
Small Lisp Reference Manual

Robert D. Cameron Anthony H. Dixon

Extracted from Appendix B of Symbolic Computing with Lisp. Prentice Hall, 1992.

1 Lexical Structure

A Small Lisp program consists of a stream of tokens and comment lines embedded in white

space. White space is a sequence of one or more blanks, horizontal tabs, and newlines. Any

amount of white space may separate tokens and/or comment lines, but none is generally

required. The only exceptions are that some white space is required to separate consecutive

atoms or identi�ers (see below). White space may not appear within any token. Blanks

and tab characters may appear within comment lines, however.

Small Lisp tokens can be divided into the following categories: symbolic atoms, numeric

atoms, identi�ers, and punctuation marks. Symbolic and numeric atoms are the elementary

data objects of Small Lisp.

hsymbolic-atomi ::= hletteri f [-] hletteri j [-] hdigiti g j

hspeciali f hspeciali g

hletteri ::= A j B j C j . . . j Z j a j b j c j . . . j z

hdigiti ::= 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9

hspeciali ::= + j - j * j / j < j > j = j & j | j ! j @ j

j $ j % j ? j :

hnumeric-atomi ::= [-] hdigiti f hdigiti g

Identi�ers are used as function and variable names and have a similar syntax to that of

symbolic atoms.

hidenti�eri ::= hletteri f [-] hletteri j [-] hdigiti g

The distinction between symbolic atoms and identi�ers is context-dependent.

Small Lisp is case-sensitive. Thus foo, Foo, fOO, and FOO are distinct entities, whether

interpreted as identi�ers or as symbolic atoms.

The following single characters are used as punctuation marks in Small Lisp:

[] f g () " = ; :

In addition, the three-character sequence --> is also a punctuation mark. Note that some

of the punctuation marks are also acceptable as symbolic atoms; again, the distinction is

context-dependent.

Comment lines are lines of source text beginning with three semicolons (;;;). One or

more consecutive comment lines comprise a comment.

1

hcommenti ::= f hcomment-lineig

hcomment-linei ::= a line of source text beginning ;;;

Comments are descriptive text which may appear only at the level of global declarations (see

Section 4.2).

2 Symbolic Data

The data objects of Small Lisp are called S-expressions.

hS-expressioni ::= hatomi j hlisti

hatomi ::= hnumeric-atomi j hsymbolic-atomi

Atoms are the elementary data objects of the S-expression domain. Lists are structured data

objects which may be composed of atoms and other lists.

hlisti ::= (f hS-expressioni g)

A list may be empty, in which case it is denoted thus: ().

1

Note that identi�ers, and

punctuation marks other than (and), do not appear in S-expressions.

The atoms T and F are used to represent the Boolean values \true" and \false," respec-

tively. Outside of the Boolean domain, however, T and F are simply ordinary atoms which

may be used for other purposes.

3 Expressions

Expressions specify the computation of values in the context of sets of function de�nitions

and variable bindings. The value of an expression is always either an S-expression or the

special value ? (\bottom"), indicating an unde�ned or erroneous computation. However, if

? is the result of an evaluation, an implementation may instead report that the computation

is in error with a suitable error message.

There are several kinds of expression in Small Lisp.

hexpressioni ::= hvaluei j hvariablei j hfunction-calli j

hconditional-expressioni j hlet-expressioni

3.1 Value Expressions

A value expression allows an S-expression to be represented as a value without further

computation.

hvaluei ::= hnumeric-atomi j " hsymbolic-atomi " j hlisti

Numeric atoms and lists can be used directly to represent themselves. Symbolic atoms must

be enclosed in quotation marks to distinguish them from variable identi�ers.

1

In contrast to other Lisp dialects, the empty list is not an atom in Small Lisp.

2

3.2 Variables

Variable names use the identi�er syntax.

hvariablei ::= hidenti�eri

An identi�er has a denotation as a variable if it is

1. One of the prede�ned variables T, F or otherwise

2. Globally de�ned in a constant-de�nition (Section 4.1)

3. Locally de�ned as a function parameter (Section 4.2)

4. Locally de�ned in a let-expression (Section 3.4).

If an identi�er denotes a variable, its value is the current binding of the variable established

at the point of de�nition. The variables T, F, and otherwise are prede�ned to have the

values T, F, and T, respectively. If an identi�er does not denote a variable, its value is ?.

The use of an identi�er as a variable name does not preclude its simultaneous use as a

function name (i.e., the namespaces of variables and functions are distinct). In the context

of an expression, however, an identi�er is always interpreted as a variable.

3.3 Conditional Expressions

Conditional expressions specify alternative ways for computing a value depending on given

logical conditions.

hconditional-expressioni ::= [hclause-listi]

hclause-listi ::= hclausei f ; hclausei g

hclausei ::= hexpressioni --> hexpressioni

A conditional expression of n clauses each of the form p

i

--> r

i

for 1 � i � n evaluates to

1. The value of r

i

, if for each k such that 1 � k < i, p

k

evaluates to F and p

i

evaluates to

T.

2. ?, if for each k such that 1 � k < i, p

k

evaluates to F and evaluation of p

i

yields a

value other than T or F.

3. ?, if for each k such that 1 � k � n, p

k

evaluates to F.

3.4 Let Expressions

Let expressions allow expressions to be evaluated in the context of local variable assignments.

hlet-expressioni ::= { hlet-listi : hexpressioni }

hlet-listi ::= hlocal-de�nitioni f ; hlocal-de�nitioni g

hlocal-de�nitioni ::= hvariablei = hexpressioni

3

Given an initial set of variable bindings E, a let expression having a �nal expression a and

n local de�nitions each of the form v

i

= e

i

for 1 � i � n evaluates to

1. The value of a in the context of E

0

, where E

0

is E with the additional or updated

bindings of the variables v

i

to the respective values of e

i

each evaluated in the context

of E, provided that no such evaluation yields ?.

2. ?, if for any i, e

i

evaluated in the context of E yields ?.

3.5 Function Calls

Function calls allow user-de�ned or primitive functions to be called with speci�ed argument

values.

hfunction-calli ::= hfunction-namei [hargument-listi]

hfunction-namei ::= hidenti�eri

hargument-listi ::= hexpressioni f ; hexpressioni g

A function call evaluates to ? if

1. The function name speci�ed is neither the name of a user-de�ned function or a primitive

function.

2. The function name is that of a primitive function and the number of arguments given

is not equal to the number of parameters speci�ed in Section 5 for that primitive.

3. The function name is that of a user-de�ned function and the number of arguments

given is not equal to the number of parameters speci�ed in its function de�nition (see

Section 4.2).

4. Any of the arguments evaluates to ?.

Otherwise, the value of a function call is computed by applying the named function to the

list of evaluated arguments according to the rules of Section 5 for primitive functions and

Section 4.2 for user-de�ned functions.

4 De�nitions and Programs

A Small Lisp program is a list of constant and function de�nitions.

hde�nition-listi ::= f hde�nitioni g

hde�nitioni ::= hfunction-de�nitioni j hconstant-de�nitioni

4.1 Constant De�nitions

A constant de�nition establishes a variable as a globally bound constant.

hconstant-de�nitioni ::= [hcommenti] hvariablei = hexpressioni

The value bound to a global constant is determined by evaluating the R.H.S. of the constant

de�nition in the context of previously de�ned functions and constants. It is illegal to rede�ne

the variables T, F and otherwise, which have prede�ned values as described in Section 3.2.

4

4.2 Function De�nitions

Functions may be de�ned by specifying a de�ning expression for the function which is to be

evaluated in the context of argument values bound to parameter names.

hfunction-de�nitioni ::= [hcommenti] hfunction-namei

[hparameter-listi] = hexpressioni

hparameter-listi ::= hvariablei f ; hvariablei g

The values of the arguments are established by a function call as described in Section 3.5

and are bound to the parameter names by position (i.e., the ith argument is bound to the ith

parameter). The function is applied by evaluating the de�ning hexpressioni in the context

of these bindings plus the bindings for any globally de�ned constants. The value computed

is then returned as the result of the function application.

Function de�nitions may refer to any global de�nitions that exist at the time the function

is called. This includes both self-recursive and mutually recursive function references. It is

illegal to rede�ne any of Small Lisp's primitive functions described in Section 5.

5 Primitive Functions

Small Lisp provides 20 primitive functions as described below. Each function takes exactly

the number of arguments shown.

symbolp[x] determines whether or not an object x is a symbolic atom, returning

1. T if x is a symbolic atom.

2. F if x is a numeric atom or a list.

numberp[x] determines whether or not an object x is a numeric atom, returning

1. T if x is a numeric atom.

2. F if x is a symbolic atom or a list.

listp[x] determines whether or not an object x is a list, returning

1. T if x is a list.

2. F if x is an atom.

endp[x] determines whether or not a list x is empty, returning

1. T if x is the empty list.

2. F if x is a nonempty list.

3. ? if x is not a list.

first[x] returns

1. The �rst element of x if x is a nonempty list.

5

2. ? if x is an empty list or an atom.

rest[x] returns

1. The tail sublist following the �rst element of x if x is a nonempty list.

2. ? if x is an empty list or an atom.

cons[x; y] returns

1. The list whose �rst element is x and whose remaining elements are those of the

list y in the same order, if y is a list.

2. ? if y is not a list.

eq[x; y] determines whether x and y are equal symbolic atoms, returning

1. T if x and y are both symbolic atoms having the same name.

2. ? if neither x nor y is a symbolic atom.

3. F, otherwise.

plus[x; y] returns

1. x+ y if x and y are both numeric atoms.

2. ? if either x or y is not a numeric atom.

minus[x; y] returns

1. x� y if x and y are both numeric atoms.

2. ? if either x or y is not a numeric atom.

times[x; y] returns

1. x � y if x and y are both numeric atoms.

2. ? if either x or y is not a numeric atom.

divide[x; y] computes the integer quotient of x and y, returning

1. sgn x � sgn y � bjx=yjc if x and y are both numeric atoms and y 6= 0.

2. ? if y = 0, or either x or y is not a numeric atom.

rem[x; y] computes the integer remainder of x and y, returning

1. x� divide[x; y] � y if x and y are both numeric atoms and y 6= 0.

2. ? if y = 0, or either x or y is not a numeric atom.

eqp[x; y] determines whether numeric atoms x and y are equal, returning

1. T if x and y are both numeric atoms such that x = y.

6

2. F if x and y are both numeric atoms such that x 6= y.

3. ? if either x or y is not a numeric atom.

lessp[x; y] determines whether x is strictly less than y, returning

1. T if x and y are both numeric atoms such that x < y.

2. F if x and y are both numeric atoms such that x � y.

3. ? if either x or y is not a numeric atom.

greaterp[x; y] determines whether x is strictly greater than y, returning

1. T if x and y are both numeric atoms such that x > y.

2. F if x and y are both numeric atoms such that x � y.

3. ? if either x or y is not a numeric atom.

sym-lessp[x; y] determines whether x and y are lexicographically ordered symbolic atoms,

returning

1. T if x and y are both symbolic atoms such that x is lexicographically less than y.

2. F if x and y are both symbolic atoms such that x is lexicographically greater than

or equal to y.

3. ? if either x or y is not a symbolic atom.

explode[x] returns

1. The list of single-character symbolic atoms and single-digit numeric atoms which

taken together comprise the name of x if x is a symbolic atom.

2. ? if x is a numeric atom or list.

implode[x] returns

1. The symbolic atom whose name is formed from the characters and digits of the

atoms in the list x, if x is a list of atoms.

2. ? if x is not a list of atoms or the characters and digits of the atoms within x do

not form a valid symbolic atom name.

error[x] reports a run-time error, printing out x as an error message. The error \function"

always returns ?.

7

