Predicting effects of noncoding variants with deep learning-based sequence model

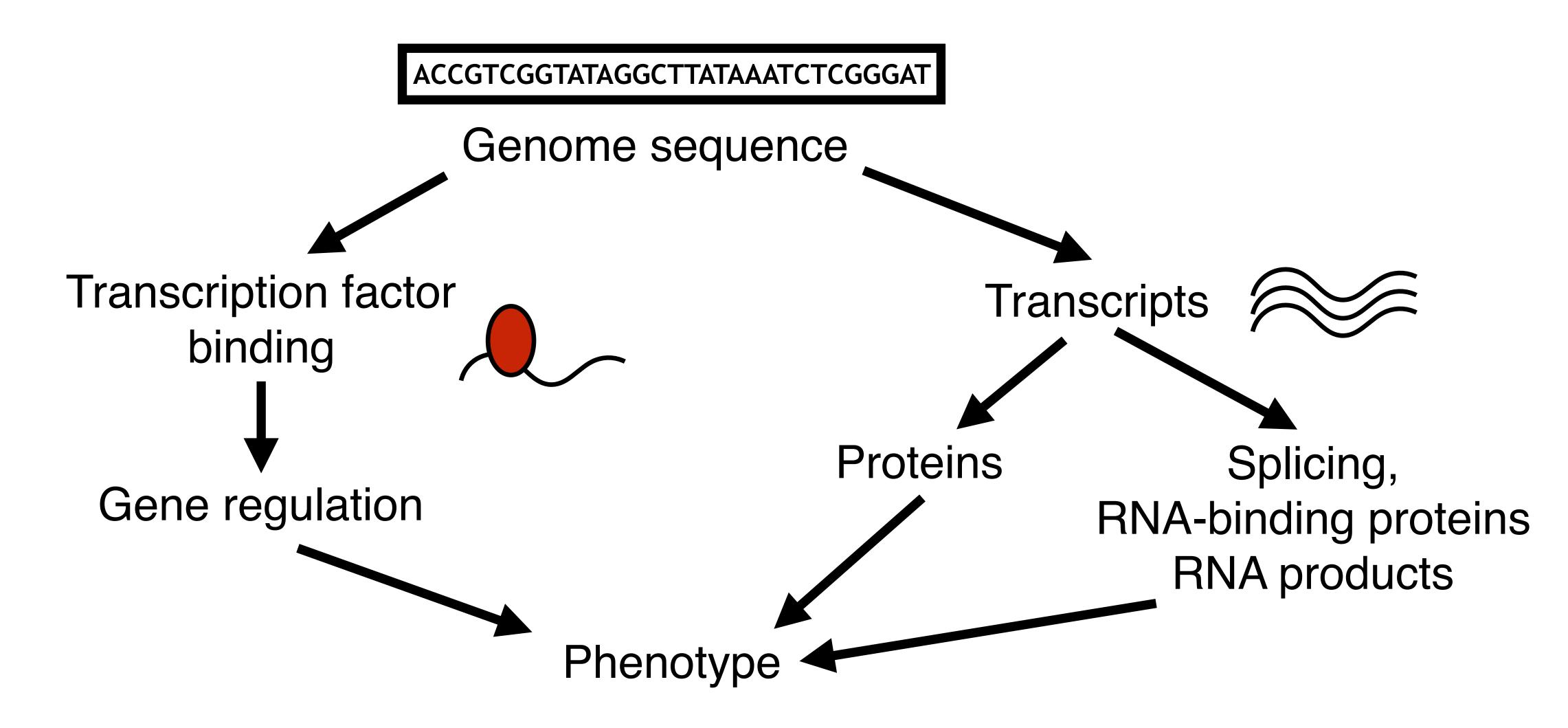
Jian Zhou & Olga G Troyanskaya

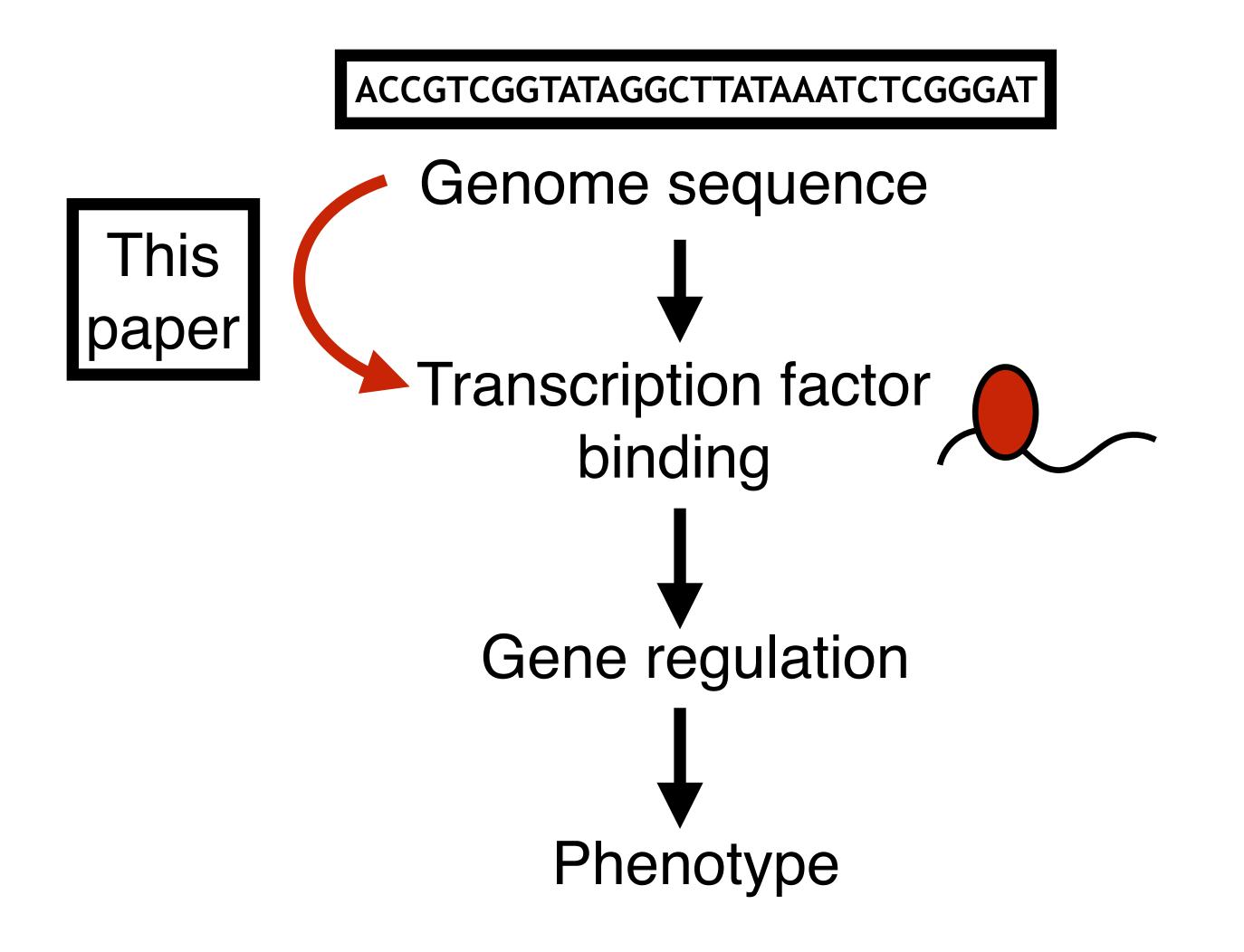
How does genotype affect phenotype?

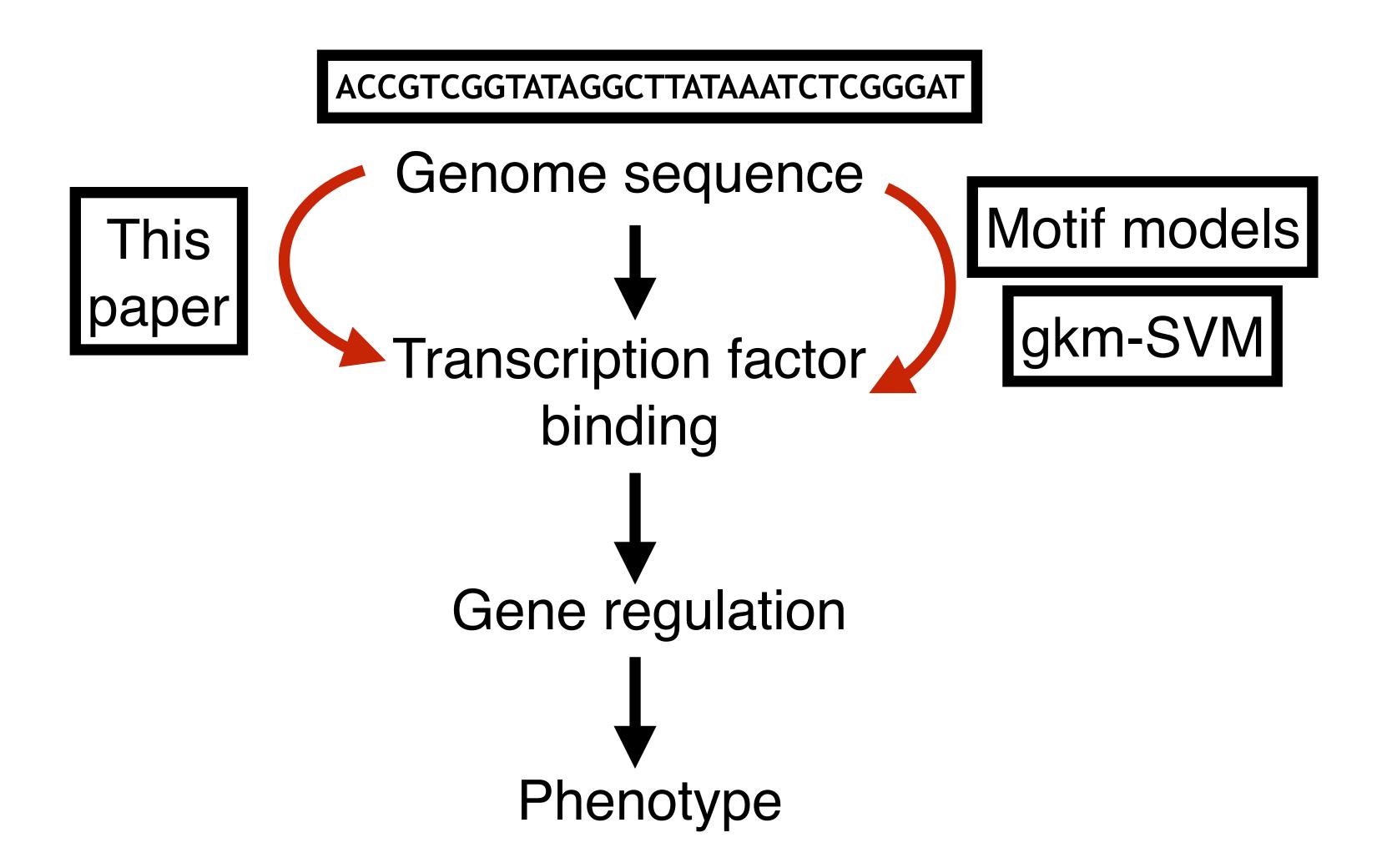
ACCGTCGGTATAGGCTTATAAAATCATCGGGGATCCTATTAATGAGGAAAA

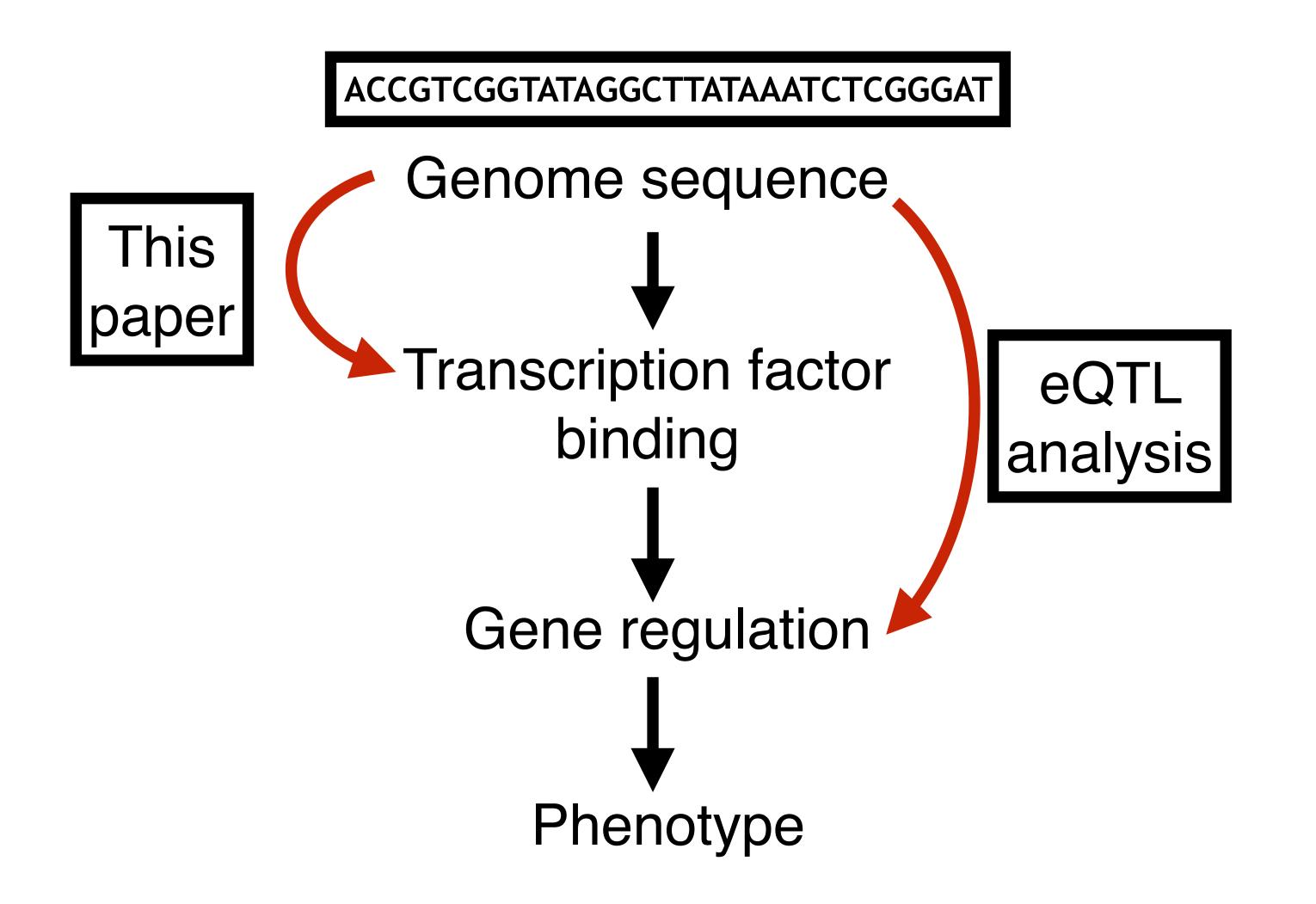
Genetic traits
Disease
Evolutionary fitness

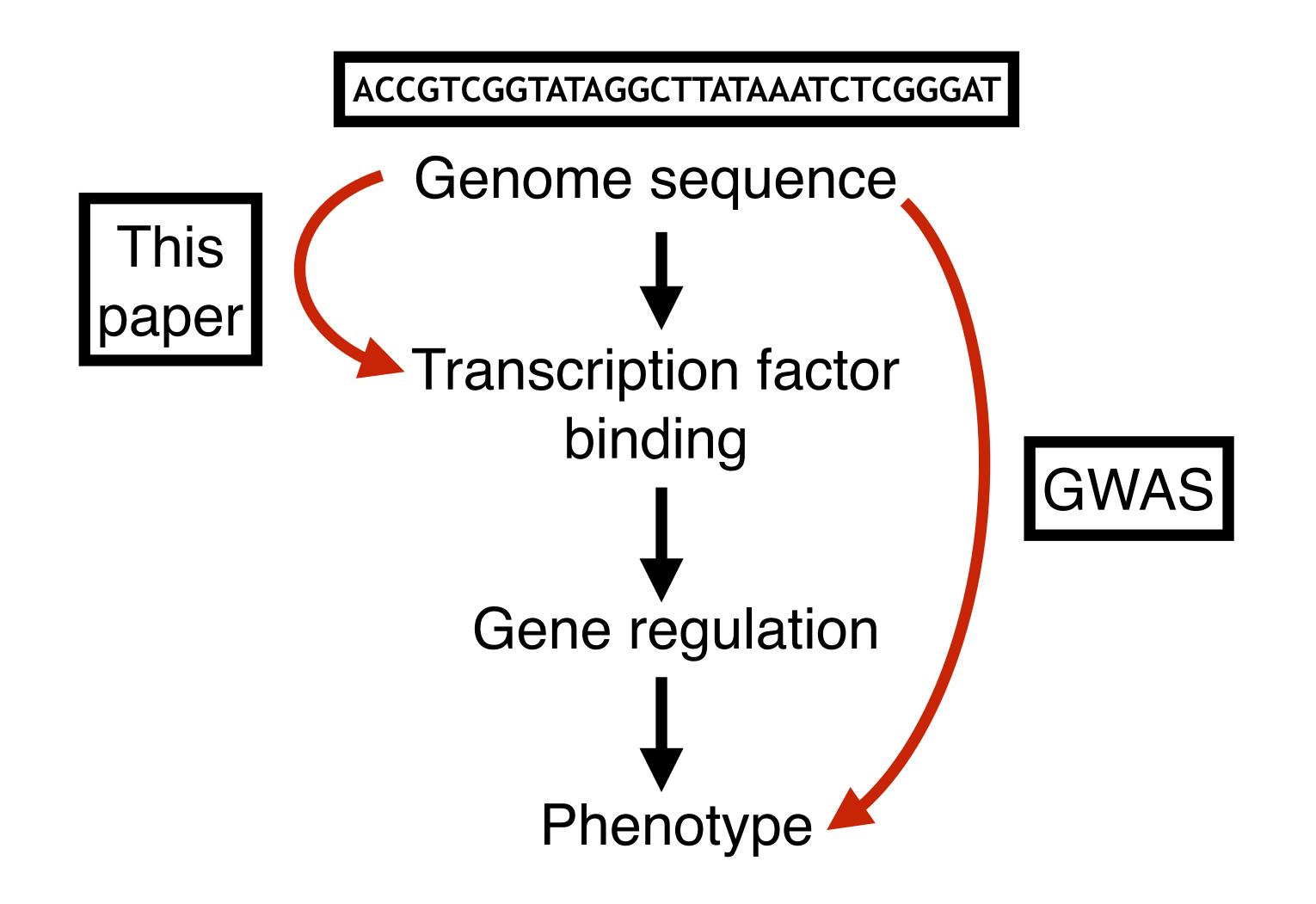
Genotype usually determines phenotype either through (1) proteincoding sequence or (2) transcription factor binding

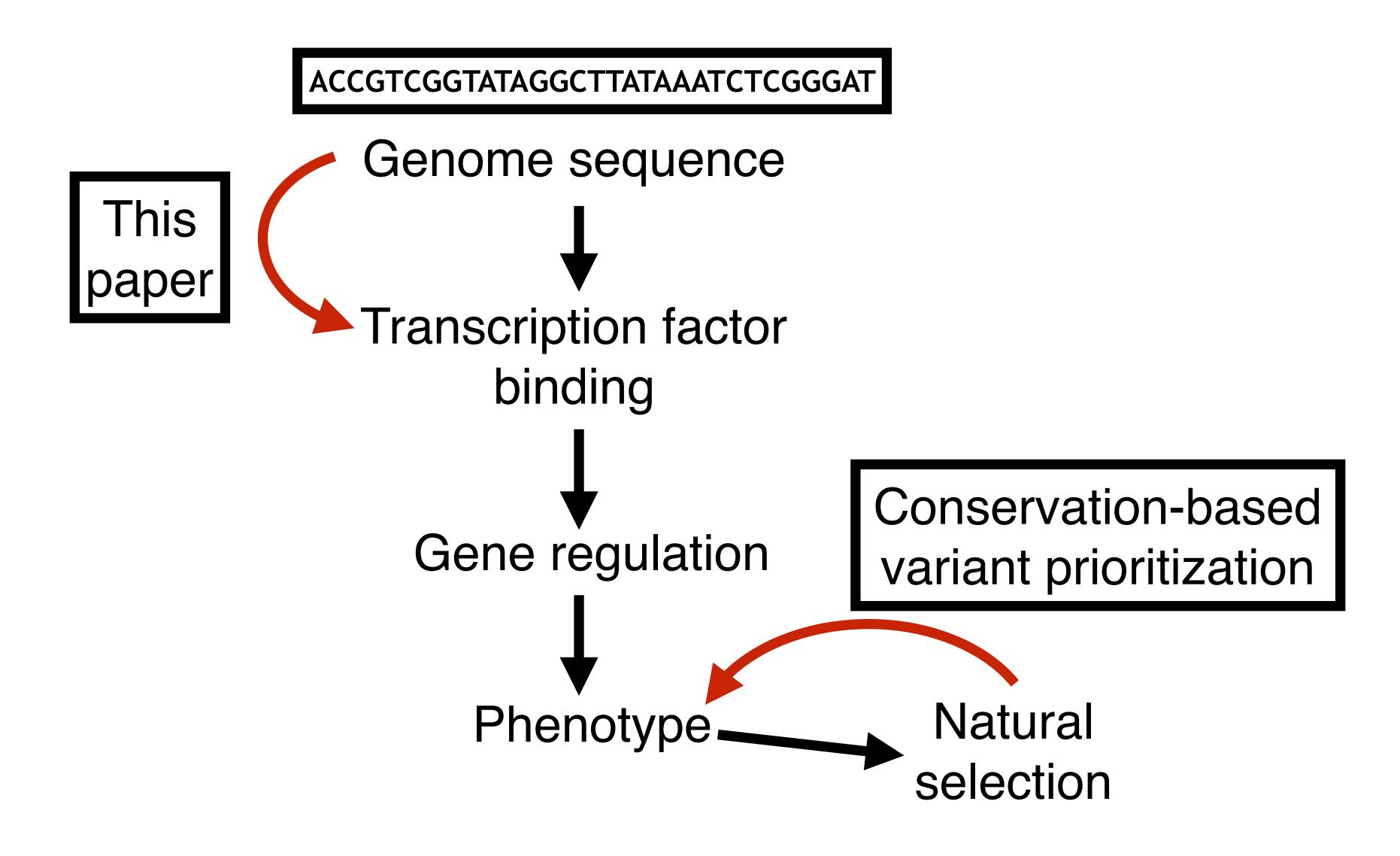












A TF binding predictor is an important step in a variant effect predictor

Patient genomic variant ACCGTCGGTATAGGCATATAAATCTCGGGAT

TF binding model (this paper)

Variant disrupts binding of CTCF in liver cells

Gene expression model

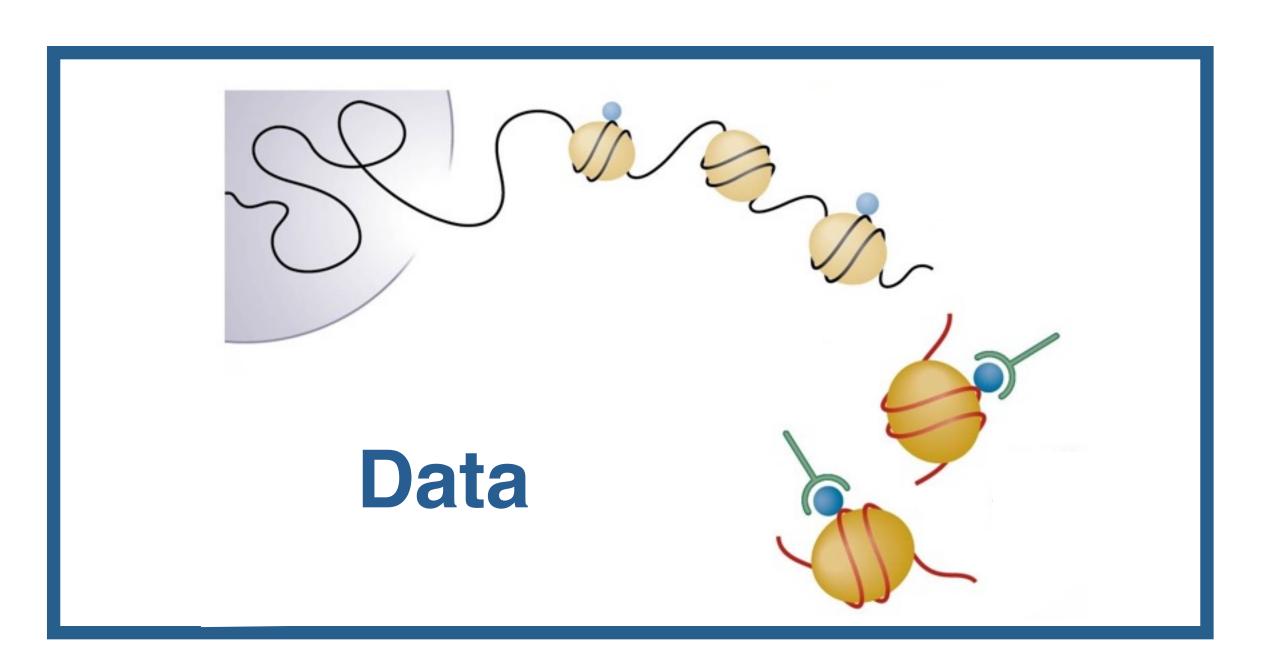
CTCF binding in liver cells is important for expression of gene ABC

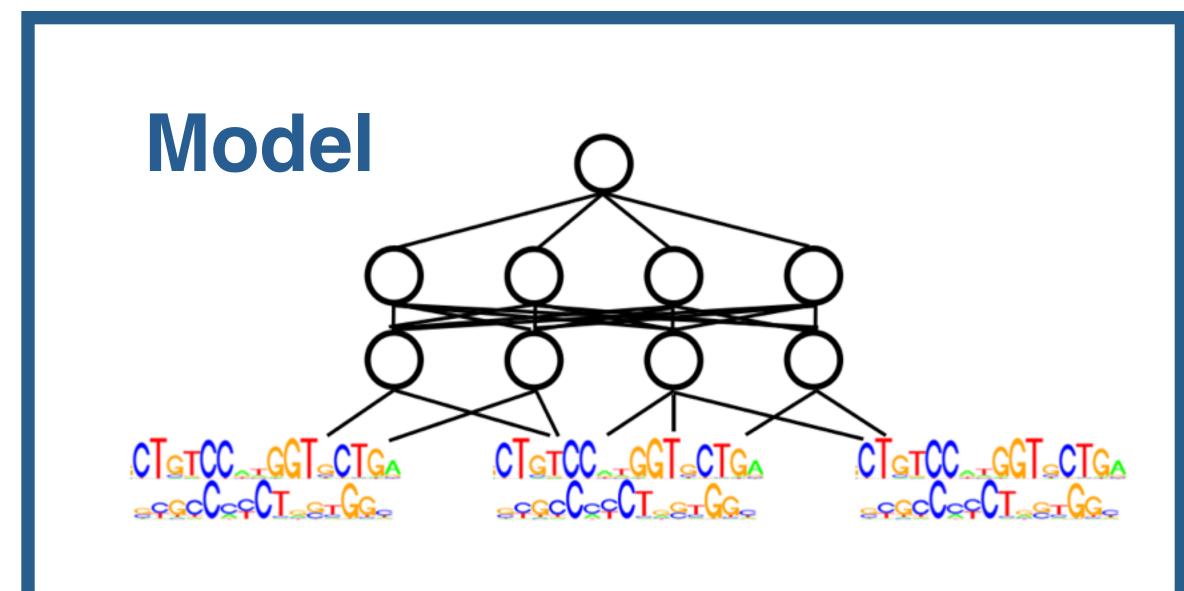
Cell regulation pathway model

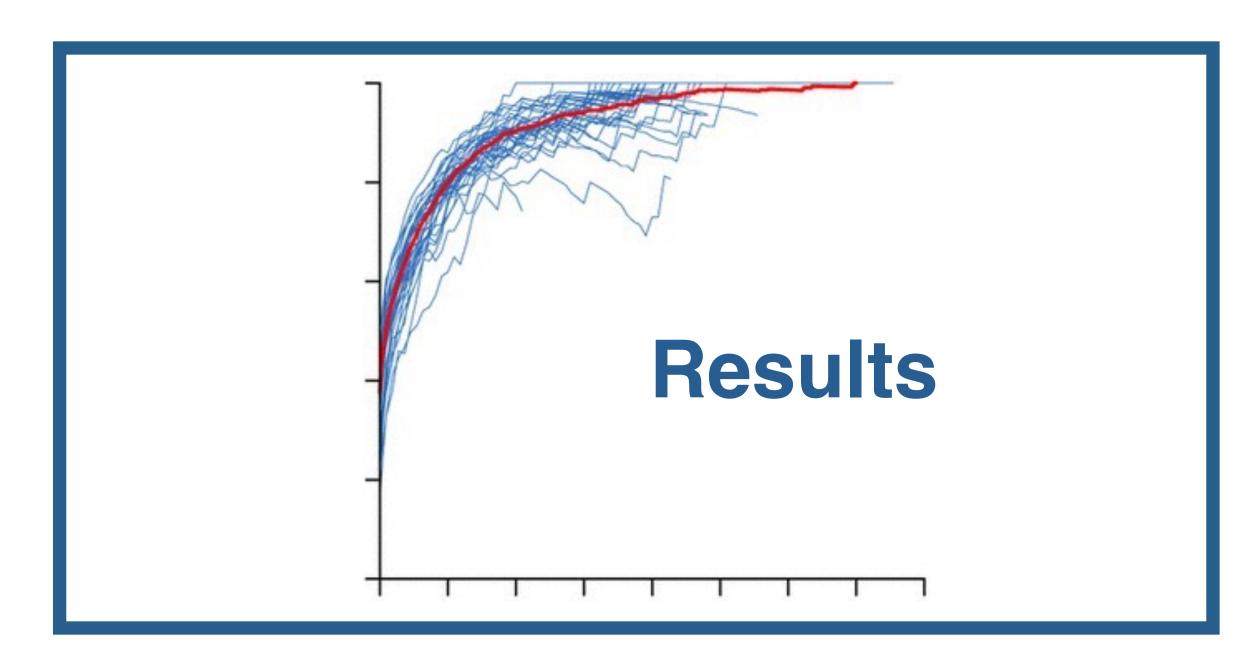
ABC regulates insulin production

Disease model

Patient is at risk for diabetes



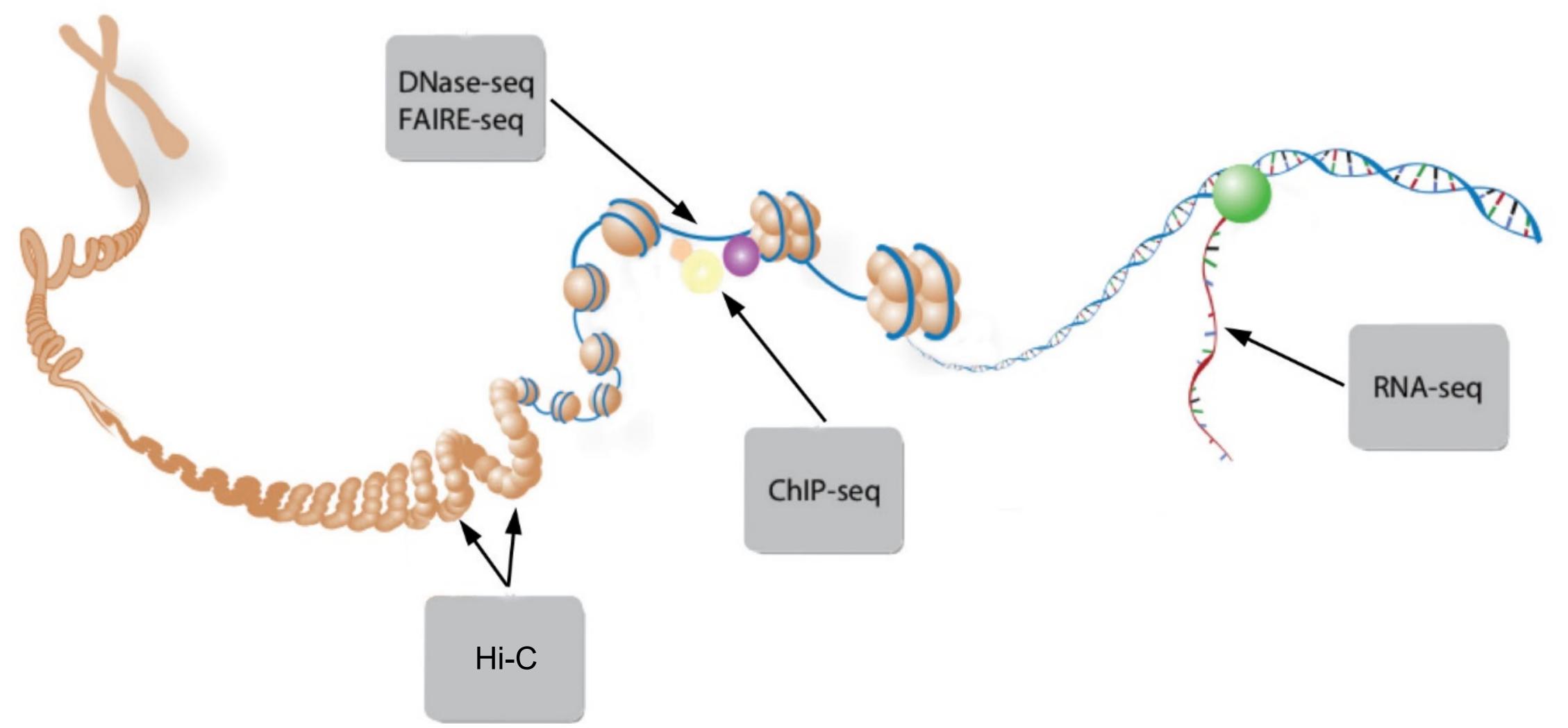


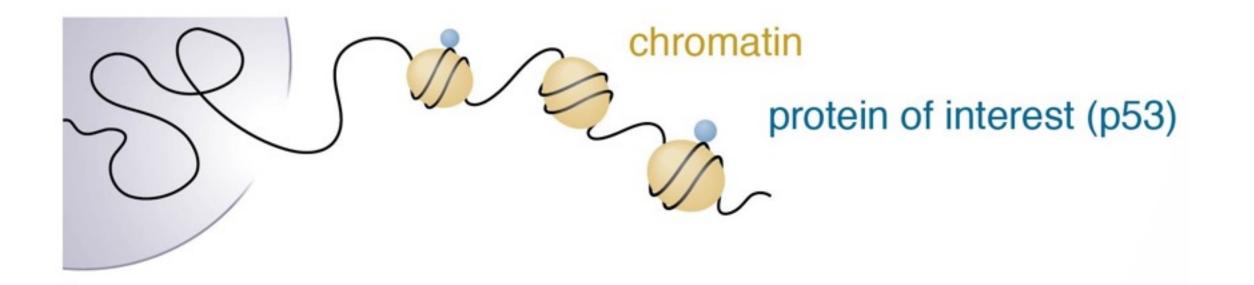


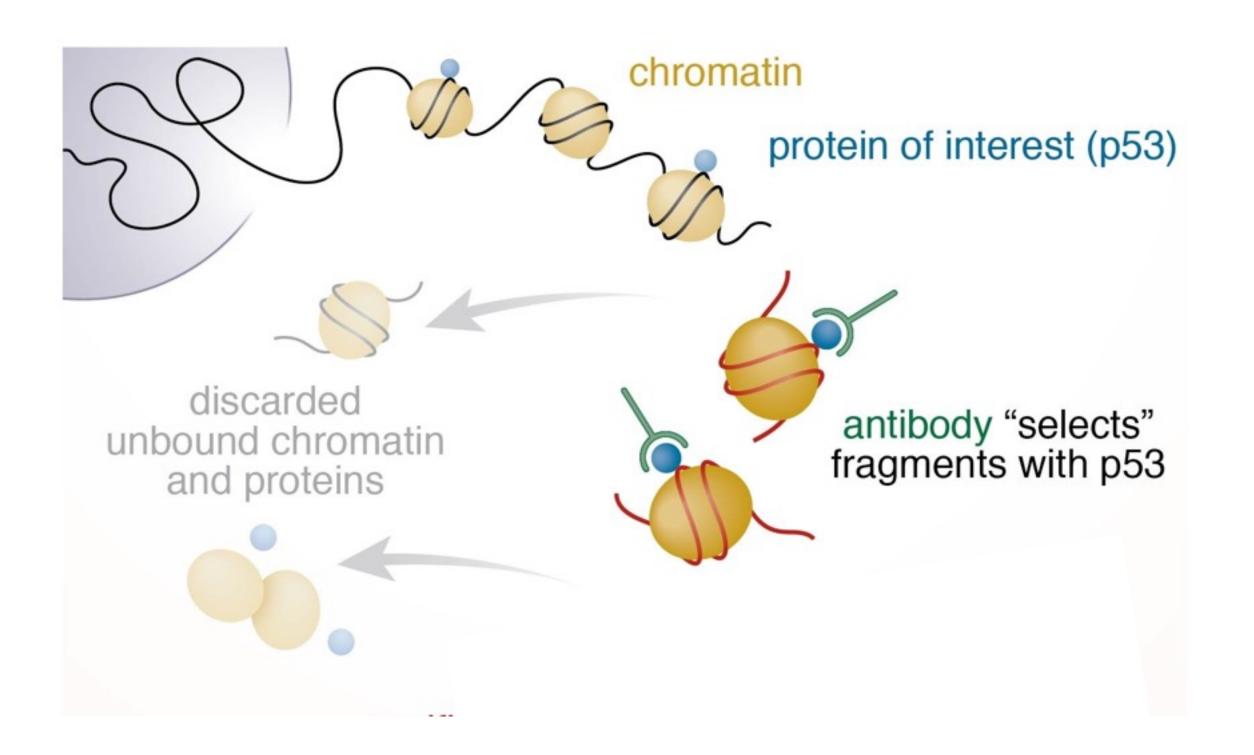
Predicting effects of noncoding variants with deep learning-based sequence model

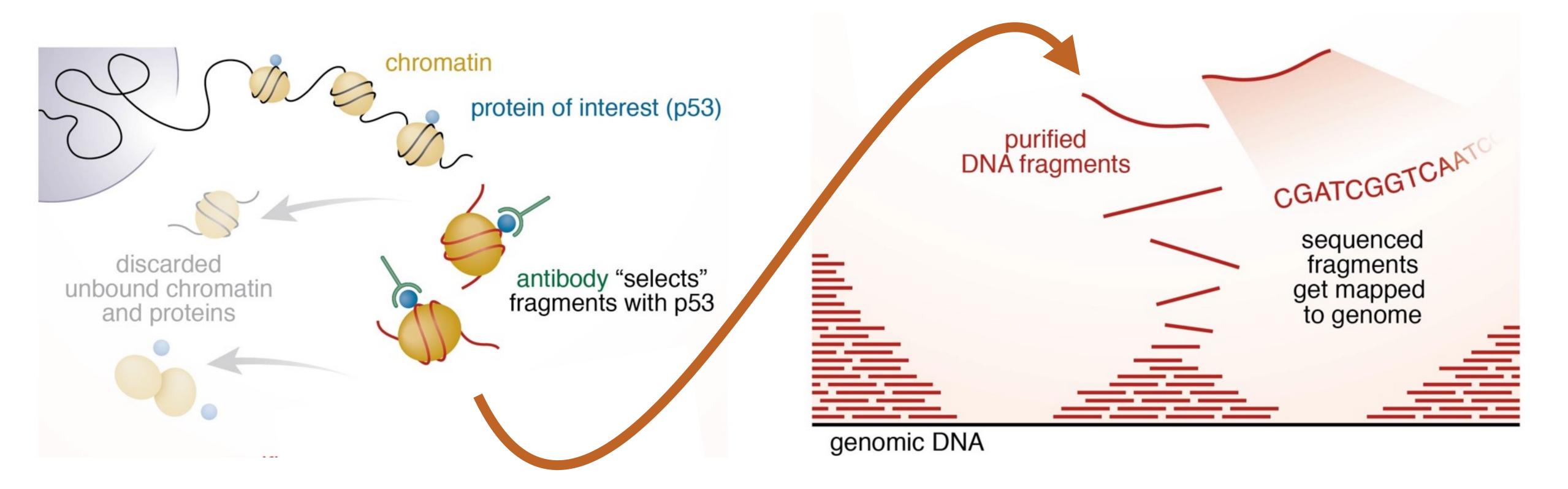
Jian Zhou & Olga G Troyanskaya

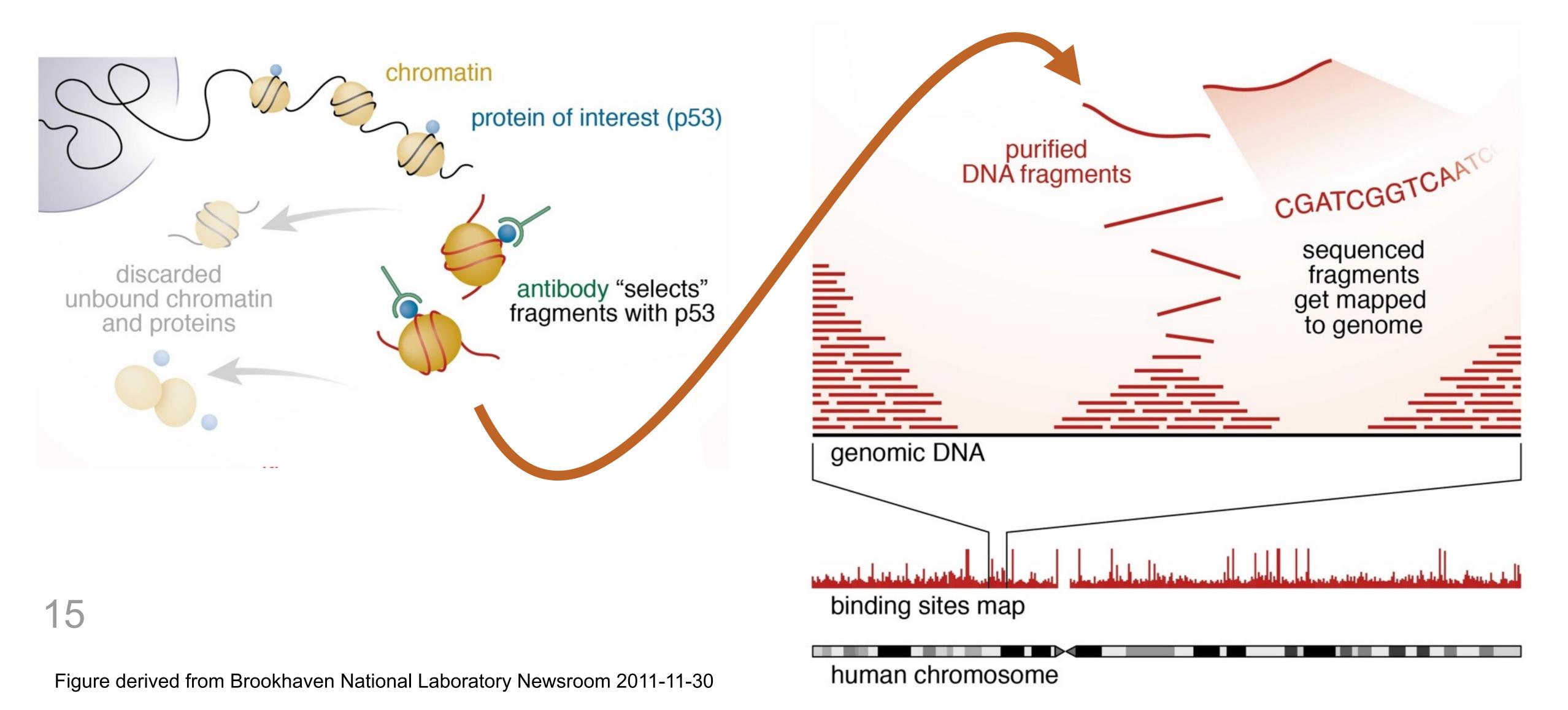
Sequencing-based genomics assays measure many types of genomic activity









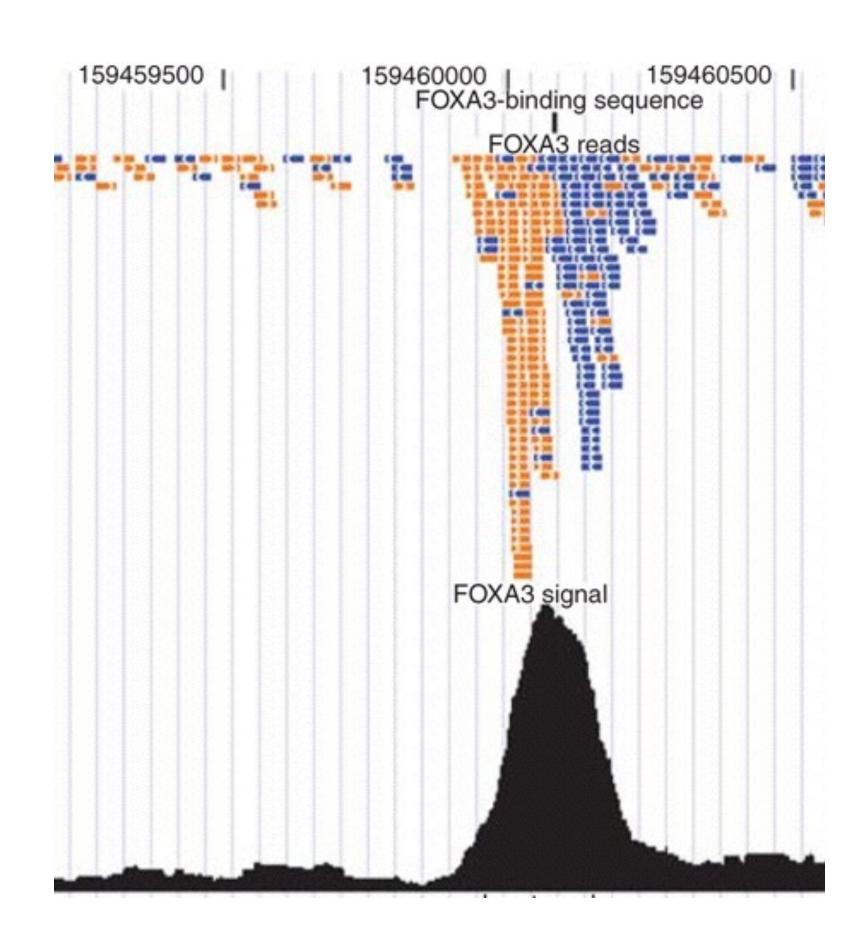


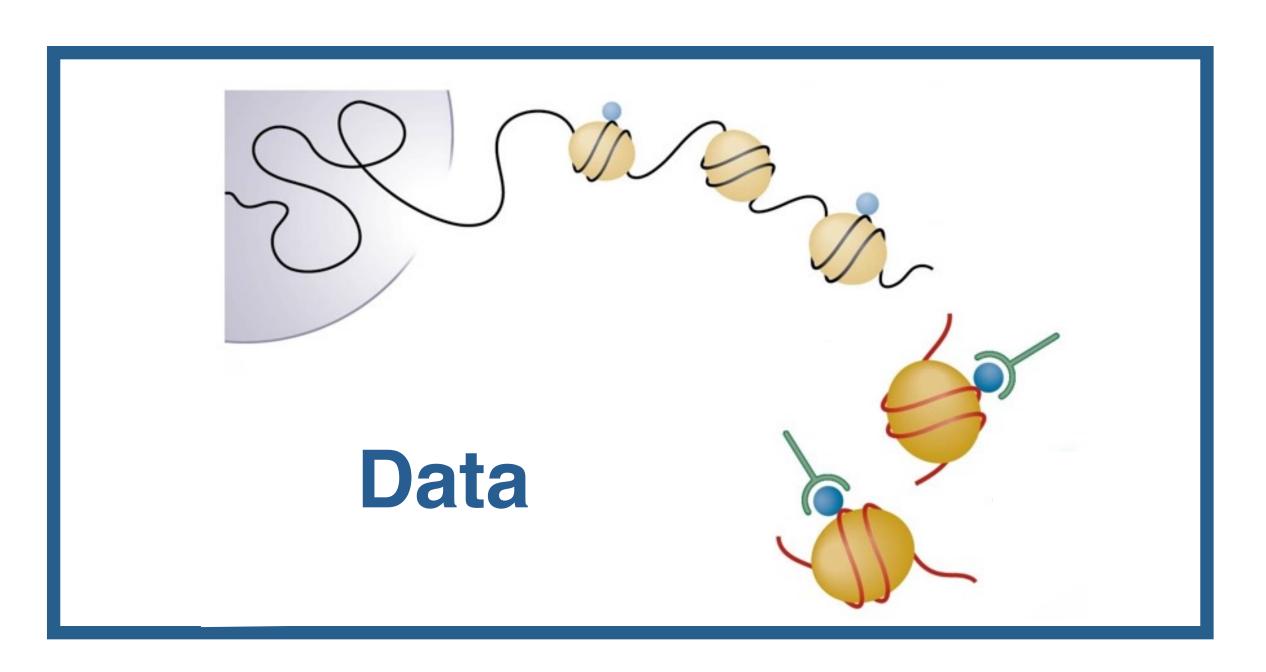
ChIP-seq peak calls indicate confident transcription factor binding sites

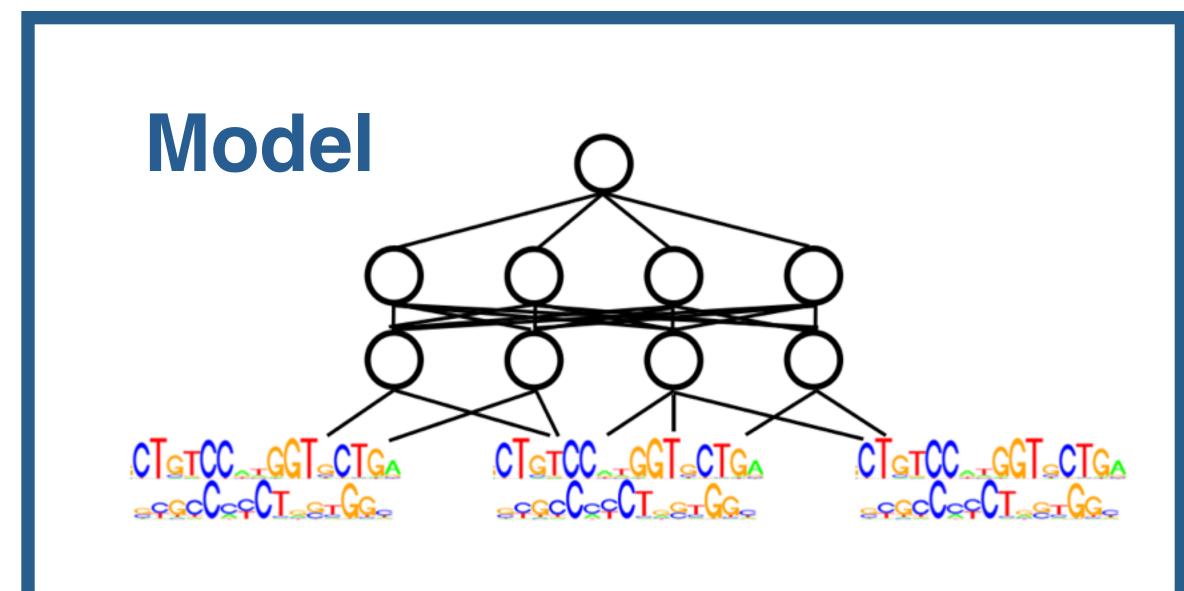
• Peak calling: Stack up the reads in the genome; choose the tall stacks.

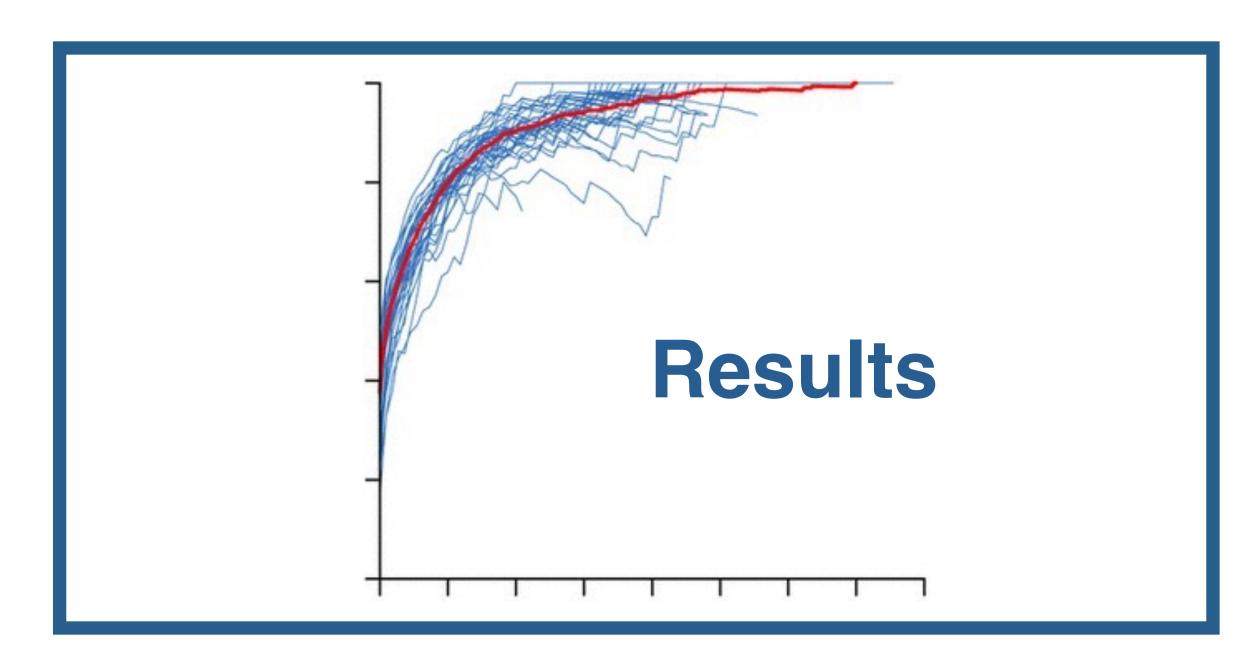
Issues to consider:

- Sequencing fragment lengths
- Sequencing read lengths
- Experimental biases
- Mappability
- GC bias
- How to pick a threshold and assign statistical confidence





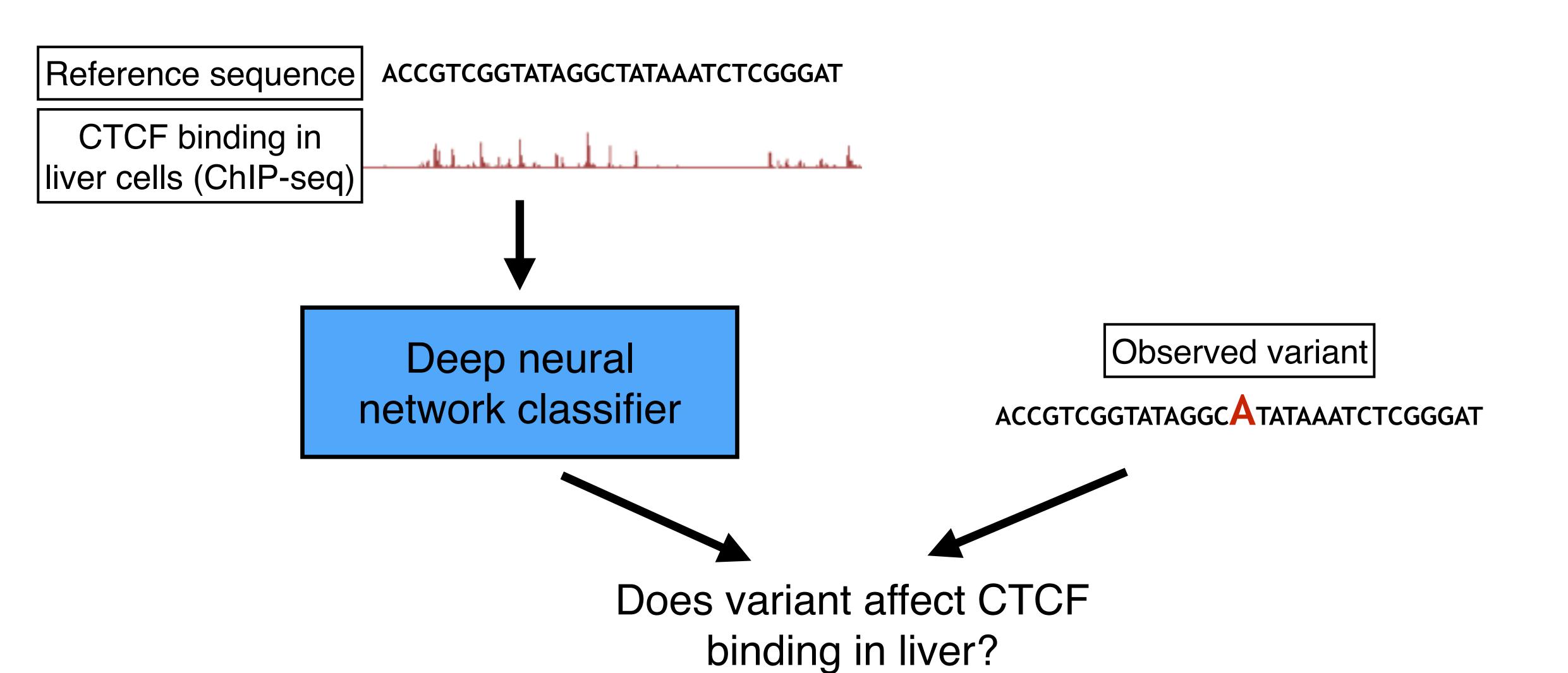




Predicting effects of noncoding variants with deep learning-based sequence model

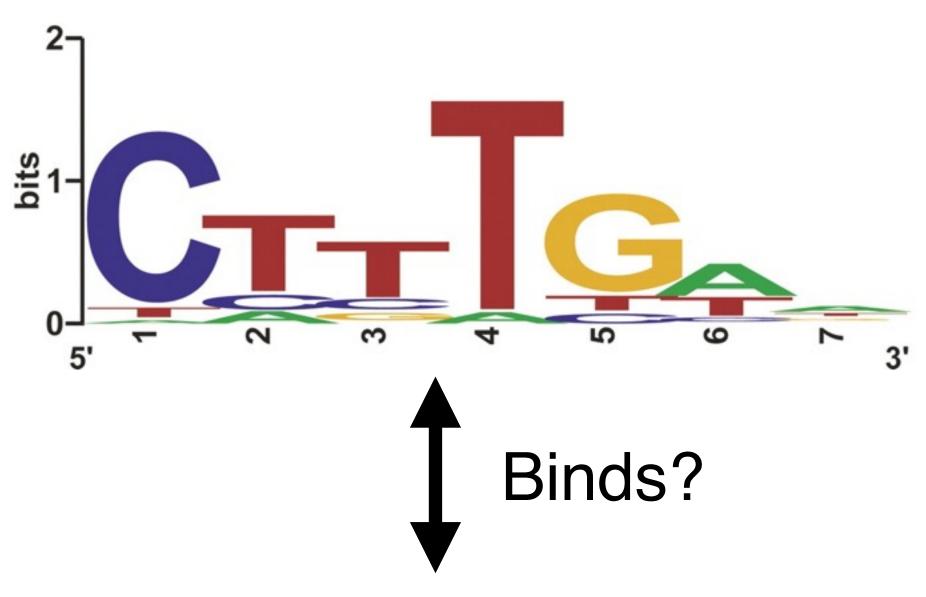
Jian Zhou & Olga G Troyanskaya

Problem setup



The traditional model for understanding transcription factor binding is the position-weight matrix (PWM)

	1	2	3	4	5	6	7
Α	1	4	1	2	0	17	13
C	28	5	5	0	3	3	2
G	0	0	4	0	25	1	7
Т	2	22	21	29	4	10	9

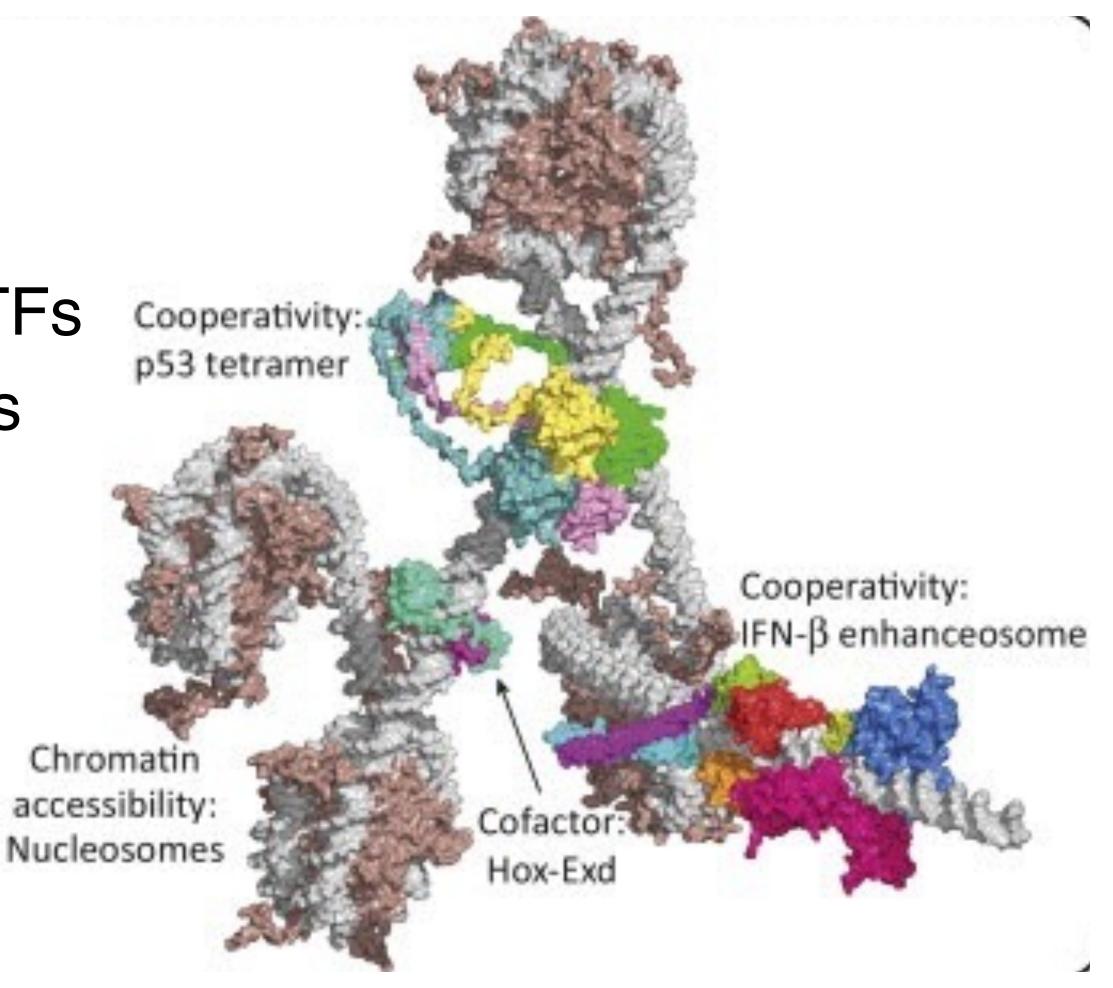


ACCGTCGGTATAGGCTTATAAATCTCGGGAT

How can we get a better model than sequence motifs?

- DNA physical shape
- Variable gaps
- Cooperativity between TFs

Nucleosome interactions

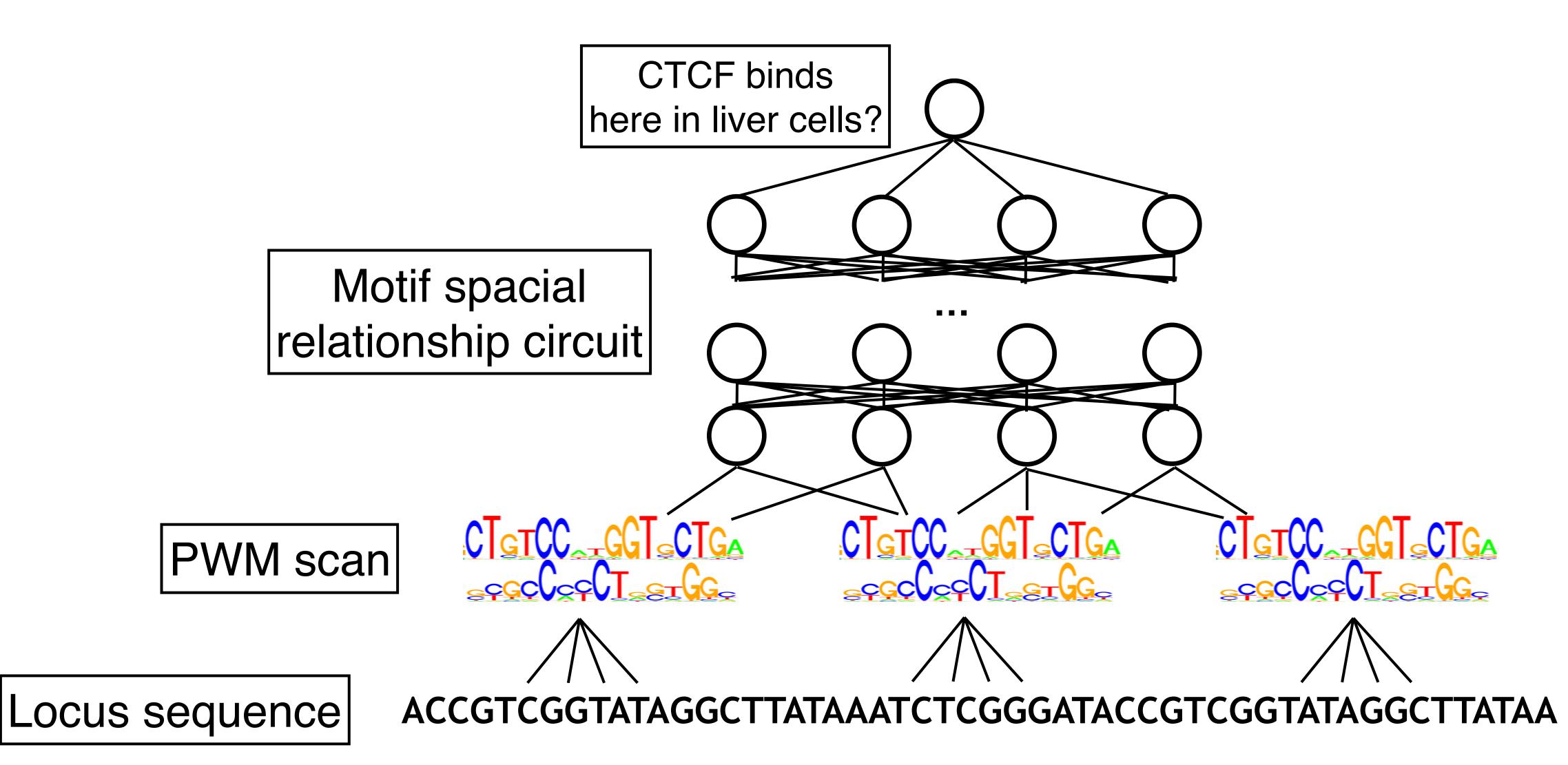


Why deep neural networks?

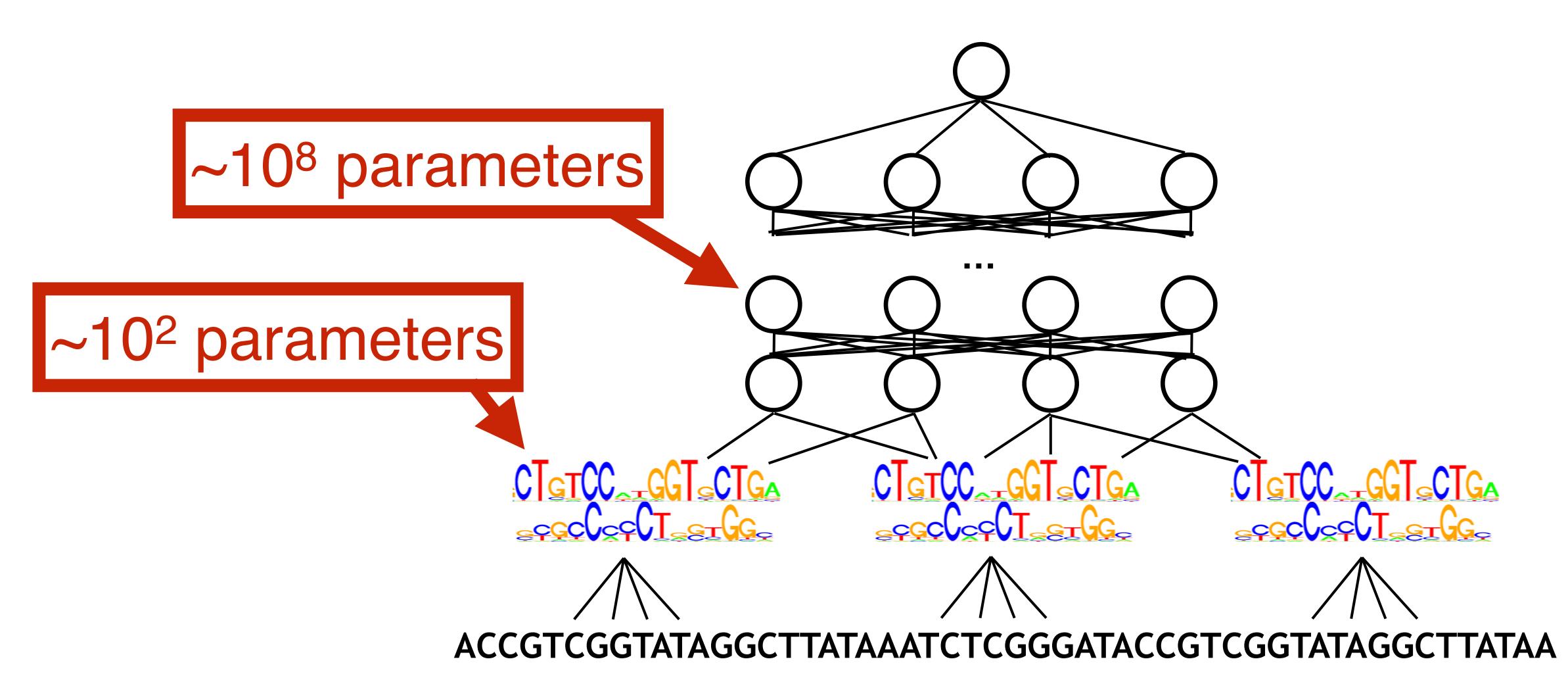
Deep learning is best when you have more data than sense.

Jacob Schreiber

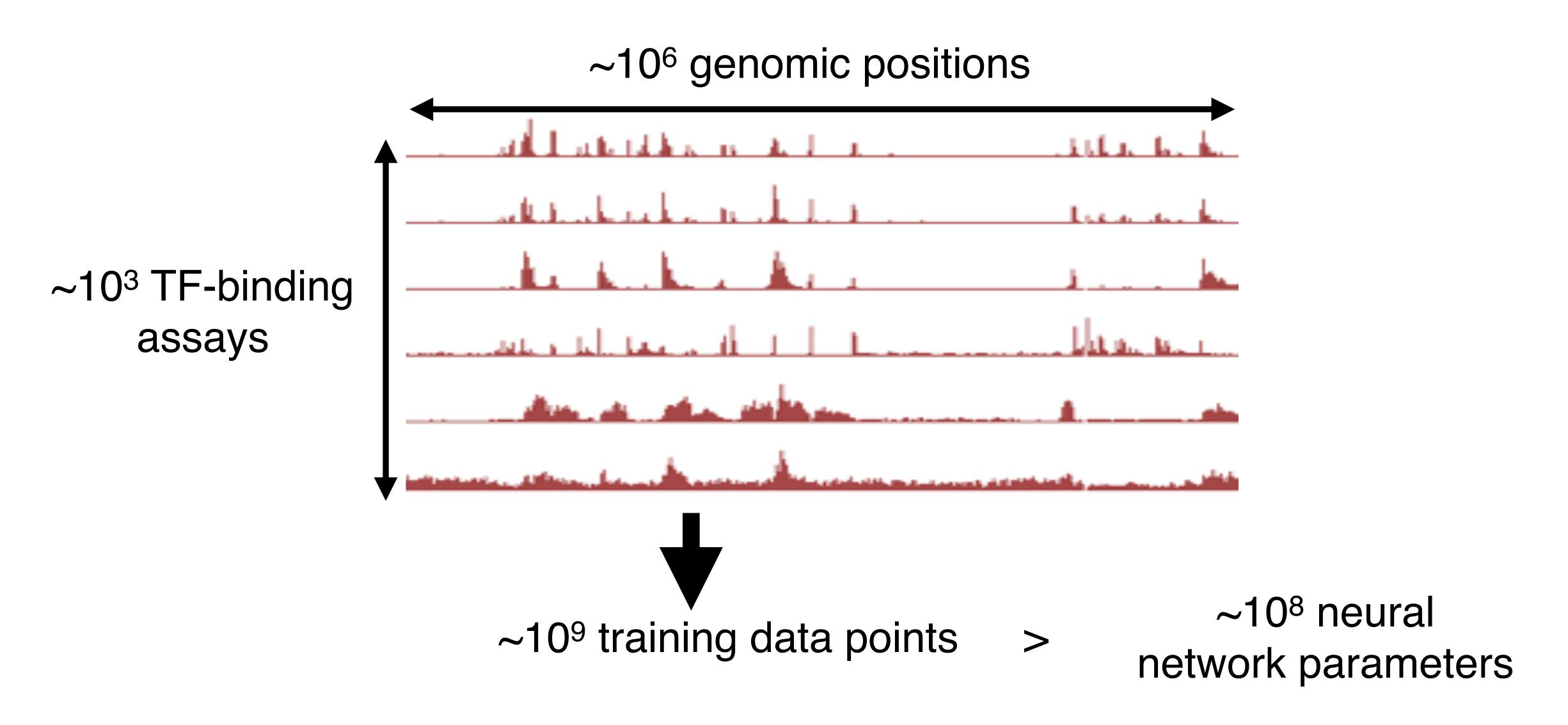
The deep neural network captures complex patterns of motif occurrence



Concern: Deep neural networks have a lot of parameters to train

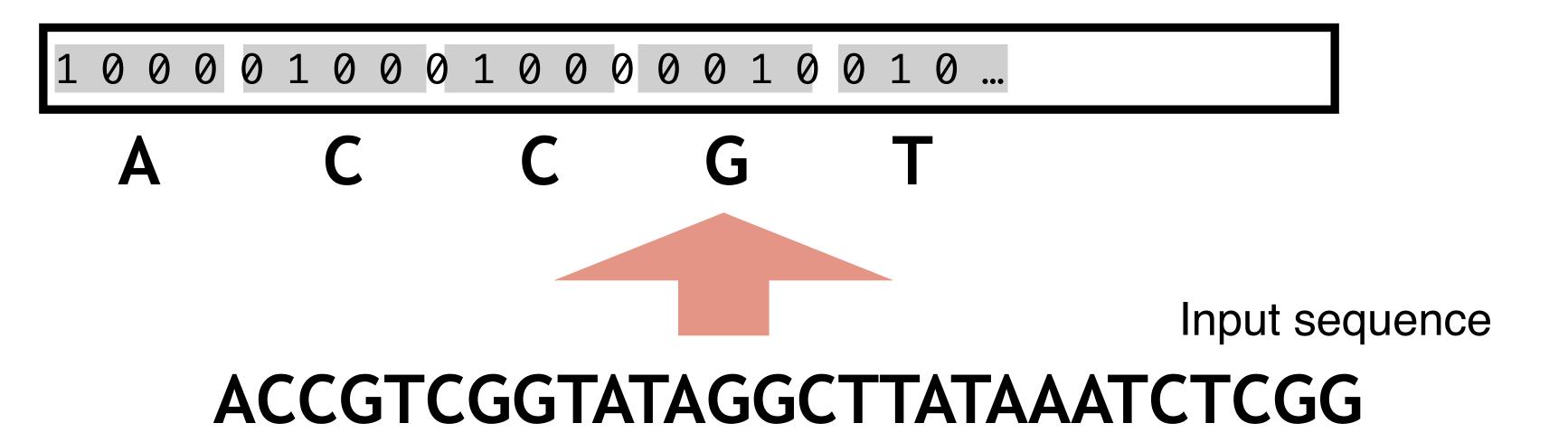


We have plenty of data to train a deep model

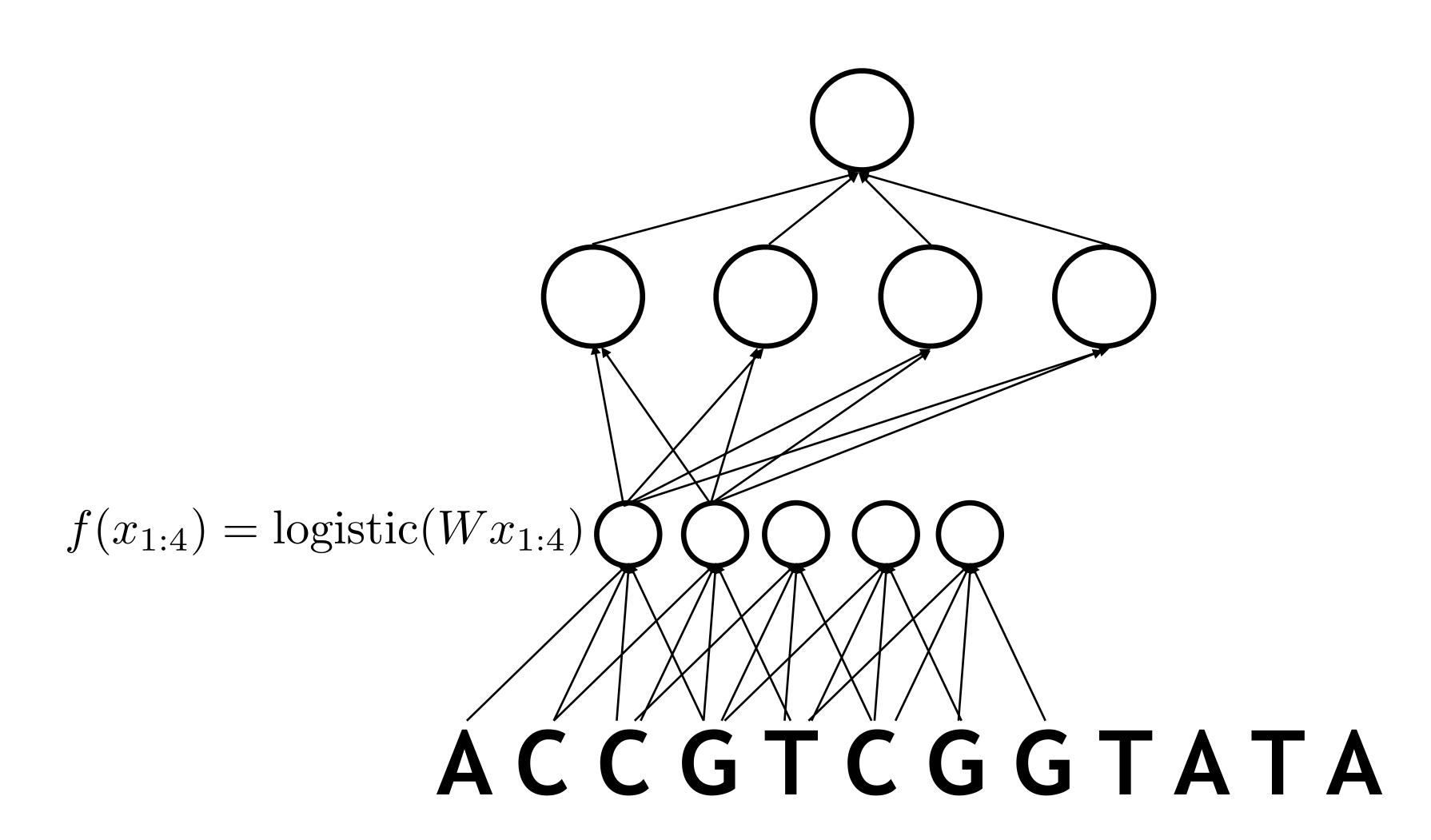


Sequence representation: one-hot encoding

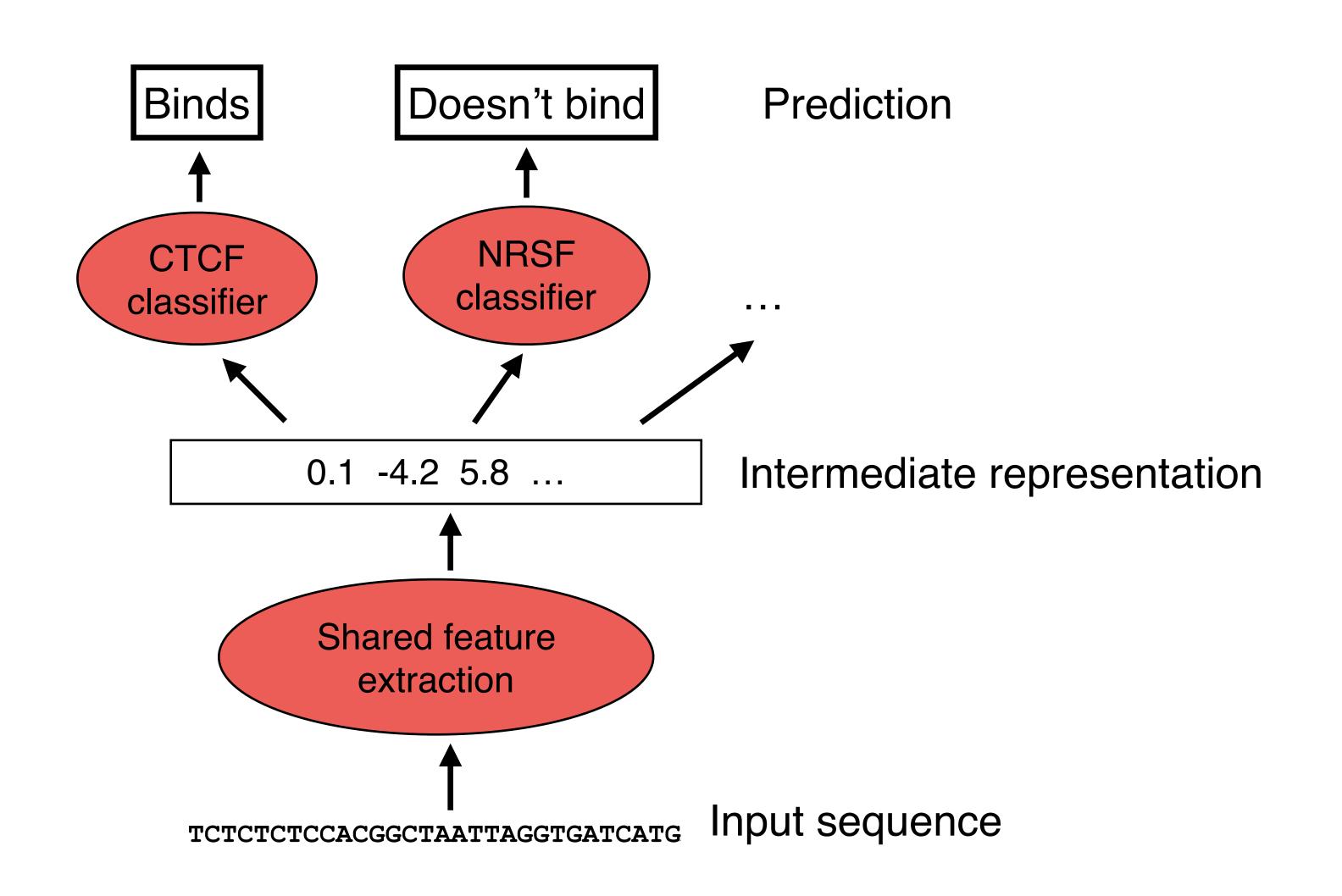
One-hot encoding

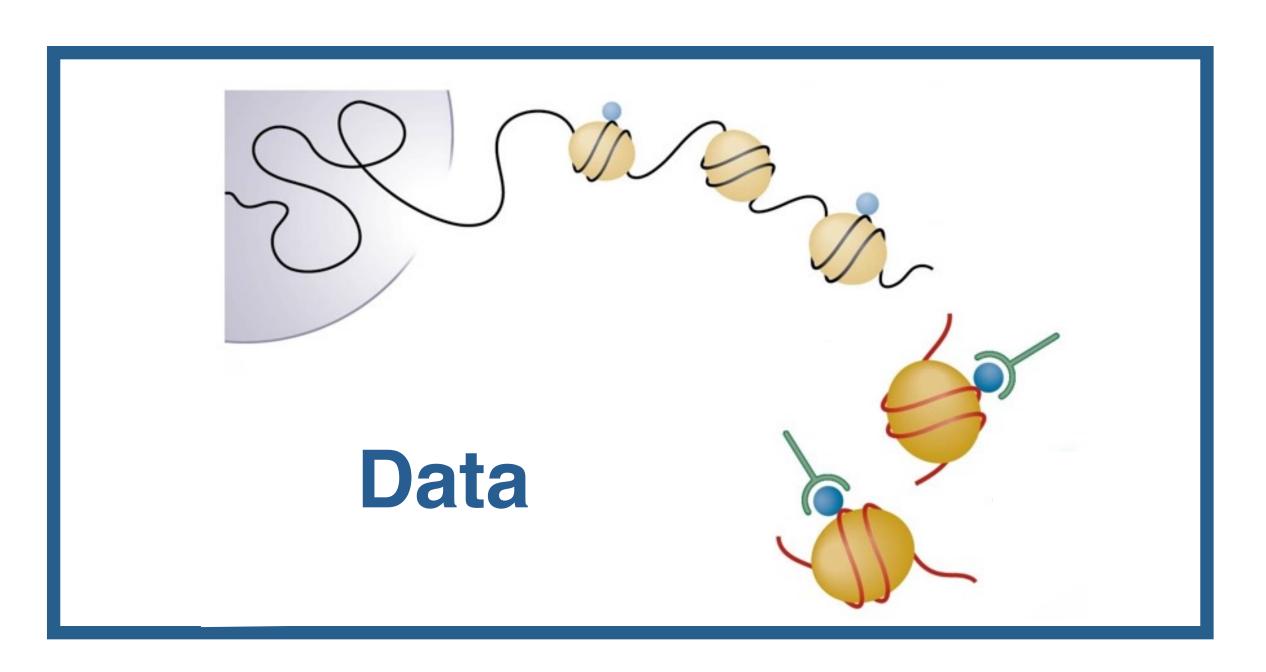


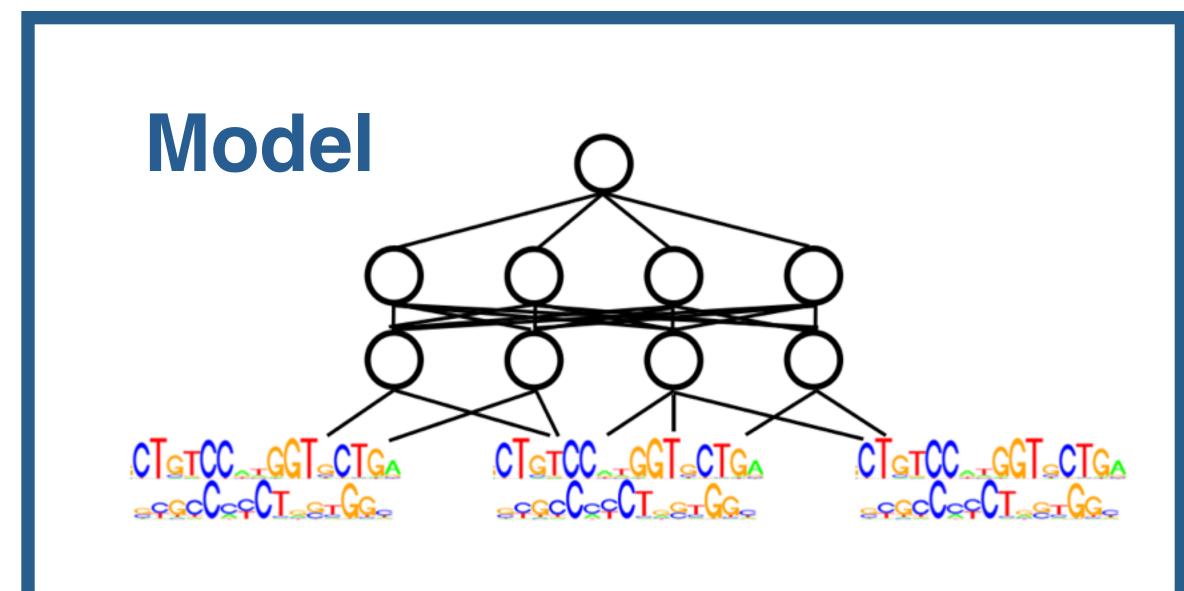
A convolutional network reduces parameters by applying the same function across each portion of the input

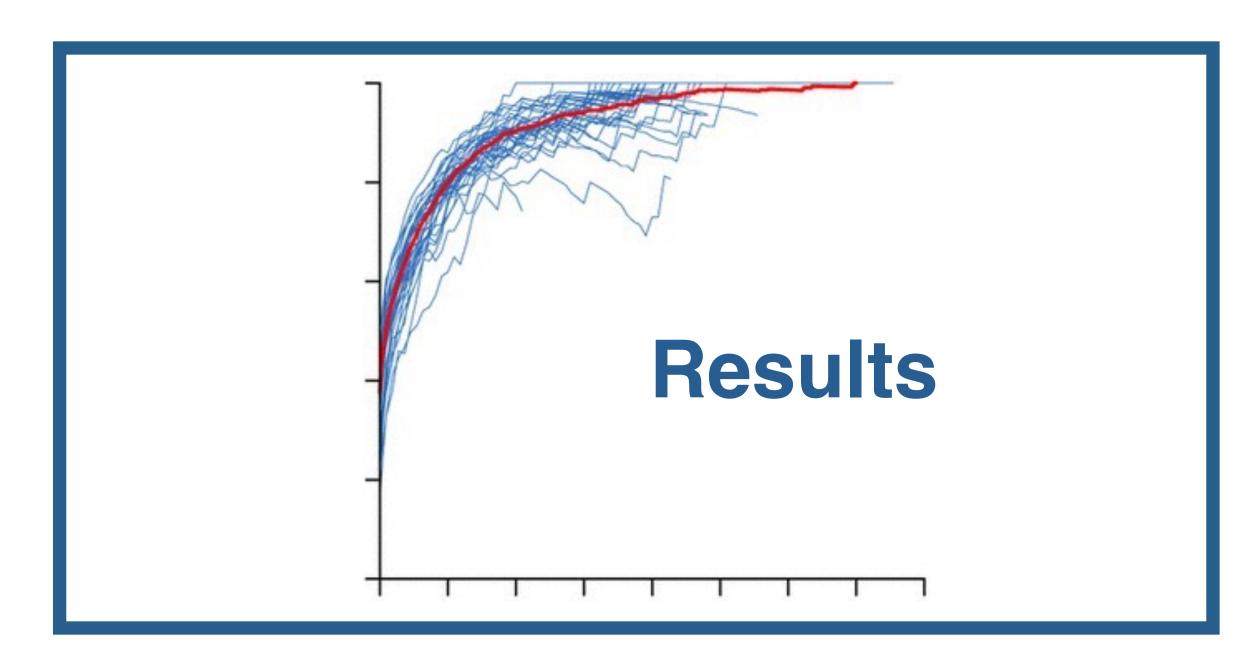


A multi-task approach shares representations between factors





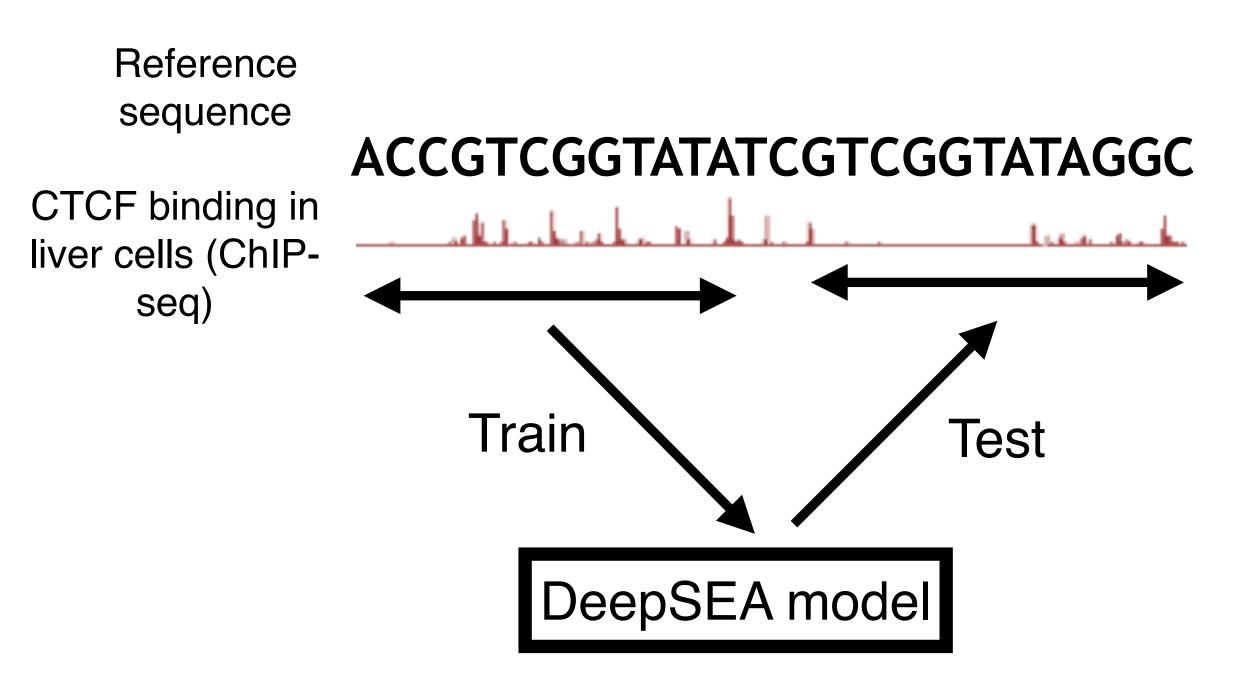


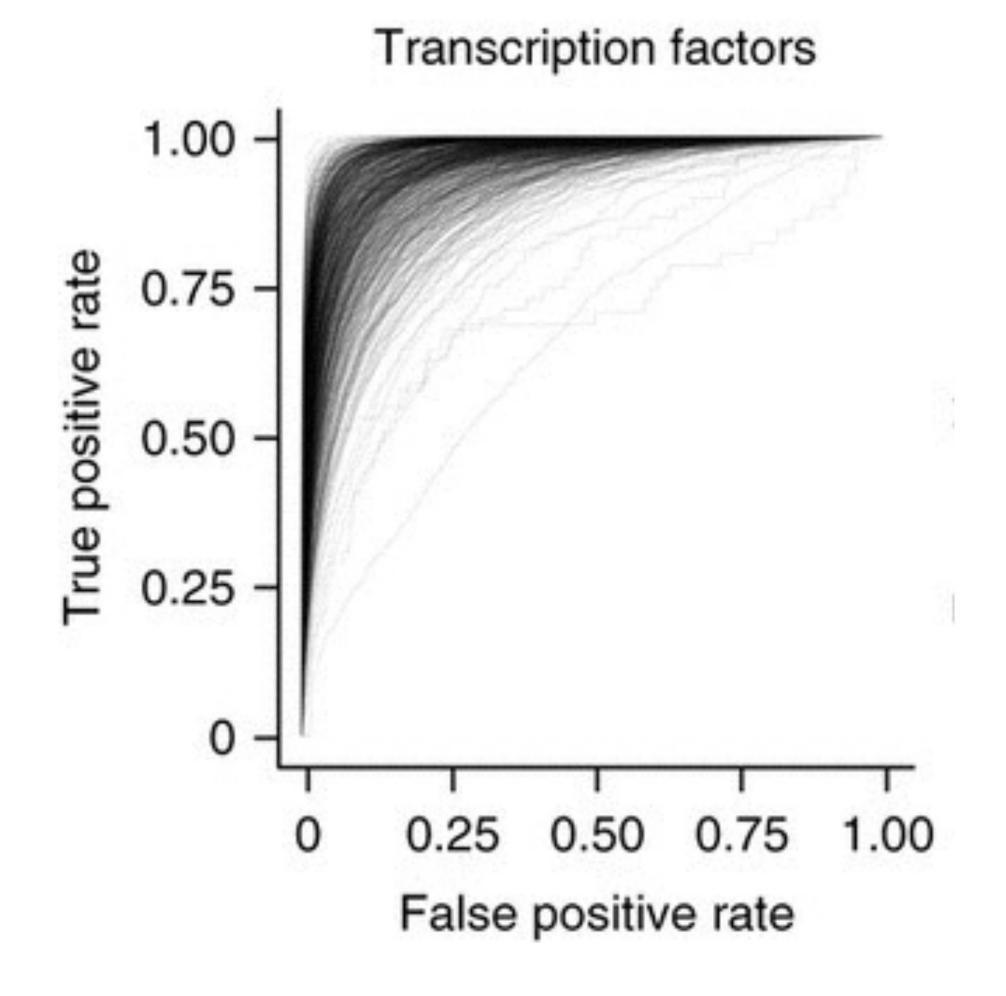


Predicting effects of noncoding variants with deep learning-based sequence model

Jian Zhou & Olga G Troyanskaya

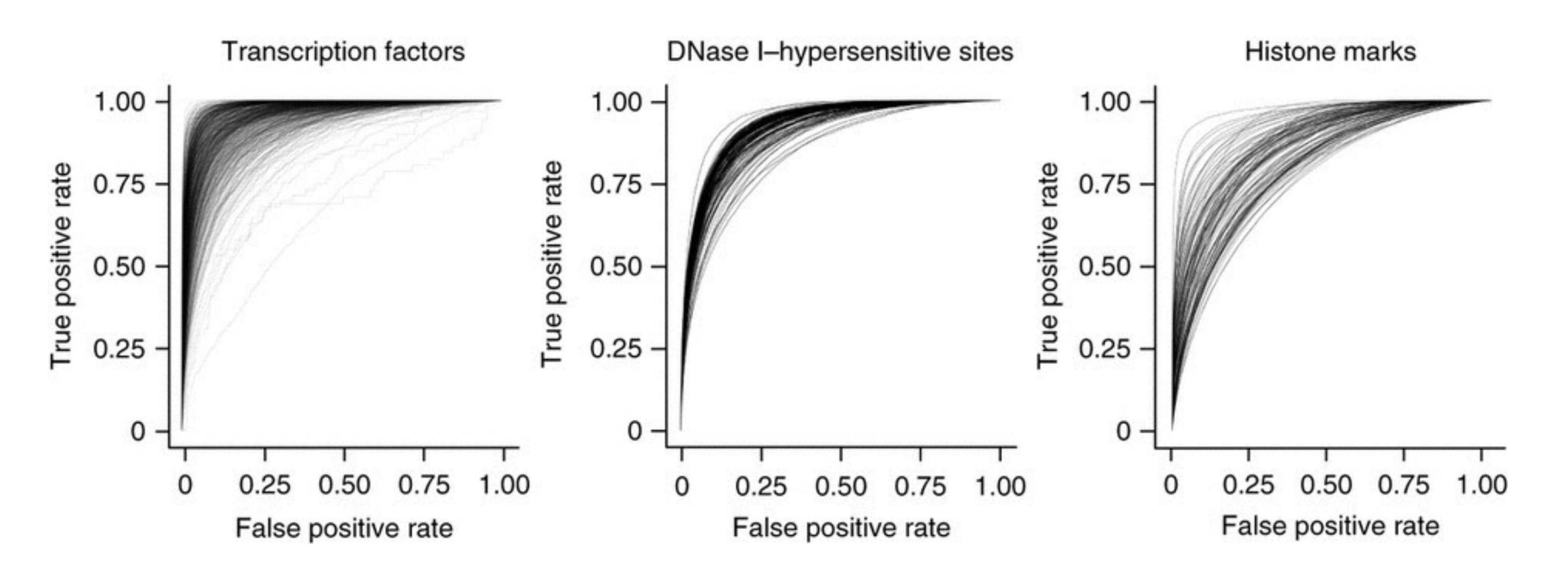
DeepSEA accurately predicts TF binding and DNase hypersensitivity



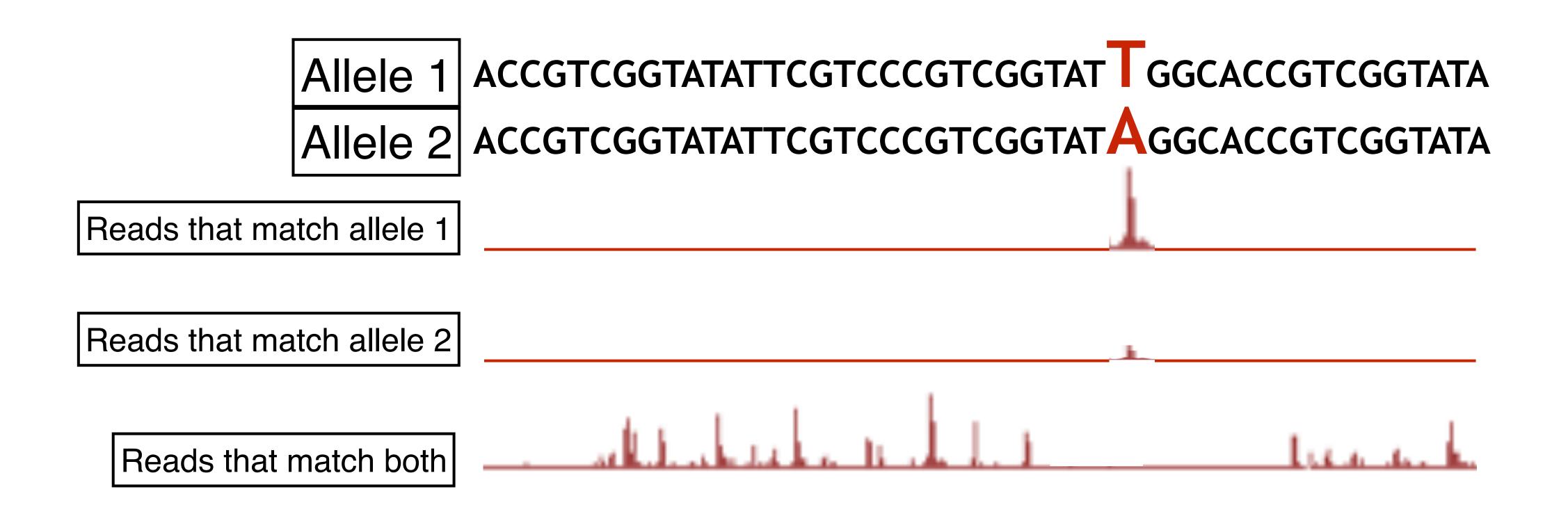


Mean AUC: 0.958

DeepSEA accurately predicts TF binding and DNase hypersensitivity



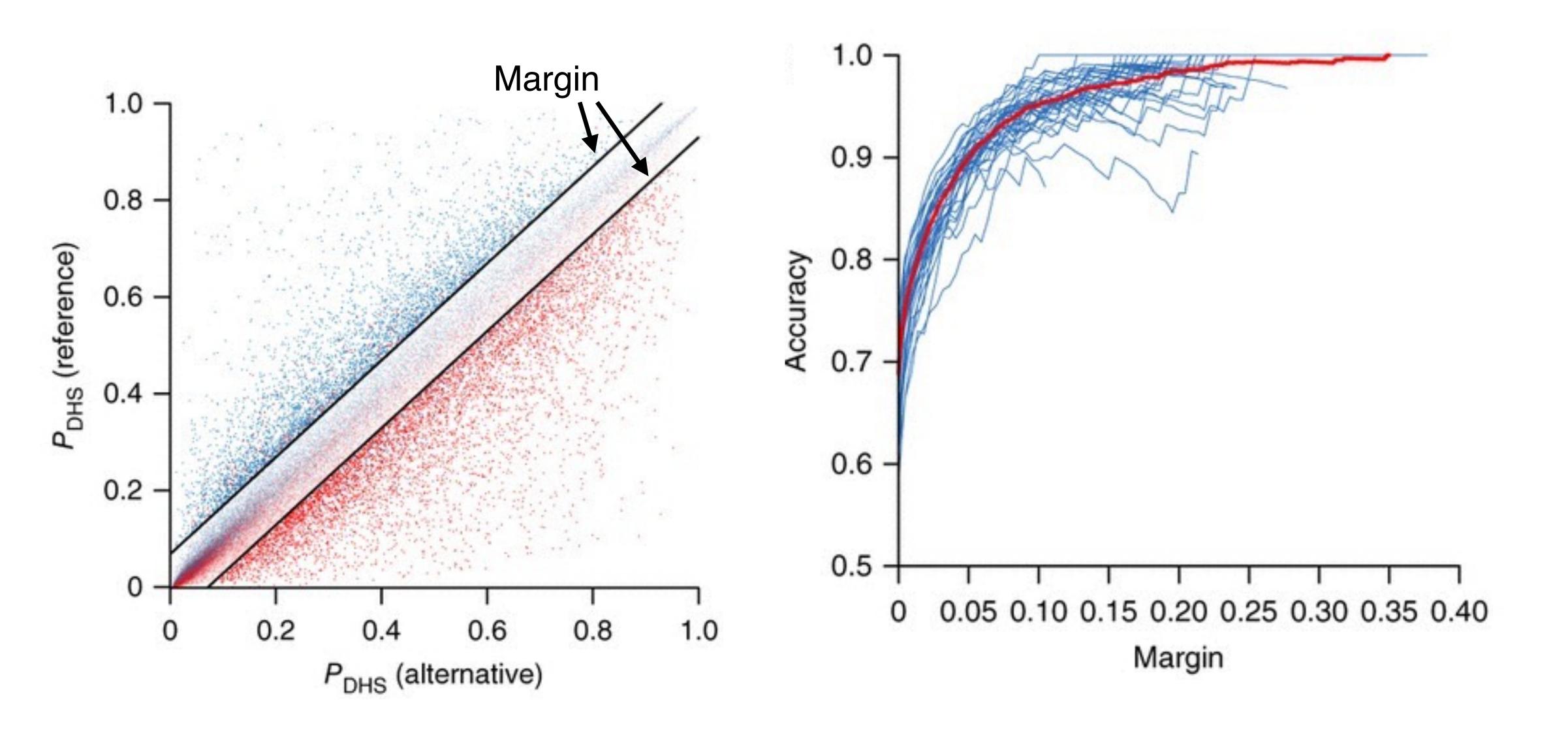
Can DeepSEA predict allelic imbalance in DNase experiments?



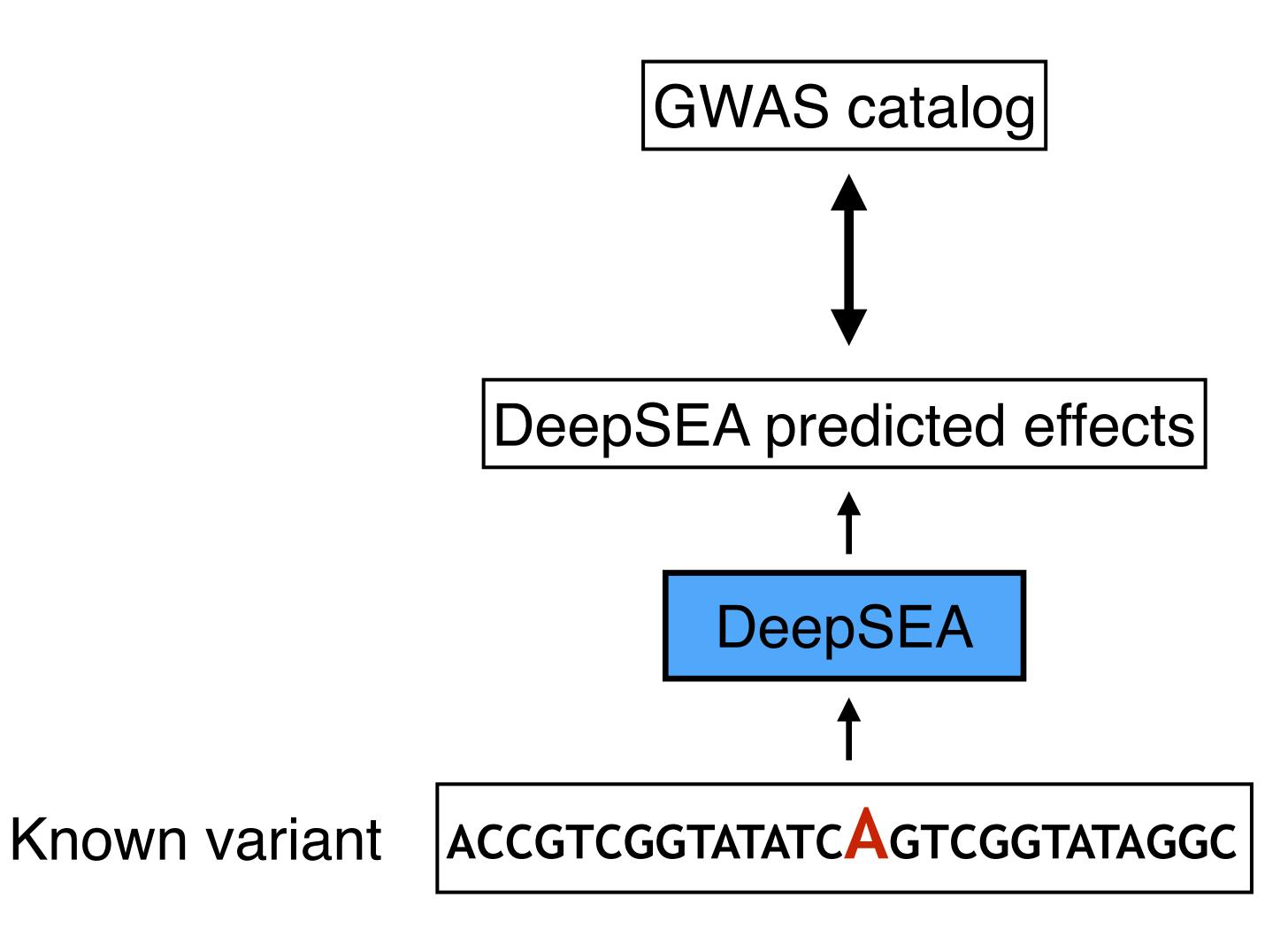
DeepSEA accurately predicts allelic imbalance in DNase experiments



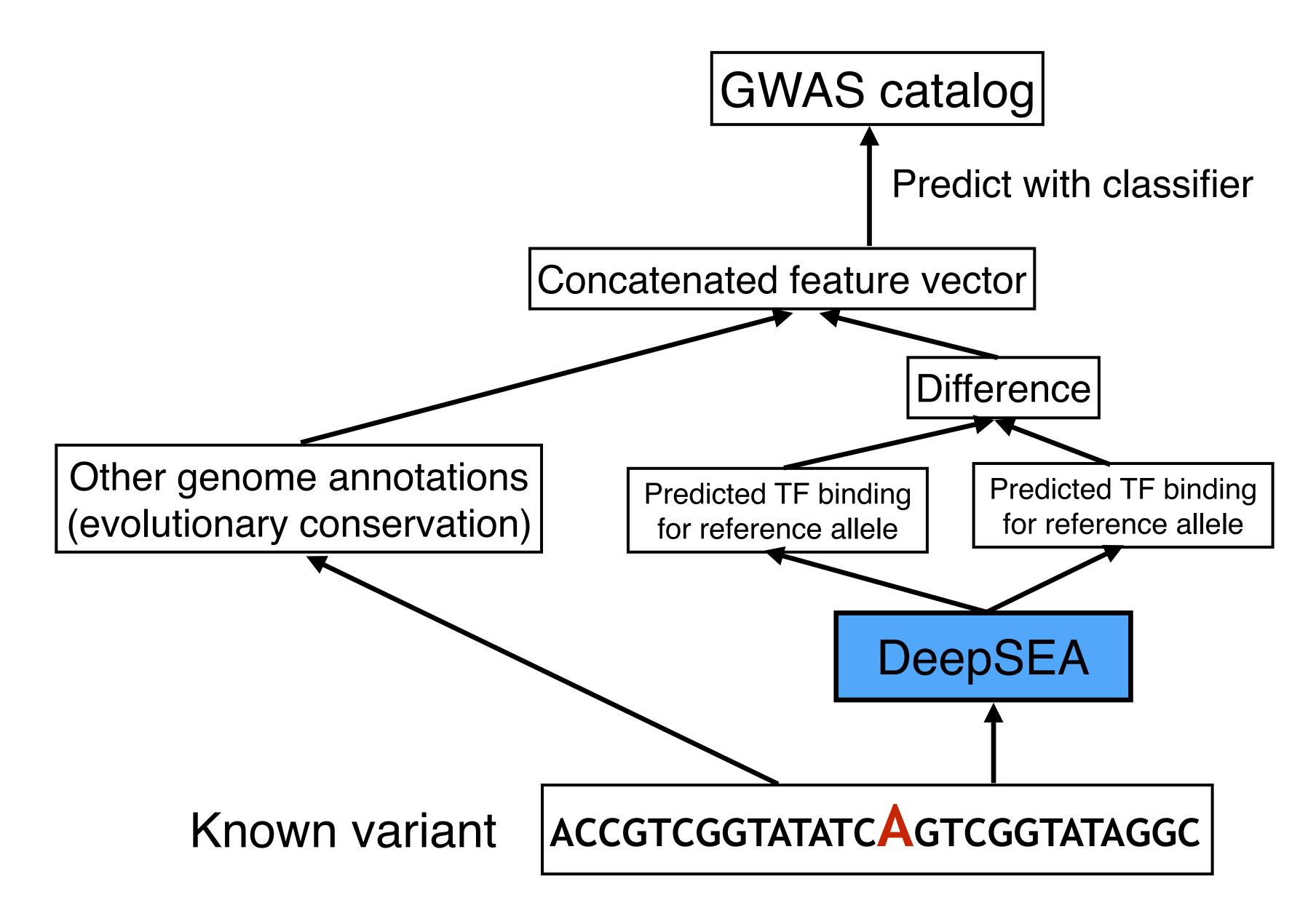
DeepSEA accurately predicts allelic imbalance in DNase experiments



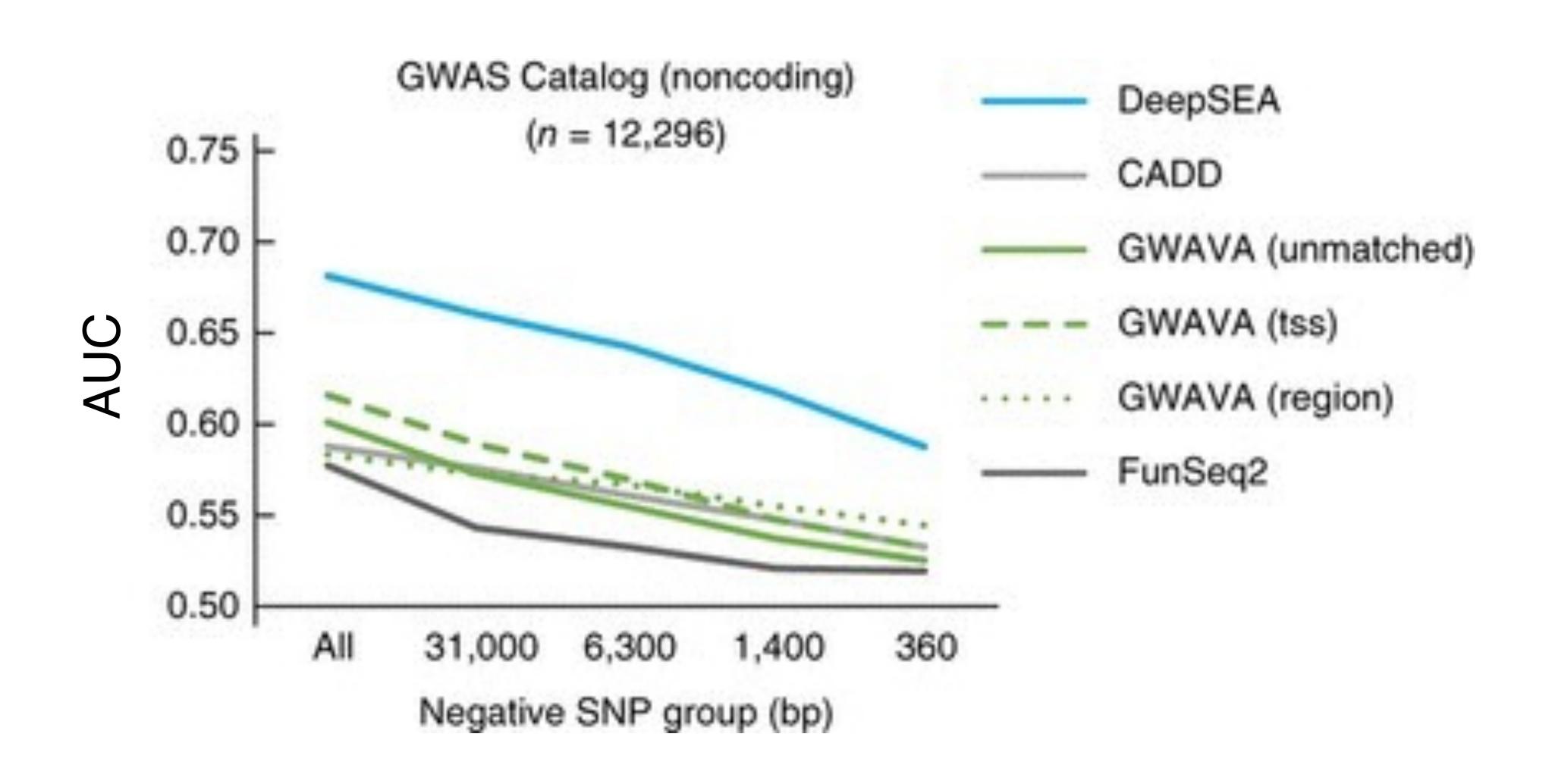
Can DeepSEA predict known regulatory variants?

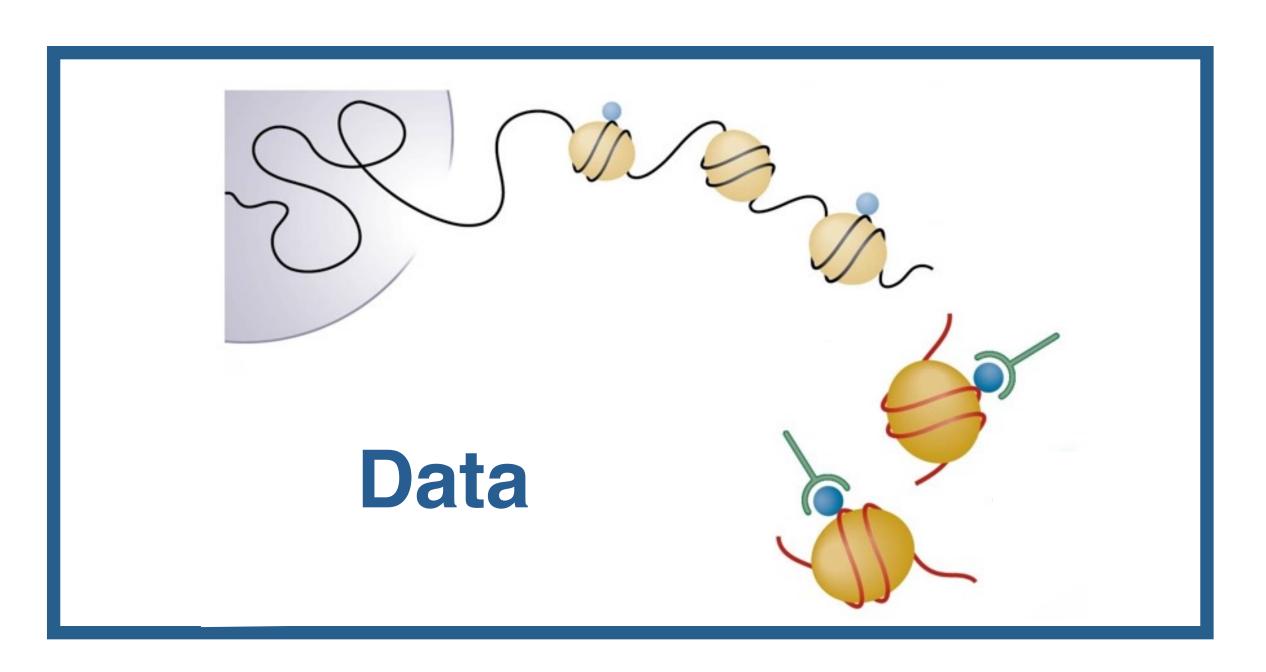


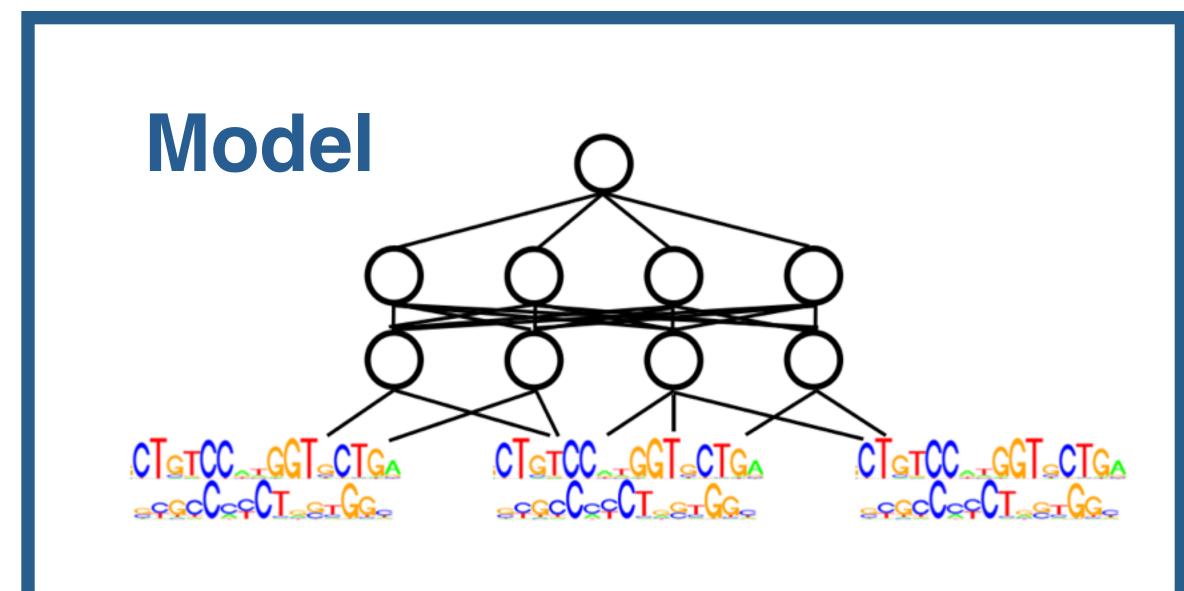
Can DeepSEA predict known regulatory variants?

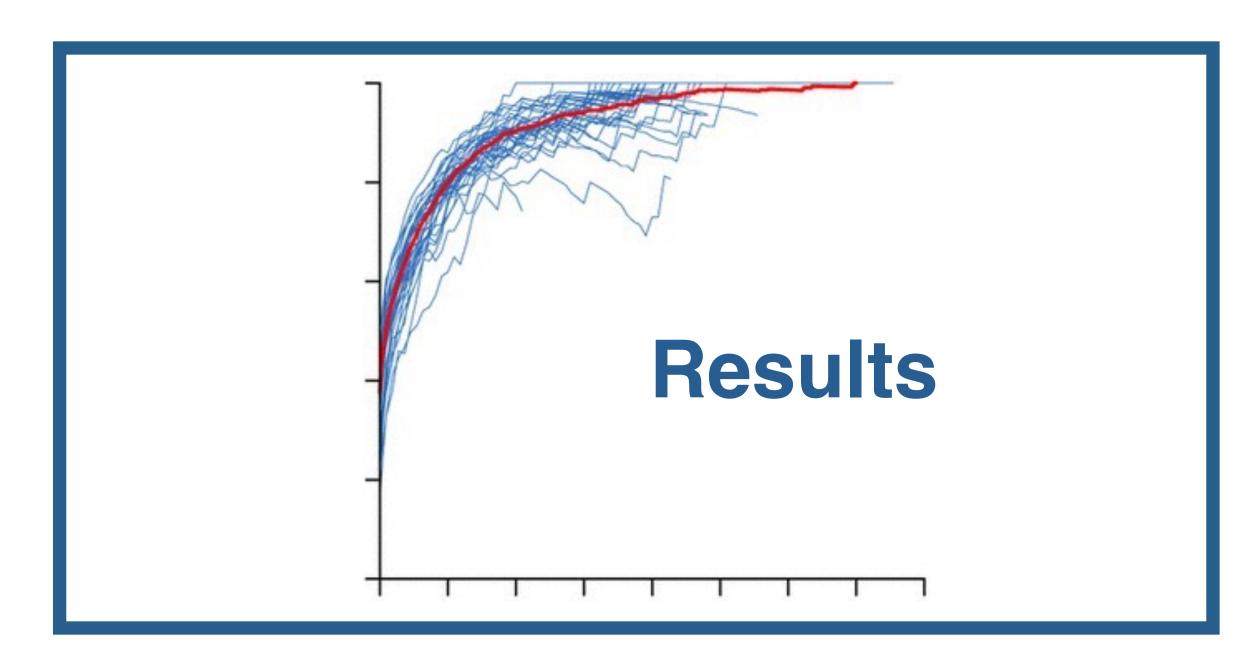


DeepSEA accurately predicts known regulatory variants









Predicting effects of noncoding variants with deep learning-based sequence model

Jian Zhou & Olga G Troyanskaya

Supplementary Note. DeepSEA model configuration

Model Architecture:

- 1. Convolution layer (320 kernels. Window size: 8. Step size: 1.)
- 2. Pooling layer (Window size: 4. Step size: 4.)
- 3. Convolution layer (480 kernels. Window size: 8. Step size: 1.)
- 4. Pooling layer (Window size: 4. Step size: 4.)
- 5. Convolution layer (960 kernels. Window size: 8. Step size: 1.)
- 6. Fully connected layer (925 neurons)
- 7. Sigmoid output layer

Regularization Parameters:

Dropout proportion (proportion of outputs randomly set to 0):

Layer 2: 20%

Layer 4: 20%

Layer 5: 50%

All other layers: 0%

L2 regularization (λ_1): 5e-07

L1 sparsity (λ_2): 1e-08

Max kernel norm (λ_3): 0.9