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How does genotype affect phenotype?

ACCGTCGGTATAGGCTTATAAATCATCGGGATCCTATTAATGAGGAAAA

1

Genetic traits
Disease
Evolutionary fithess



Genotype usually determines phenotype either through (1) protein-
coding sequence or (2) transcription factor binding
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This paper focuses on predicting the effect of sequence on TF
binding
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This paper focuses on predicting the effect of sequence on TF
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This paper focuses on predicting the effect of sequence on TF
binding
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A TF binding predictor is an important step in a
variant effect predictor

Patient genomic variant
ACCGTCGGTATAGGCATATAAATCTCGGGAT

l TF binding model

(this paper)

Variant disrupts binding of CTCF in liver cells

l Gene expression model

CTCF binding in liver cells is important for expression of gene ABC

l Cell regulation pathway model

ABC regulates insulin production

l Disease model

Patient is at risk for diabetes
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Sequencing-based genomics assays measure many types of
genomic activity
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ENCODE Project Consortium 2011. PLoS Biol 9:e1001046



ChlP-seq measures where a given protein binds along the genome
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Figure derived from Brookhaven National Laboratory Newsroom 2011-11-30



ChlP-seq measures where a given protein binds along the genome
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ChlP-seq measures where a given protein binds along the genome
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ChlP-seq measures where a given protein binds along the genome
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ChlP-seq peak calls indicate confident
transcription factor binding sites

159459500 | 159460000 159460500 |

Peak calling: Stack up the reads in the FOXAS g opapence

genome; choose the tall stacks. e Tt R B G
Issues to consider:

- Sequencing fragment lengths
-+ Sequencing read lengths i
Experimental biases FOXAS signal
Mappability

+ GC bias

How to pick a threshold and assign
statistical confidence
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Problem setup

Reference sequence| ACCGTCGGTATAGGCTATAAATCTCGGGAT

CTCF binding in L]
liver cells (ChlP-seq) bl :

'

Observed variant

ACCGTCGGTATAGGCATATAAATCTCGGGAT

\ /

Does variant affect CTCF
binding Iin liver?




The traditional model for understanding transcription
factor binding is the position-weight matrix (PWM)
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How can we get a better model than sequence
motifs?

- DNA physical shape
- Variable gaps .-
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Why deep neural networks?

Deep learning is best when you have more data than sense.
— Jacob Schreiber



The deep neural network captures complex
patterns of motif occurrence

CTCF binds
here In liver cells?

Motif spacial
relationship circuit
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Locus sequence| ACCGTCGGTATAGGCTTATAAATCTCGGGATACCGTCGGTATAGGCTTATAA




Concern: Deep neural networks have a lot of
parameters to train

~108 parameters

~102 parameters
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We have plenty of data to train a deep model

~108 genomic positions
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Sequence representation: one-hot encoding

One-hot encoding
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A convolutional network reduces parameters by applying
the same function across each portion of the input

cg}/c ®

>
f(x1.4) = logistic(Wx1.4) ‘;‘ ‘ ‘ ‘

ACCGTCGGTATA



A multi-task approach shares representations
between factors

Prediction

Intermediate representation

T

TeTcTCTCCACGeCTAATTAGETGATCATe  INPUt sequence
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DeepSEA accurately predicts TF binding and
DNase hypersensitivity

Transcription factors
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DeepSEA accurately predicts TF binding and
DNase hypersensitivity
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Can DeepSEA predict allelic imbalance in DNase experiments?

Allele 1 ACCGTCGGTATATTCGTCCCGTCGGTATTGGCACCGTCGGTATA
Allele 2 ACCGTCGGTATATTCGTCCCGTCGGTATAGGCACCGTCGGTATA

leads that match allele 1 l

leads that match allele 2 .

Reads that match both JL_L....LJ_LL 1L L‘_. 1 l_g_s._.l__L




Pps (reference)

-t
-

0.8

DeepSEA accurately predicts allelic imbalance in DNase
experiments
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DeepSEA accurately predicts allelic imbalance in DNase
experiments
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Can DeepSEA predict known regulatory
variants?

GWAS catalog

I

DeepSEA predicted effects
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Known variant |ACCGTCGGTATATCAGTCGGTATAGGC




Can DeepSEA predict known regulatory variants?

GWAS catalog

I Predict with classifier

Concatenated feature vector

ﬂrence

Other genome annotations Predicted TF binding Predicted TF binding
(evolutionary conservation) for reference allele for reference allele

j

Known variant |ACCGTCGGTATATCAGTCGGTATAGGC




DeepSEA accurately predicts known regulatory variants

GWAS Catalog (noncoding)
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Supplementary Note. DeepSEA model configuration

Model Architecture:

1. Convolution layer ( 320 kernels. Window size: 8. Step size: 1. )
2. Pooling layer ( Window size: 4. Step size: 4. )

3. Convolution layer ( 480 kernels. Window size: 8. Step size: 1. )
4. Pooling layer ( Window size: 4. Step size: 4. )

5. Convolution layer ( 960 kernels. Window size: 8. Step size: 1. )
6. Fully connected layer ( 925 neurons )

7. Sigmoid output layer

Regularization Parameters:

Dropout proportion (proportion of outputs randomly set to 0):
Layer 2: 20%

Layer 4: 20%

Layer 5: 50%

All other layers: 0%

L2 regularization (1,): 5e-07
L1 sparsity (A,): 1e-08
Max kernel norm (A;): 0.9




