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Introduction 

Registers are the fastest locations in the memory 

hierarchy.  Often, they are the only memory 

locations that most operations can access directly.  

The proximity of registers to the functional units 

makes good use of registers a critical factor in 

runtime performance.  Responsibility for making 

good use of registers lies with the register allocator. 

The register allocator determines which values 

reside in registers and which register will hold each 

of these values.  If the allocator cannot keep a value 

in a register throughout its lifetime, the value must 

be stored in memory for some or all of the time.  

This is called spilling a value. 

Conceptually, the register allocator takes as its 

input a program that uses some arbitrary number of 

registers and produces an equivalent program that 

fits into the finite register set of the machine. 
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The goal of register allocation is to make effective 

use of the target machine’s registers and to 

minimize the spilling necessary.  The algorithmic 

problems that underlie this are hard (NP-hard, to be 

precise); the register allocator must produce an 

effective approximate solution, quickly. 

 

Allocation vs. assignment.  In most modern 

compilers, the register allocator solves two distinct 

but related problems: register allocation and 

register assignment. 

Register allocation is determining which values in a 

program will reside in registers, and which will spill.  

Register assignment is determining which particular 

register each value will reside in. 

 

Register classes.  The physical registers provided by 

most processors do not form a homogeneous pool 

of interchangeable resources.  Most processors 

have distinct classes of registers for different kinds 

of values. 
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For example, most modern processors have both 

general-purpose registers and floating-point 

registers.  Some processors have classes of 

condition code registers, or branch-target 

registers. 

If the interactions between two register classes are 

limited, the compiler may allocate registers for 

them independently.  If, on the other hand, 

different register classes overlap, the compiler must 

allocate them together.  For example, it is common 

to see the single-precision floating-point registers 

overlap the double-precision floating-point 

registers. 

 

Spill costs.  When the allocator cannot keep all 

variables in the k physical registers of a machine, 

then it must reserve some f registers to allow it to 

load, store, and use the values that are not kept in 

registers.  Typically f lies between two and four.  So, 

in the presence of spilling, the allocator must 

restrict its allocations to k-f registers. 
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Local register allocation and assignment 

As an introduction, consider a single basic block as 

input to the allocator.  This block contains 

operations o1, o2, … , oN.  Each opertion oi has the 

form 

 opi vri,1 vri,2  vri,3 

where the vr’s are virtual registers.  From a high-

level view, our goal is to create an equivalent 

block in which each reference to a virtual register 

is replaced with a reference to a specific physical 

register.  The block we create may also have spill 

code in it. 

 

Top-down local register allocation.  This local 

allocator works from a simple principle: the most 

heavily used values should reside in registers.  To 

implement this heuristic, it finds the number of 

times that each virtual register appears in the 

block.  Then, it allocates virtual registers to 
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physical registers in descending order by 

frequency count. 

If the block uses fewer than k virtual registers, 

allocation is trivial and the allocator can simply 

assign each vr to its own physical register (k is the 

number of physical registers). 

If the block uses more than k virtual registers, the 

compiler applies the following simple algorithm: 

1. Compute a priority for each virtual register. 

In a linear pass over the block, tally the 

number of instructions in which each virtual 

register appears.  This tally is the priority. 

2. Sort the virtual registers into priority order.  

Priorities vary between two and the block 

length, so bucket sorting or something similar 

may be in order. 

3. Assign registers in priority order.  Assign the 

first k-f virtual registers to physical registers. 
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4. Rewrite the code.  In a linear pass over the 

block, replace virtual register names with 

physical register names.  Any reference to a 

virtual register name with no allocated 

physical register is replaced with a short 

sequence that uses one of the reserved 

registers and performs the appropriate load 

or store operation. 

 

The primary weakness of this algorithm is that 

it dedicates a physical register to one virtual 

register for the entire basic block.  A virtual 

register that sees heavy use in the first half of 

the block and no use in the second half still uses 

the physical register in the second half. 

 

Bottom-up local register allocation. 

An allocator that does not have this weakness 

can be constructed.  Here we present an 

algorithm (in outline form) that makes decisions 
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about allocation more locally as it scans 

through the instructions of the block. 

Here’s the pseudocode: 

  
for operation i from 1 to N where  

operation i is   opi vri,1 vri,2  vri,3 
 
  rx = ensure(vri,1)  
  ry = ensure(vri,2) 
  if(vri,1 is not needed after i) 
   free(rx) 
  if(vri,2 is not needed after i) 
   free(ry) 
  rz = allocate(vri,3) 
 

  rewrite i as opI rx ry   rz 
 
  if(vri,1 is needed after i) 
   next[rx] = dist(vri,1) 
  if(vri,2 is needed after i) 
   next[ry] = dist(vri,2) 
  next[rz] = dist(vri,3) 
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• ensure ensures that its argument is in a 
register, and returns that register. 

• allocate allocates a register for its argument.  If 
necessary, it spills the existing register with the 
largest value of next[]. It returns the register 
that was allocated. 

• free deallocates a register, making it available 
to be reallocated. 

• dist computes the distance in the block to the 
next use of its argument. 

 
In practice, this algorithm produces excellent 
local allocations. 
 
 

Live Ranges 

In global register allocation, live ranges play a 

critical role.  Recall that a variable is said to be live 

at point p if it has been defined along a path from 

the procedure’s entry to p and there exists a path 

from p to a use of the variable along which the 

variable is not redefined. 
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A live range contains a set of definitions and a set of 

uses of a variable.  For each use in the live range, all 

definitions that can reach that use are in the live 

range.  Similarly, for each definition in the live 

range, all uses that can refer to that definition are 

also in the live range. 

SSA form is a good start to finding live ranges.  First, 

we find the live region of each SSA name, using a 

pass over each block and LiveOut dataflow 

information. 

Then, we use a disjoint set union-find algorithm, 

starting with each SSA name (and its live region) as 

a disjoint set.  It then processes each -function 

instruction, merging together the live ranges of all 

variables in the instruction.  For instance, if a1, a2, 

and a3 are all SSA names with distinct live ranges, 

then after seeing a3 = (a1, a2), the three variables 

will all be merged into one live range. 
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Interference 

Two live ranges are said to interfere if there is any 

program point contained in both ranges.   If two live 

ranges interfere, it means that the corresponding 

variables cannot be contained in the same 

register—there is some time when both need to be 

stored. 

We can build a graph I of the interference 

relationship.  The nodes of this graph are live 

ranges, and there is an edge between LRi and LRj if 

they interfere. 

Suppose we know all the live ranges.  Then, with a 

simple walk over every block, we can construct the 

edges of the interference graph. 
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Once the interference graph is constructed, we may 

attempt a proper coloring of it.  A proper coloring 

of a graph assigns a color to each vertex, while 

ensuring that each edge joins two vertices of 

different color.  The goal of proper coloring is to use 

as few colors as possible. 

 

If the allocator can color the interference graph 

with k or fewer colors, then it can map the colors 

directly onto physical registers to produce a legal 

allocation. 

If not, then the allocator can choose some colors to 

correspond to physical registers and other colors to 

correspond to variables that are kept in memory 

(spilled).  Typically this is done by estimating spill 

costs. 


