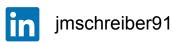


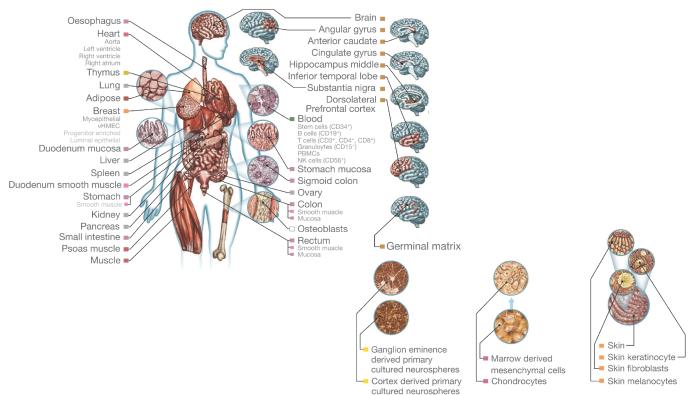
Multi-scale Deep Tensor Factorization Learns a Latent Representation of the Human Epigenome

Jacob Schreiber
Paul G. Allen School of Computer Science
University of Washington



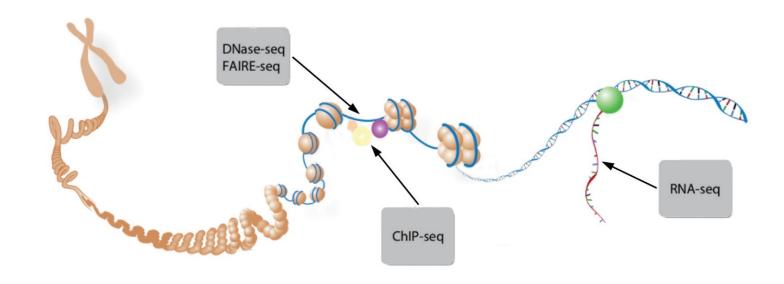


The sequence of the human genome cannot explain the diversity of human cell types



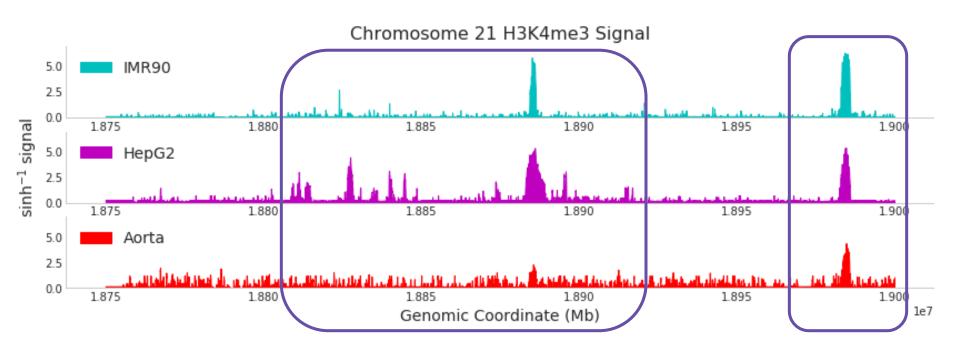
Credits: Roadmap Consortium, Nature (2015)

Many measurements can be gathered in addition to nucleotide sequence

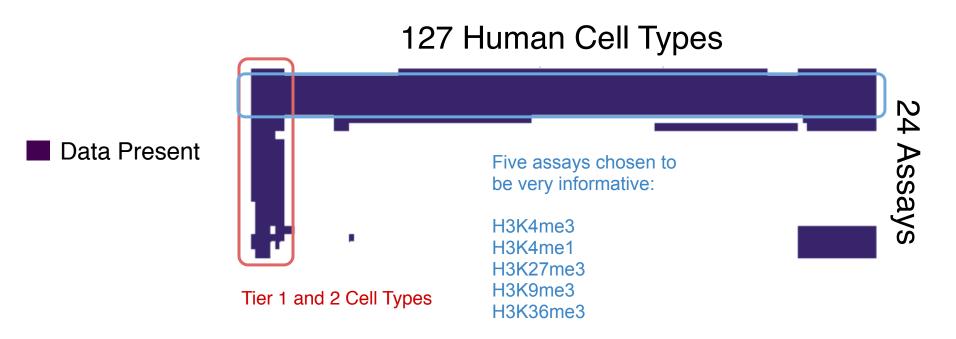


Credits: Darryl Leja (NHGRI), Ian Dunham (EBI)

The signal of epigenomic assays vary across cell types

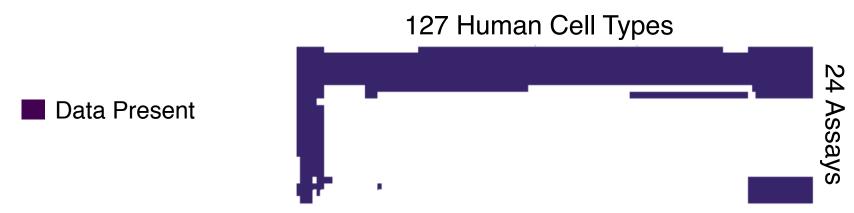


Many experiments have been performed, but still only a fraction of possible experiments



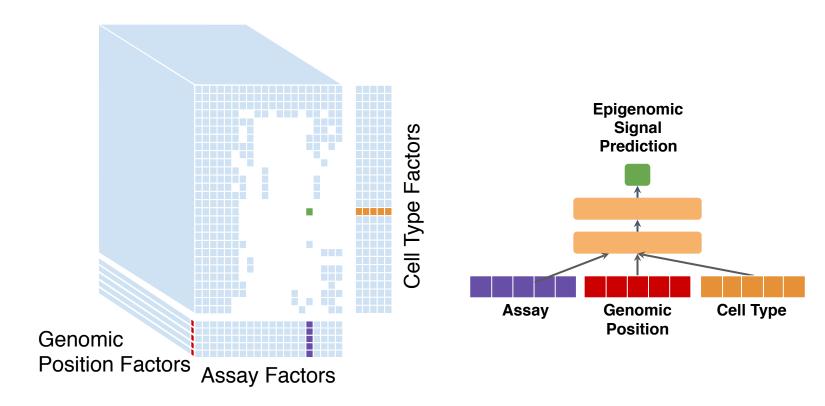
1,014 experiments performed out of a possible 3,048

Have we characterized the human epigenome yet?

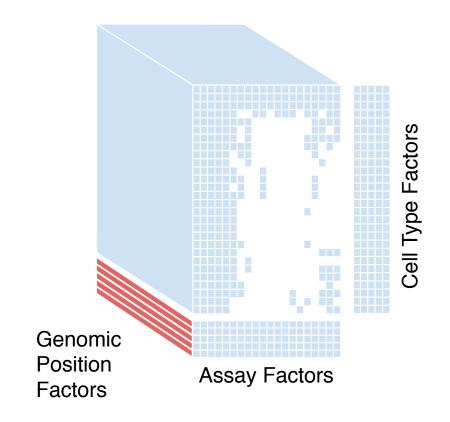


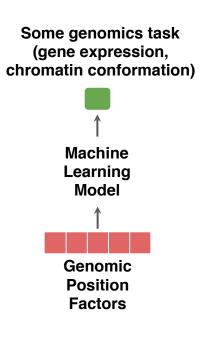
- Previous work sought to fully characterize the epigenome through imputing all potential experiments (ChromImpute¹, PREDICTD²)
- Can we characterize the epigenome through distilling the available measurements into an informative latent representation?
 - 1. Ernst, et al. Nature Methods, 2015
 - 2. Durham, et al. Nature Communications, 2018

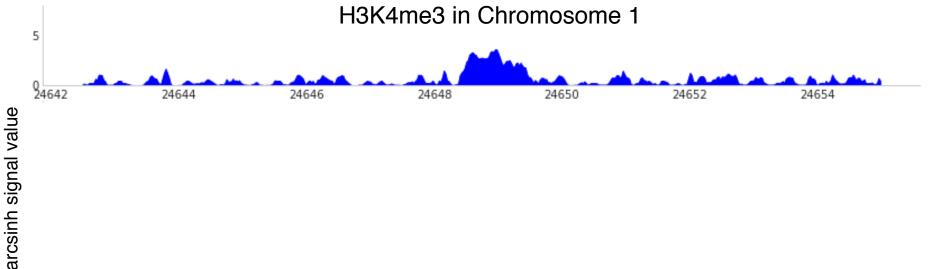
Avocado is a deep tensor factorization approach

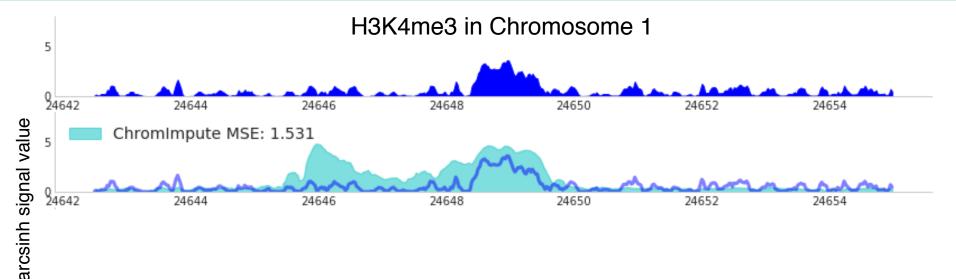


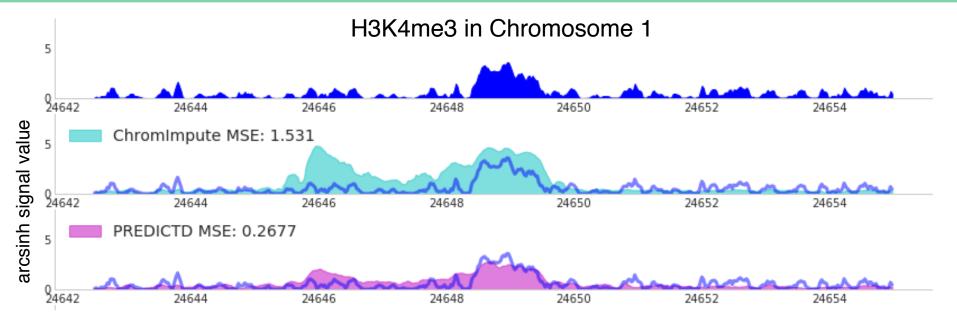
Our goal is to use the genomic latent factors for other tasks

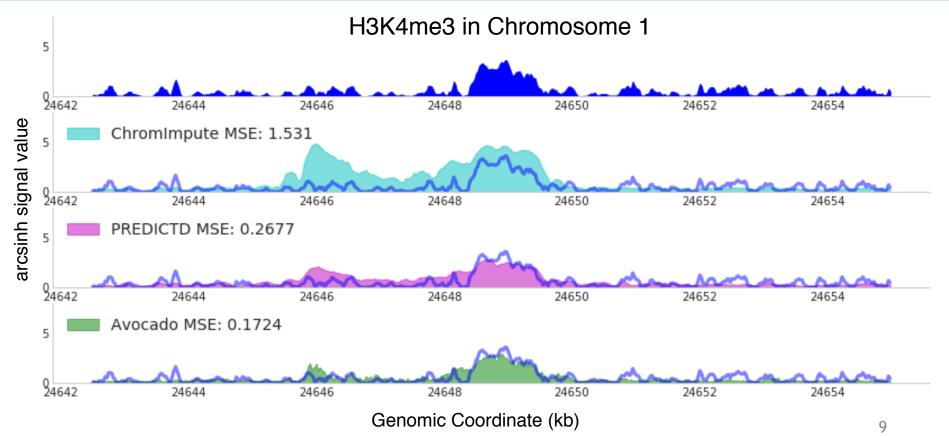


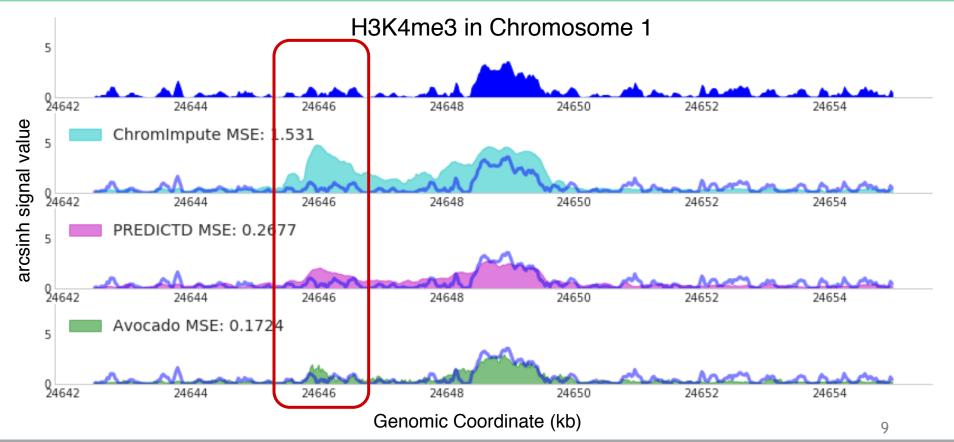












Avocado continues to perform well genome-wide

MSE-	global	1obs	1imp	Prom	\mathbf{Gene}	\mathbf{Enh}
ChromImpute	0.113	0.941	1.09	0.3246	0.1494	0.3164
PREDICTD	0.1	1.76	0.897	0.2576	0.1295	0.267
Avocado	0.1	1.66	0.845	0.249	0.1295	0.26

MSE-global: Mean squared error (MSE) across the full length of the genome

MSE-1obs: MSE at the top 1% of genomic positions ranked by experimental signal

MSE-1imp: MSE at the top 1% of genomic positions ranked by imputed signal

MSE-Prom: MSE at promoter regions defined by GENCODE

MSE-Gene: MSE at gene bodies defined by GENCODE

MSE-Enh: MSE at enhancer regions defined by FANTOM5

Avocado continues to perform well genome-wide

???

MSE-	global	$1 \mathrm{obs}$	1imp	Prom	\mathbf{Gene}	\mathbf{Enh}
ChromImpute	0.113	0.941	1.09	0.3246	0.1494	0.3164
PREDICTD	0.1	1.76	0.897	0.2576	0.1295	0.267
Avocado	0.1	1.66	0.845	0.249	0.1295	0.26
				,		

MSE-global: Mean squared error (MSE) across the full length of the genome

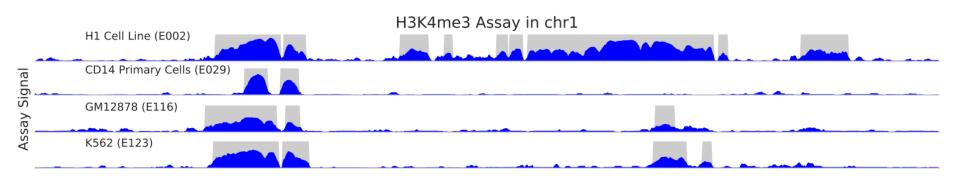
MSE-1obs: MSE at the top 1% of genomic positions ranked by experimental signal

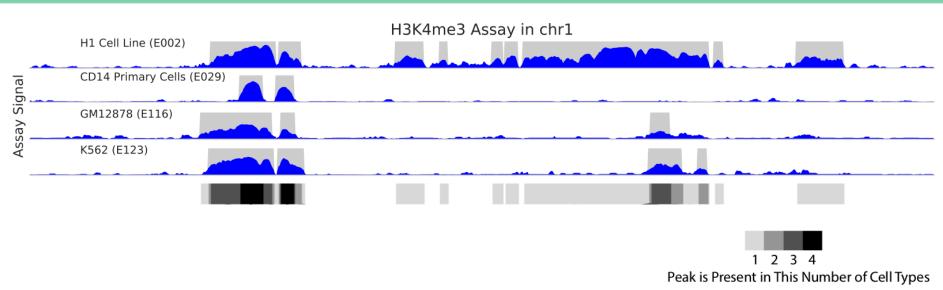
MSE-1imp: MSE at the top 1% of genomic positions ranked by imputed signal

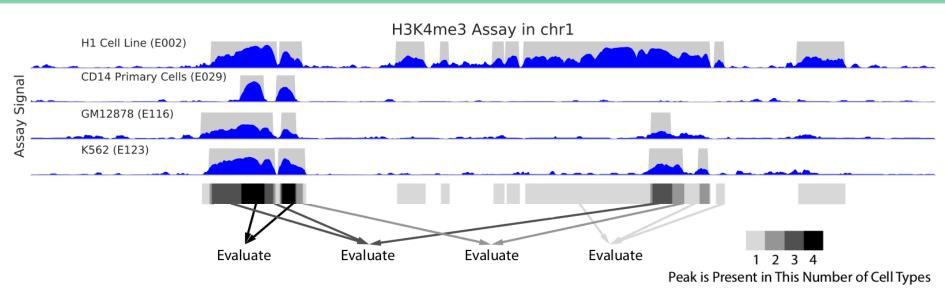
MSE-Prom: MSE at promoter regions defined by GENCODE

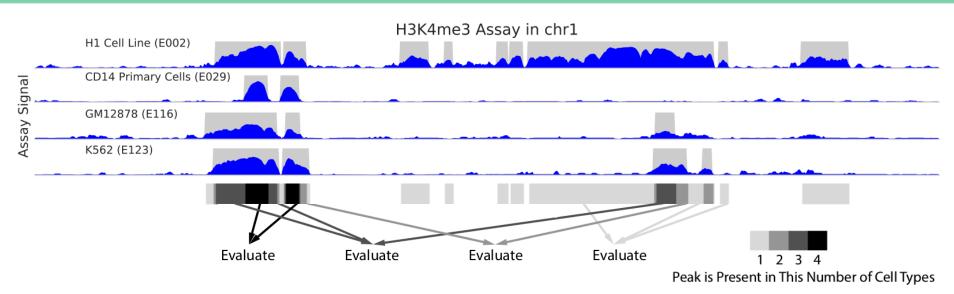
MSE-Gene: MSE at gene bodies defined by GENCODE

MSE-Enh: MSE at enhancer regions defined by FANTOM5



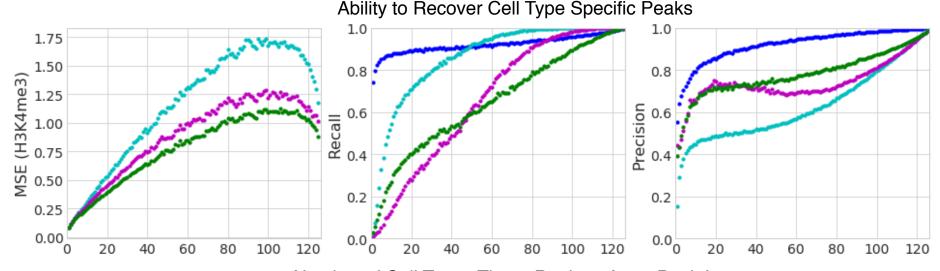






Evaluate by calculating:

- (1) MSE
- (2) Recall (thresholding the imputed signal at 1.44)
- (3) Precision (thresholding the imputed signal at 1.44)



- Experimental Data
- Number of Cell Types These Regions Are a Peak In

- ChromImpute
- PREDICTD
- Avocado

STEP 1:

Choose a Prediction Task

- Gene Expression
- Promoter-Enhancer Interactions
- Frequently Interacting REgions (FIREs)
- Topologically Associating Domain (TAD) boundaries

STEP 1:

Choose a Prediction Task

- Gene Expression
- Promoter-Enhancer Interactions
- Frequently Interacting REgions (FIREs)
- Topologically Associating Domain (TAD) boundaries

STEP 2:

Choose a Cell Type

Task dependant

STEP 1:

Choose a Prediction Task

- Gene Expression
- Promoter-Enhancer Interactions
- Frequently Interacting REgions (FIREs)
- Topologically Associating Domain (TAD) boundaries

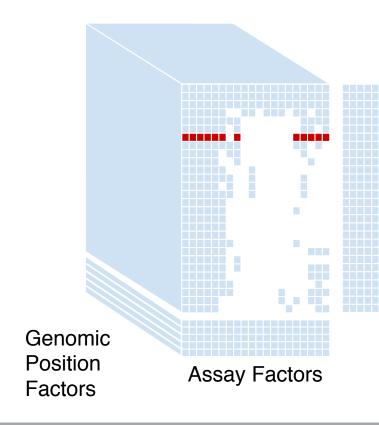
STEP 2:

Choose a Cell Type

Task dependant

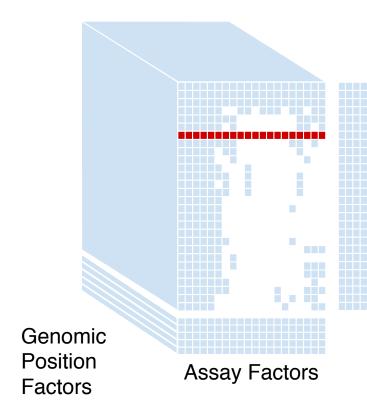
STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium



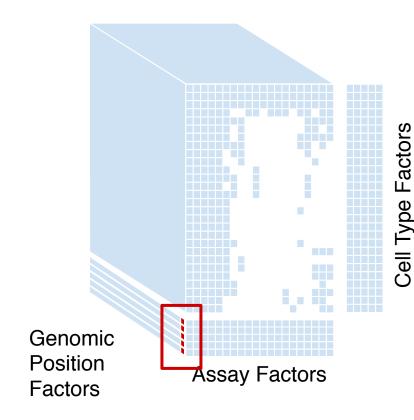
STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium



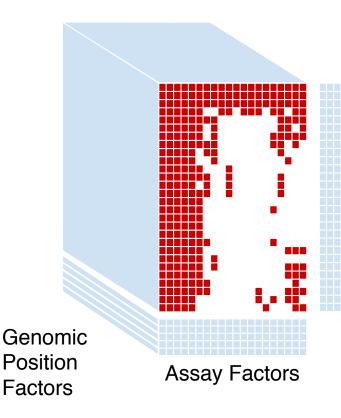
STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium



STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium



STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium

STEP 1:

Choose a Prediction Task

- Gene Expression
- Promoter-Enhancer Interactions
- Frequently Interacting REgions (FIREs)
- Topologically Associating Domain (TAD) boundaries

STEP 2:

Choose a Cell Type

Task dependant

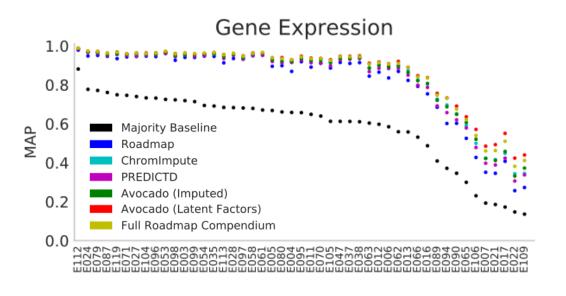
STEP 4:

Run 5 fold CV on data set using a gradient boosting machine classifier and calculate the mean average precision (MAP) over all five folds

STEP 3:

- Available epigenomic tracks from the chosen cell type
- Full set of ChromImpute imputed marks for that cell type
- Full set of PREDICTD imputed marks for that cell type
- Full set of Avocado imputed marks for that cell type
- Avocado latent factors
- Full Roadmap compendium

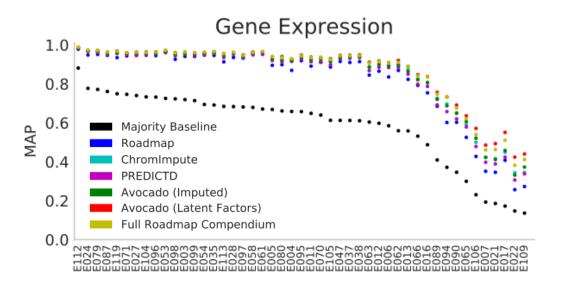
Avocado latent factors can predict gene expression



Avocado > Epigenomic Measurements

- All cell types
- By an average of 0.144 MAP
- By an average of 0.167 MAP on the
 7 most difficult cell types

Avocado latent factors can predict gene expression



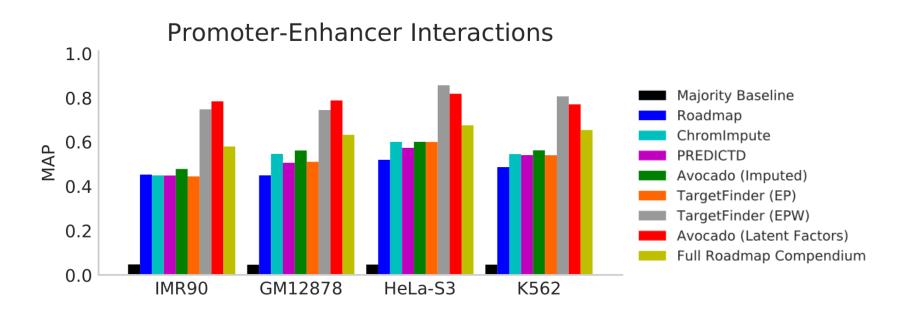
Avocado > Epigenomic Measurements

- All cell types
- By an average of 0.144 MAP
- By an average of 0.167 MAP on the
 7 most difficult cell types

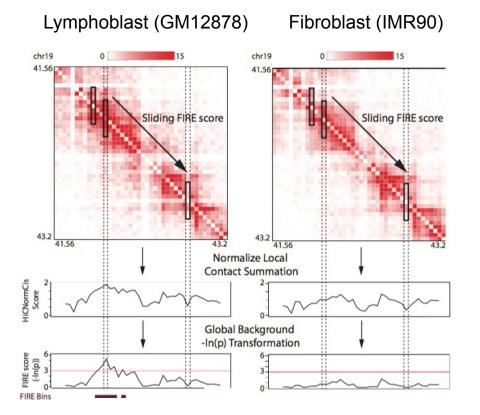
Avocado > Full Roadmap Compendium

- 36 / 47 cell types
- By an average of 0.006 MAP
- By an average of 0.03 MAP on the
 7 most difficult cell types

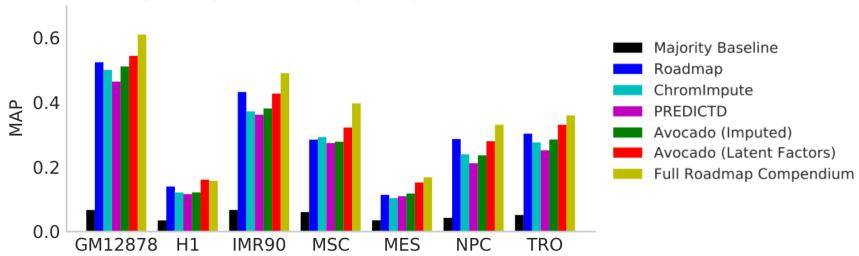
Avocado latent factors can predict promoter-enhancer interactions



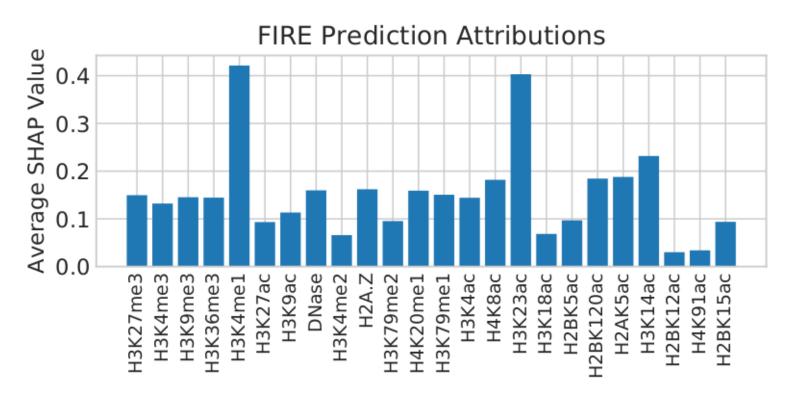
Avocado latent factors can predict FIREs



Avocado latent factors can predict FIREs

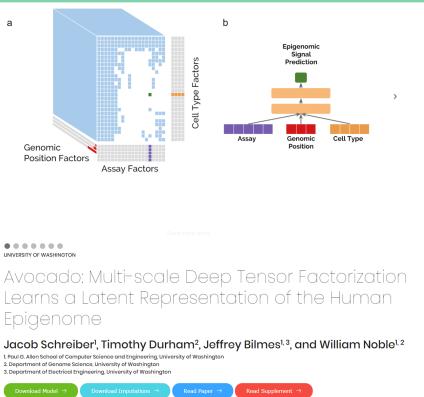


Feature attribution methods reveal two important marks



- Avocado is a deep tensor factorization approach for modeling the human epigenome
- After being trained to impute epigenomic marks, it yields more accurate imputations than previous work
- Avocado's genome latent factors serve as a useful input for machine learning models on downstream genomics tasks, outperforming using epigenomic measurements themselves
- Using the entirety of the Roadmap compendium appears to be a stronger baseline than expected suggesting that measurements in many cell types can aid the prediction for a single cell type

Preprint and model are online now!



HOME | AB | CHANNEL

Search

New Results

Multi-scale deep tensor factorization learns a latent representation of the human epigenome

Jacob Schreiber, Timothy J Durham, Jeffrey Bilmes, William Stafford Noble doi: https://doi.org/10.1101/364976

This article is a preprint and has not been peer-reviewed [what does this mean?].

Abstract

Info/History

Metrics

Supplementary material

Preview PDF

Abstract

The human epigenome has been experimentally characterized by measurements of protein binding, chromatin acessibility, methylation, and histone modification in hundreds of cell types. The result is a huge compendium of data, consisting of thousands of measurements for every basepair in the human genome. These data are difficult to make sense of, not only for humans,

Acknowledgements

