
1

Lecture Overview

Register Allocation

[Chapter 13]

2

Introduction

Registers are the fastest locations in the memory

hierarchy. Often, they are the only memory

locations that most operations can access directly.

The proximity of registers to the functional units

makes good use of registers a critical factor in

runtime performance. Responsibility for making

good use of registers lies with the register allocator.

The register allocator determines which values

reside in registers and which register will hold each

of these values. If the allocator cannot keep a value

in a register throughout its lifetime, the value must

be stored in memory for some or all of the time.

This is called spilling a value.

Conceptually, the register allocator takes as its

input a program that uses some arbitrary number of

registers and produces an equivalent program that

fits into the finite register set of the machine.

3

The goal of register allocation is to make effective

use of the target machine’s registers and to

minimize the spilling necessary. The algorithmic

problems that underlie this are hard (NP-hard, to be

precise); the register allocator must produce an

effective approximate solution, quickly.

Allocation vs. assignment. In most modern

compilers, the register allocator solves two distinct

but related problems: register allocation and

register assignment.

Register allocation is determining which values in a

program will reside in registers, and which will spill.

Register assignment is determining which particular

register each value will reside in.

Register classes. The physical registers provided by

most processors do not form a homogeneous pool

of interchangeable resources. Most processors

have distinct classes of registers for different kinds

of values.

4

For example, most modern processors have both

general-purpose registers and floating-point

registers. Some processors have classes of

condition code registers, or branch-target

registers.

If the interactions between two register classes are

limited, the compiler may allocate registers for

them independently. If, on the other hand,

different register classes overlap, the compiler must

allocate them together. For example, it is common

to see the single-precision floating-point registers

overlap the double-precision floating-point

registers.

Spill costs. When the allocator cannot keep all

variables in the k physical registers of a machine,

then it must reserve some f registers to allow it to

load, store, and use the values that are not kept in

registers. Typically f lies between two and four. So,

in the presence of spilling, the allocator must

restrict its allocations to k-f registers.

5

Local register allocation and assignment

As an introduction, consider a single basic block as

input to the allocator. This block contains

operations o1, o2, … , oN. Each opertion oi has the

form

 opi vri,1 vri,2  vri,3

where the vr’s are virtual registers. From a high-

level view, our goal is to create an equivalent

block in which each reference to a virtual register

is replaced with a reference to a specific physical

register. The block we create may also have spill

code in it.

Top-down local register allocation. This local

allocator works from a simple principle: the most

heavily used values should reside in registers. To

implement this heuristic, it finds the number of

times that each virtual register appears in the

block. Then, it allocates virtual registers to

6

physical registers in descending order by

frequency count.

If the block uses fewer than k virtual registers,

allocation is trivial and the allocator can simply

assign each vr to its own physical register (k is the

number of physical registers).

If the block uses more than k virtual registers, the

compiler applies the following simple algorithm:

1. Compute a priority for each virtual register.

In a linear pass over the block, tally the

number of instructions in which each virtual

register appears. This tally is the priority.

2. Sort the virtual registers into priority order.

Priorities vary between two and the block

length, so bucket sorting or something similar

may be in order.

3. Assign registers in priority order. Assign the

first k-f virtual registers to physical registers.

7

4. Rewrite the code. In a linear pass over the

block, replace virtual register names with

physical register names. Any reference to a

virtual register name with no allocated

physical register is replaced with a short

sequence that uses one of the reserved

registers and performs the appropriate load

or store operation.

The primary weakness of this algorithm is that

it dedicates a physical register to one virtual

register for the entire basic block. A virtual

register that sees heavy use in the first half of

the block and no use in the second half still uses

the physical register in the second half.

Bottom-up local register allocation.

An allocator that does not have this weakness

can be constructed. Here we present an

algorithm (in outline form) that makes decisions

8

about allocation more locally as it scans

through the instructions of the block.

Here’s the pseudocode:

for operation i from 1 to N where

operation i is opi vri,1 vri,2  vri,3

 rx = ensure(vri,1)
 ry = ensure(vri,2)
 if(vri,1 is not needed after i)
 free(rx)
 if(vri,2 is not needed after i)
 free(ry)
 rz = allocate(vri,3)

 rewrite i as opI rx ry  rz

 if(vri,1 is needed after i)
 next[rx] = dist(vri,1)
 if(vri,2 is needed after i)
 next[ry] = dist(vri,2)
 next[rz] = dist(vri,3)

9

• ensure ensures that its argument is in a
register, and returns that register.

• allocate allocates a register for its argument. If
necessary, it spills the existing register with the
largest value of next[]. It returns the register
that was allocated.

• free deallocates a register, making it available
to be reallocated.

• dist computes the distance in the block to the
next use of its argument.

In practice, this algorithm produces excellent
local allocations.

Live Ranges

In global register allocation, live ranges play a

critical role. Recall that a variable is said to be live

at point p if it has been defined along a path from

the procedure’s entry to p and there exists a path

from p to a use of the variable along which the

variable is not redefined.

10

A live range contains a set of definitions and a set of

uses of a variable. For each use in the live range, all

definitions that can reach that use are in the live

range. Similarly, for each definition in the live

range, all uses that can refer to that definition are

also in the live range.

SSA form is a good start to finding live ranges. First,

we find the live region of each SSA name, using a

pass over each block and LiveOut dataflow

information.

Then, we use a disjoint set union-find algorithm,

starting with each SSA name (and its live region) as

a disjoint set. It then processes each -function

instruction, merging together the live ranges of all

variables in the instruction. For instance, if a1, a2,

and a3 are all SSA names with distinct live ranges,

then after seeing a3 = (a1, a2), the three variables

will all be merged into one live range.

11

Interference

Two live ranges are said to interfere if there is any

program point contained in both ranges. If two live

ranges interfere, it means that the corresponding

variables cannot be contained in the same

register—there is some time when both need to be

stored.

We can build a graph I of the interference

relationship. The nodes of this graph are live

ranges, and there is an edge between LRi and LRj if

they interfere.

Suppose we know all the live ranges. Then, with a

simple walk over every block, we can construct the

edges of the interference graph.

12

Once the interference graph is constructed, we may

attempt a proper coloring of it. A proper coloring

of a graph assigns a color to each vertex, while

ensuring that each edge joins two vertices of

different color. The goal of proper coloring is to use

as few colors as possible.

If the allocator can color the interference graph

with k or fewer colors, then it can map the colors

directly onto physical registers to produce a legal

allocation.

If not, then the allocator can choose some colors to

correspond to physical registers and other colors to

correspond to variables that are kept in memory

(spilled). Typically this is done by estimating spill

costs.

