and unreachable code

• Code motion

• Specialization

• Redundancy elimination

• Enable other transformations

29

Eliminating Useless and Unreachable Code

An operation can be useless, meaning that its result

has no externally visible effect. Alternatively, the

operation can be unreachable, meaning that it

cannot execute. If an operation falls into either

category, it can be eliminated. We use the term

dead code to refer to such code.

We saw a mark-and-sweep algorithm for

determining and eliminating dead code. We also

saw an algorithm Clean for eliminating useless

control flow.

Code Motion

Compilers perform code motion for two primary

reasons. Moving an operation to a point where it

executes fewer times than it would in its original

position should reduce execution time. Moving an

operation to a point where one instance can cover

multiple paths in the CFG should reduce code size.

30

We examined partial redundancy elimination

(PRE), which moves code to where it is executed

less often.

Specialization

Compiler front-ends produce general code that

works in any context the running code might

encounter. With analysis, it can learn enough to

narrow the contexts in which the code must

operate. This creates the opportunity for the

compiler to specialize the sequence of operations in

ways which capitalize on this knowledge of

contexts.

We looked in particular at tail-call optimization and

leaf-call optimization.

31

Redundancy Elimination

A computation x + y is redundant at some point p in

the code if, along every path that reaches p, x + y

has already been evaluated and x and y have not

been modified since the evaluation. Redundant

computations typically arise as artifacts of

translation or optimization.

We saw three techniques that eliminate

redundancy: LVN (Local value numbering), SVN

(Superlocal value numbering), and PRE (partial

redundancy elimination).

Enabling other transformations

Often, a compiler includes passes whose primary

purpose is to expose opportunities for other

transformations. Loop unrolling and inline

substitution are such transformations. We studied

another, namely superblock cloning.

32

Superblock cloning transforms the CFG on the left

to the CFG on the right.

B0

B1

B2 B5

B6 B8

B7

B3

B4

B0

B1

B2

B3a

B5

B4

B6

B7a

B3b

B8

B7b

B3c

33

The back end

Our text uses the term “back end” to refer to the

part of the compiler that must know about the

target machine architecture. Increasingly, modern

compilers are dividing this back end into three

phases, dealing with three concerns. These phases

are

1. Instruction selection.

2. Instruction scheduling.

3. Register allocation.

We studied instruction selection and register

allocation.

The particular type of instruction selection we saw

was instruction selection via tree-pattern

matching. It relies on a set of rewrite rules which

capture the function and cost of different machine

instructions.

34

Instruction selectors are most often generated by a

program that takes the rewrite rules or other

architecture description as its input. There are

several strategies available for writing instruction

selectors.

Lab
 @G

Num
 12

Lab
 @G

Num
 12

6



+

Reg

Num
 12

11

Reg

35

Register Allocation

The register allocator determines which values

reside in registers and which register will hold each

of these values. If the allocator cannot keep a value

in a register throughout its lifetime, the value must

be stored in memory for some or all of the time.

This is called spilling a value.

Most processors have distinct classes of registers

for different kinds of values. For example, most

modern processors have both general-purpose

registers and floating-point registers. Some

processors have classes of condition code registers,

or branch-target registers.

We saw two algorithms for local register allocation:

top-down and bottom-up. In top-down, the

allocator ranks variables by their number of uses in

the block, assigning higher-ranked variables to

registers. In bottom-up, the choices of what to

keep and what to spill are made locally in a front-to-

back pass through the block.

36

For global register allocation, we spoke of one

algorithm. It is based on the live ranges of SSA

names and their interference graph. Basically, it

assigns registers by coloring the vertices of the

interference graph.

