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Introduction 

Compilers translate code from one langauge 

(generally a high-level one) into another (generally 

a low-level or machine language). 

Compilers are organized into phases.  The phases of 

a typical compiler are: 

 

1. Lexical Analysis (scanning, tokenizing) 

2. Syntax Analysis (parsing) 

3. Semantic Analysis (typechecking+) 

4. Intermediate Code Generation 

5. Optimization 

6. Target Code Generation 
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Compilers live in an environment with other related 

programs, such as: 

• linkers 

• loaders 

• assemblers 

• debuggers 

• editors 

• Integrated Development Environments 

 

Compilers are required to make code that is above 

all correct, but also efficient, compact, and light on 

power usage.  Sometimes these cannot all be 

achieved together. 
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Lexical Analysis 

Lexical analysis is the dividing up of the input 

character stream into tokens.  This is often done by 

characterizing the tokens as regular expressions.  

Regular expressions can be found in the input 

stream by DFAs or NFAs. 

A deterministic finite automaton (DFA) is a 

mathematical machine (Q, , , q0, F) 

 

Q: Finite set of states 

: Finite alphabet 

: Transition function  Q ×  → Q 

q0: Start state  q0  Q 

F: Final states F  Q 

 

 

q0   q1 

qd 

q2 
a b 

b 

b a a 

a,b 
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Nondeterministic Finite Automaton (NFA) 

(Q, , , q0, F) 

 

Q: Finite set of states (text uses S) 

: Finite alphabet 

: Transition function  Q × (  {}) → 2Q 

q0: Start state  q0  Q 

F: Final states F  Q 

 

NFAs are like DFAs, but… 

• You can have more than one outgoing arrow from a 

state that is labelled with the same character. 

• There are transitions on (arrows with label) , which 

can be taken at any time during the operation of the 

machine. 

• The machine accepts if there exists a path labelled with 

the input (and epsilons) from the start state to a final 

state.  
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We can convert an NFA into a DFA by the subset 

construction.  We can convert a regular expression 

into an NFA by Thompson’s construction.  We can 

convert a DFA into a regular expression by Kleene’s 

construction. 

Thus, DFAs, NFAs, and regular expressions all 

characterize the same set of languages.  They are 

equivalent in power. 
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Parsing 

Program syntax is most often described using a 

context-free grammar (CFG).   

 

A CFG is  

G = (N, T, S, P) 

 

N: Set of nonterminals (often capital letters) 

T: Set of terminals (often lower-case letters and symbols) 

S:  Start symbol (element of N) 

P: Productions of the form  

  A → α 

  where α is a string on NT{}. 

 

This is the BNF form of productions (Backus-Naur Form).  The 

checkpoints use the EBNF (Extended BNF) form, where α can 

be a regular expression on NT{}.  This is just a shorthand 

and does not change which languages have a grammar. 
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There are standard conventions for giving a grammar.  We 

only list the productions.  N is taken to be the set of all 

symbols on the left-hand side of any production.  T is taken to 

be the set of all other symbols appearing in productions.  S is 

taken to be the left-hand symbol of the first production. 

A derivation in a grammar starts with α0 being the 

start symbol, and in each step k it derives αk from 

αk-1 by finding a nonterminal in αk-1 and replacing it 

with the RHS of a production for that nonterminal. 

The derivation halts if at some step k there are no 

nonterminals remaining in αk-1. 

E  T + E    T + T + E    T + T + T    F + T + T   

…    i + c * i + c * c 

 

The language of a grammar is all possible sentences 

that you can derive from the grammar.   

A parse tree of a derivation is the tree one gets by 

placing the RHS of a production used as a step in 

the derivation below the LHS and as children of it.   
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Different derivations can lead to the same parse 

tree, but different parse trees must lead to different 

derivations. 

 

  E 
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It is the job of the parser to look at an input stream 

(of tokens) and decide which derivation or parse 

tree of the language that input stream belongs to, if 

any.   

To be suitable for predictive parsing, a grammar 

must be left-factored. 

E → T + E | T  Not left-factored 

   T → F * T | F 

    F → ( E ) | c | i 

 

E → T Y    left-factored 

Y → + E |   

T → F Z 

Z → * T |  

F → ( E ) | c | i 

 

It must also have no left-recursion. This is a 

situation where some  A α  …  A β 
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To remove direct left-recursion, we look at two 

(left-factored) productions of the form:  

 A → A α 

 A → β     

and convert them to:  

 A → β A’ 

A’ → α A’ 

A’ →  

 

Removing indirect left-recursion involves an 

algorithm that systematically visits the 

nonterminals. 

 

 

There are top-down and bottom-up parsers.  Our 

recursive descent parser is an example of top-

down.  Bottom-up parsers are based on large tables 

and are more flexible, but typically require a parser 

generator to create. 
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Semantic analysis 

Mostly, we discussed ad-hoc semantic analysis, but 

we also saw attributed grammars.  These are CFG’s 

with rules for each production that define attributes 

of grammar symbols.  For example, 

production   rules 

E1
 → ( E2 )   E1.type := E2.type 

     E1.isConstant := E2.isConstant 

 

If a rule gives a grammar symbol an attribute, then 

each instance of that grammar symbol in the parse 

tree gets its own instance of that attribute.  In the 

above grammar, all E’s would get an attribute type 

and an attribute isConstant. 

If an attribute is computed from attributes of 

symbols below it in the tree, it is called a 

synthesized or synthetic attribute.  If it is computed 

using attributes of its siblings and its parents, it is 

called an inherited attribute. 
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An attributed grammar is called L-attributed if 

every attribute at a node is computable if one 

knows the value of all the attributes of the node’s 

children and all of the attributes of the node’s left 

siblings.   

   

 

   

Synthesized 

   

 

   

Inherited 

   

 

   

S-attributed 

   

 

   

L-attributed 
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Intermediate Representations 

• Graphical IR 

o AST, high- or low-level 

o Expression DAGs 

• Linear IR 

o 1-address code 

o 3-address code 

o basic blocks  

o Static Single-assignment form 

• Hybrid IR 

o control-flow graphs 

o call graphs  
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• One-address code.  These model the 

behaviour of accumulator or stack machines.  

The resulting code is quite compact.  Our ASM 

code is a one-address code.  Java, Smalltalk, 

and Scala all compile to one-address code. 

• Two-address code. These model a machine 

with destructive operations (operations take 

two operands and write the result over one of 

them).  Not popular or useful nowadays. 

• Three-address code.  These model a machine 

where most operations take two operands 

and produce a result.  The resulting code 

resembles code for a RISC machine. Very 

popular. 

 

 

In three-address code (3AC) most operations have 

the form 

  i = j op k 

A record that stores this information is often called 

a quadruple.  
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A basic block is a maximal set of consecutive linear 

instructions that must be executed together.   A 

basic block starts with a leader that is either the 

first instruction in a subroutine, a labelled 

instruction (which can be the target of a jump or 

branch), or the statement after a branch.   A basic 

block ends at the first branch, jump, or subroutine 

call, return or other leader after its leader. 
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1  s = 0 
2  j = 0 
3  c = 8 

 

4 loop: branch c == 0 exit 
 

5  s = s + c 
6  j = j + s 
7  c = c - 1 
8  jump loop 
 

9 exit: k = j 
10  return 
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If we add directed edges to show where program 

control can go, we arrive at the control flow graph 

(CFG) of the subroutine.

 

 

The CFG is a very common hybrid IR. 

1  s = 0 
2  j = 0 
3  c = 8 

 

4 loop: branch c == 0 exit 
 

5  s = s + c 
6  j = j + s 
7  c = c - 1 
8  jump loop 
 

9 exit: k = j 
10  return 
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Static Single-Assignment form 

Static Single-Assignment (SSA) is a naming and 

encoding discipline that encodes information about 

the flow of control and flow of data.  In SSA, a name 

is only assigned to at one point in the code; each 

name is defined by one operation. 

SSA form contains special operations, called φ-

functions, at points where control-flow paths meet. 

A φ-function selects whichever of its arguments was 

last assigned to.   

 
 
Original  
 
x = 0 
y = 0 
while( x < 100) 
 x = x + 1 
 y = y + x 
  

SSA 
 
 x0 = 0  
 y0 = 0 

loop: x1 = φ(x0, x2) 

 y1 = φ(y0, y2) 
 if x1 ≥ 100 goto next 
 x2 = x1 + 1 
 y2 = y1 + x2 

 goto loop 

next: 
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Optimizations  

There are two issues at the heart of every 

optimization: safety and profitability. 

 

Optimizations done on a single basic block are 

called local optimizations. 

Optimizations done on an area larger than a single 

block but smaller than an entire procedure are 

called regional optimizations. 

Optimizations done on a single procedure are called 

global optimizations. 

Optimizations done on a bigger scale are called 

interprocedural optimization. 

 

We saw the regional optimization of loop induction 

variable analysis. 
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Local optimization 

We examined local value numbering (LVN). 

a2 = b0 + a1 
  b4 = a2 – d3 

c5 = b4 + a2 
  d4 = a2 – d3 
 

And extended it with commutative operations, 

constant folding, and algebraic identities. 
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Regional Optimization 

Extended Basic Blocks (EBBs).  An extended basic 

block is a set of basic blocks B1, B2, … Bn in the 

control flow graph (CFG), where B1 may have 

multiple CFG predecessors and each other Bi has 

just one, which is some Bj in the set. 

 

Superlocal value numbering.  Uses EBBs as a 

starting structure.  In a large EBB, each path from 

root to leaf is analyzed as a single basic block. 

B2 

B0 

B1 

B3 B4 

B5 

B6 
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Loop unrolling.  The oldest and best-known loop 

transformation.  Here, the loop body is replicated 

and the logic controlling the loop is adjusted. 

  do 80 i = 1, n 
   sum = sum + a(i) 
 80 continue 
 
could become: 
 
  n1 = mod(n, 2) 
  if(n1 .eq. 1) then 
   sum = sum + a(1) 
 
  do 80 i = n1 + 1, n, 2 
   sum = sum + a(i) 
   sum = sum + a(i+1) 
 80 continue 
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Global Optimization 

Live variable analysis.  A variable v is live at point p 

if and only if there exists a path in the CFG from p to 

a use of v along which v is not redefined. 

 

Dominance. A CFG node Bi dominates Bj iff Bi lies on 
every path from the entry node of the CFG to Bj. 

 

node DOM(n) 
B0 {0} 
B1 {0,1} 
B2 {0,1,2} 
B3 {0,1,3} 
B4 {0,1,3,4} 
B5 {0,1,5} 
B6 {0,1,5,6} 
B7 {0,1,5,7} 
B8 {0,1,5,8} 

B0 

B1 

B2 B5 

B6 B8 

B7 

B3 

B4 
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𝑫𝑶𝑴(𝑛) = {𝑛} ∪ ( ⋂ 𝑫𝑶𝑴

𝑚 ∈preds(𝑛)

(𝑚)) 

 
with the initial conditions that DOM(n0) = {n0} and, 
for all  𝑛 ≠ 𝑛0, DOM(n) = N.  (N is the set of all 
nodes of the CFG.) 
 
Dominator Trees.  The nodes that strictly dominate 

n are DOM(n) – n. The closest strict dominator to n 

is called its immediate dominator, and denoted 

IDOM(n).  The entry node has no immediate 

dominator. 

The dominator tree compactly encodes IDOM and 

DOM information.  It consists of edges (IDOM(n), n) 

for each node n.  

 
 
 
 
 



26 
 

 

 

 

B0 

B1 

B2 B5 

B6 B8 

B7 

B3 

B4 

Example CFG 

B0 

B1 

B2 B5 

B6 B8 

B7 

B3 

B4 

Dominator tree 
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Dominance Frontiers.  The dominance frontier 

DF(n) of a node n is all nodes m where 

1. n dominates a predecessor of m, and 

2. n does not strictly dominate m. 

These are the nodes “just outside” the dominance 

of n. 

 

Static Single-Assignment Form 

We saw how to translate normal 3AC into Maximal 

SSA and into Semipruned SSA forms.  Both involve 

1. Placing -functions 

2. Renaming 

We also saw how to translate from SSA back to 

normal 3AC.  This involved splitting edges and 

inserting new basic blocks inside them. 

Finally, we saw Sparse Simple Constant 

Propagation (SSCP), an optimization which 

gains a great benefit from using SSA form.  SSCP 

is an optimistic algorithm. 
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Interprocedural Optimization 

We looked at call graph computation, which is 

difficult in the presence of indirect function calls. 

We also had an overview of interprocedural 

constant propagation (ICP). 

 

Scalar Optimizations 

Scalar optimization is optimization of code for a 

single thread of control.  We looked at these with 

an eye towards five objectives: 

• Eliminate useless and unreachable code 

• Code motion 

• Specialization 

• Redundancy elimination 

• Enable other transformations 
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Eliminating Useless and Unreachable Code 

An operation can be useless, meaning that its result 

has no externally visible effect.  Alternatively, the 

operation can be unreachable, meaning that it 

cannot execute.  If an operation falls into either 

category, it can be eliminated.  We use the term 

dead code to refer to such code. 

We saw a mark-and-sweep algorithm for 

determining and eliminating dead code.  We also 

saw an algorithm Clean for eliminating useless 

control flow. 

 

Code Motion 

Compilers perform code motion for two primary 

reasons.  Moving an operation to a point where it 

executes fewer times than it would in its original 

position should reduce execution time.  Moving an 

operation to a point where one instance can cover 

multiple paths in the CFG should reduce code size. 
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We examined partial redundancy elimination 

(PRE), which moves code to where it is executed 

less often. 

 

Specialization 

Compiler front-ends produce general code that 

works in any context the running code might 

encounter.  With analysis, it can learn enough to 

narrow the contexts in which the code must 

operate.  This creates the opportunity for the 

compiler to specialize the sequence of operations in 

ways which capitalize on this knowledge of 

contexts. 

We looked in particular at tail-call optimization and 

leaf-call optimization. 
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Redundancy Elimination 

A computation x + y is redundant at some point p in 

the code if, along every path that reaches p, x + y 

has already been evaluated and x and y have not 

been modified since the evaluation.  Redundant 

computations typically arise as artifacts of 

translation or optimization. 

We saw three techniques that eliminate 

redundancy: LVN (Local value numbering), SVN 

(Superlocal value numbering), and PRE (partial 

redundancy elimination). 

 

Enabling other transformations 

Often, a compiler includes passes whose primary 

purpose is to expose opportunities for other 

transformations.  Loop unrolling and inline 

substitution are such transformations.  We studied 

another, namely superblock cloning. 
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Superblock cloning transforms the CFG on the left 

to the CFG on the right. 

 

  

B0 

B1 

B2 B5 

B6 B8 

B7 

B3 

B4 

B0 

B1 

B2 
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B8 

B7b 

B3c 
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The back end 

Our text uses the term “back end” to refer to the 

part of the compiler that must know about the 

target machine architecture.  Increasingly, modern 

compilers are dividing this back end into three 

phases, dealing with three concerns.  These phases 

are  

1. Instruction selection. 

2. Instruction scheduling. 

3. Register allocation. 

 

We studied instruction selection and register 

allocation. 

 

The particular type of instruction selection we saw 

was instruction selection via tree-pattern 

matching.   It relies on a set of rewrite rules which 

capture the function and cost of different machine 

instructions. 
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Instruction selectors are most often generated by a 

program that takes the rewrite rules or other 

architecture description as its input.  There are 

several strategies available for writing instruction 

selectors. 
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Register Allocation 

The register allocator determines which values 

reside in registers and which register will hold each 

of these values.  If the allocator cannot keep a value 

in a register throughout its lifetime, the value must 

be stored in memory for some or all of the time.  

This is called spilling a value. 

Most processors have distinct classes of registers 

for different kinds of values.  For example, most 

modern processors have both general-purpose 

registers and floating-point registers.  Some 

processors have classes of condition code registers, 

or branch-target registers. 

 

We saw two algorithms for local register allocation:  

top-down and bottom-up.  In top-down, the 

allocator ranks variables by their number of uses in 

the block, assigning higher-ranked variables to 

registers.  In bottom-up, the choices of what to 

keep and what to spill are made locally in a front-to-

back pass through the block. 
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For global register allocation, we spoke of one 

algorithm.  It is based on the live ranges of SSA 

names and their interference graph.  Basically, it 

assigns registers by coloring the vertices of the 

interference graph. 

 

 


