
Feed-forward Networks Network Training Error Backpropagation Applications

Artificial Neural Networks
Oliver Schulte - CMPT 310

Feed-forward Networks Network Training Error Backpropagation Applications

Neural Networks

• Neural networks arise from attempts to model
human/animal brains

• Many models, many claims of biological plausibility
• We will focus on statistical and computational properties

rather than plausibility

• An artificial neural network is a general function
approximator

• The inner or hidden layers compute learned auxilliary
functions

Feed-forward Networks Network Training Error Backpropagation Applications

Uses of Neural Networks

• Pros
• Good for continuous input variables.
• General continuous function approximators.
• Highly non-linear.
• Trainable basis functions.
• Good to use in continuous domains with little knowledge:

• When you don’t know good features.
• You don’t know the form of a good functional model.

• Cons
• Not interpretable, “black box”.
• Learning is slow.
• Good generalization can require many datapoints.

Feed-forward Networks Network Training Error Backpropagation Applications

Function Approximation Demos

• Home Value of Hockey State https://user-images.
githubusercontent.com/22108101/
28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.
jpg

• Function Learning Examples (open in Safari)
http://neuron.eng.wayne.edu/
bpFunctionApprox/bpFunctionApprox.html

https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
https://user-images.githubusercontent.com/22108101/28182140-eb64b49a-67bf-11e7-97aa-046298f721e5.jpg
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html
http://neuron.eng.wayne.edu/bpFunctionApprox/bpFunctionApprox.html

Feed-forward Networks Network Training Error Backpropagation Applications

Applications

There are many, many applications.
• World-Champion Backgammon Player.
http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon

• No Hands Across America Tour.
http://www.cs.cmu.edu/afs/cs/usr/tjochem/
www/nhaa/nhaa_home_page.html

• Digit Recognition with 99.26% accuracy.
• Speech Recognition
http://research.microsoft.com/en-us/news/
features/speechrecognition-082911.aspx

• http://deeplearning.net/demos/

http://en.wikipedia.org/wiki/TD-Gammon
http://en.wikipedia.org/wiki/Backgammon
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_page.html
http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
http://research.microsoft.com/en-us/news/features/speechrecognition-082911.aspx
http://deeplearning.net/demos/

Feed-forward Networks Network Training Error Backpropagation Applications

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Feed-forward Networks Network Training Error Backpropagation Applications

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Feed-forward Networks Network Training Error Backpropagation Applications

No Hands Across America

Sharp
 Left

Sharp
Right

4 Hidden
 Units

30 Output
 Units

 30x32 Sensor
 Input Retina

Straight
 Ahead

Feed-forward Networks Network Training Error Backpropagation Applications

Non-linear Activation Functions

• Pass input inj through a non-linear activation function g(·)
to get output aj = g(inj)

• Model of an individual neuron

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

ginjwi,j

w0,j

Bias Weight

ai

from Russell and Norvig, AIMA3e

Feed-forward Networks Network Training Error Backpropagation Applications

Non-linear Activation Functions

• Pass input inj through a non-linear activation function g(·)
to get output aj = g(inj)

• Model of an individual neuron

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

ginjwi,j

w0,j

Bias Weight

ai

from Russell and Norvig, AIMA3e

Feed-forward Networks Network Training Error Backpropagation Applications

Non-linear Activation Functions

• Pass input inj through a non-linear activation function g(·)
to get output aj = g(inj)

• Model of an individual neuron

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

ginjwi,j

w0,j

Bias Weight

ai

from Russell and Norvig, AIMA3e

Feed-forward Networks Network Training Error Backpropagation Applications

Network of Neurons

w3,5

3,6w

4,5w
4,6w

5

6

w1,3

1,4w

2,3w
2,4w

1

2

3

4

w1,3

1,4w

2,3w
2,4w

1

2

3

4

(b)(a)

Feed-forward Networks Network Training Error Backpropagation Applications

Activation Functions

• Can use a variety of activation functions
• Sigmoidal (S-shaped)

• Logistic sigmoid 1/(1 + exp(−a)) (useful for binary
classification)

• Hyperbolic tangent tanh
• Softmax

• Useful for multi-class classification
• Rectified Linear Unit (RLU) max(0, x)
• . . .

• Should be differentiable for gradient-based learning (later)
• Can use different activation functions in each unit
• See http://aispace.org/neural/.

http://aispace.org/neural/

Feed-forward Networks Network Training Error Backpropagation Applications

Function Composition

Think logic circuits

-4 -2 0 2 4x1
-4 -2 0 2 4

x2
0

0.2
0.4
0.6
0.8

1
hW(x1, x2)

-4 -2 0 2 4x1
-4 -2 0 2 4

x2
0

0.2
0.4
0.6
0.8

1
hW(x1, x2)

Two opposite-facing sigmoids = ridge. Two ridges = bump.

Feed-forward Networks Network Training Error Backpropagation Applications

The XOR Problem Revisited

-1 1

-1

1

bias
hidden j

output k

input i

1
1

1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=+1

z=-1

z=-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

R2

R2

R1

y1 y2

z

zk

wkj

wji

x1

x2

x1

x2

x1

x2

y1 y2

FIGURE 6.1. The two-bit parity or exclusive-OR problem can be solved by a three-
layer network. At the bottom is the two-dimensional feature x1x2-space, along with the
four patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their feature values through multiplicative weights
to the hidden units. The hidden and output units here are linear threshold units, each
of which forms the linear sum of its inputs times their associated weight to yield net,
and emits a +1 if this net is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive or “excitatory” weights are denoted by solid lines, negative or
“inhibitory” weights by dashed lines; each weight magnitude is indicated by the line’s
thickness, and is labeled. The single output unit sums the weighted signals from the
hidden units and bias to form its net, and emits a +1 if its net is greater than or equal
to 0 and emits a −1 otherwise. Within each unit we show a graph of its input-output
or activation function—f (net) versus net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Feed-forward Networks Network Training Error Backpropagation Applications

The XOR Problem Solved

-1 1

-1

1

bias
hidden j

output k

input i

1
1

1 1

.5

-1.5

.7
-.4-1

x1 x2

x1

x2

z=+1

z=-1

z=-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

R2

R2

R1

y1 y2

z

zk

wkj

wji

x1

x2

x1

x2

x1

x2

y1 y2

FIGURE 6.1. The two-bit parity or exclusive-OR problem can be solved by a three-
layer network. At the bottom is the two-dimensional feature x1x2-space, along with the
four patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their feature values through multiplicative weights
to the hidden units. The hidden and output units here are linear threshold units, each
of which forms the linear sum of its inputs times their associated weight to yield net,
and emits a +1 if this net is greater than or equal to 0, and −1 otherwise, as shown
by the graphs. Positive or “excitatory” weights are denoted by solid lines, negative or
“inhibitory” weights by dashed lines; each weight magnitude is indicated by the line’s
thickness, and is labeled. The single output unit sums the weighted signals from the
hidden units and bias to form its net, and emits a +1 if its net is greater than or equal
to 0 and emits a −1 otherwise. Within each unit we show a graph of its input-output
or activation function—f (net) versus net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

Feed-forward Networks Network Training Error Backpropagation Applications

Hidden Units Compute Auxilliary Functions

• red dots = network function
• dashed line = hidden unit activation function.
• blue dots = data points

Network function is roughly the sum of activation functions.

Feed-forward Networks Network Training Error Backpropagation Applications

Hidden Units As Feature Extractors
sample training patterns

learned input-to-hidden weights

...

...

...

FIGURE 6.13. The top images represent patterns from a large training set used to train a
64-2-3 sigmoidal network for classifying three characters. The bottom figures show the
input-to-hidden weights, represented as patterns, at the two hidden units after training.
Note that these learned weights indeed describe feature groupings useful for the clas-
sification task. In large networks, such patterns of learned weights may be difficult to
interpret in this way. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

• 64 input nodes
• 2 hidden units
• learned weight matrix at hidden units

Feed-forward Networks Network Training Error Backpropagation Applications

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Feed-forward Networks Network Training Error Backpropagation Applications

Network Training

• Given a specified network structure, how do we set its
parameters (weights)?

• As usual, we define a criterion to measure how well our
network performs, optimize against it

• Training data are (xn, yn)

• Corresponds to neural net with multiple output nodes
• Given a set of weight values w, the network defines a

function hw(x).
• Can train by minimizing L2 loss:

E(w) =

N∑
n=1

|hw(xn)− yn)|2 =

N∑
n=1

∑
k

(yk − ak)
2

where k indexes the output nodes

Feed-forward Networks Network Training Error Backpropagation Applications

Network Training

• Given a specified network structure, how do we set its
parameters (weights)?

• As usual, we define a criterion to measure how well our
network performs, optimize against it

• Training data are (xn, yn)

• Corresponds to neural net with multiple output nodes
• Given a set of weight values w, the network defines a

function hw(x).
• Can train by minimizing L2 loss:

E(w) =

N∑
n=1

|hw(xn)− yn)|2 =

N∑
n=1

∑
k

(yk − ak)
2

where k indexes the output nodes

Feed-forward Networks Network Training Error Backpropagation Applications

Parameter Optimization

w1

w2

E(w)

wA wB wC

∇E

• For either of these problems, the error function E(w) is
nasty

• Nasty = non-convex
• Non-convex = has local minima

Feed-forward Networks Network Training Error Backpropagation Applications

Gradient Descent

• The function hw(x) implemented by a network is
complicated.

• No closed-form: Use gradient descent.
• It isn’t obvious how to compute error function derivatives

with respect to hidden weights.
• The credit assignment problem.

• Backpropagation solves the credit assignment problem

Feed-forward Networks Network Training Error Backpropagation Applications

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Feed-forward Networks Network Training Error Backpropagation Applications

Error Backpropagation

• Backprop is an efficient method for computing error
derivatives ∂E

∂wij
for all weights in the network. Intuition:

1. Calculating derivatives for weights connected to output
nodes is easy.

2. Treat the derivatives as virtual “error”, compute derivative of
error for nodes in previous layer.

3. Repeat until you reach input nodes.

• This procedure propagates backwards the output error
signal through the network.

• Stochastic Gradient Descent: Fix input x ≡ xn and target
output y ≡ yn, resulting in error En.

Feed-forward Networks Network Training Error Backpropagation Applications

Error at the output nodes

• First, feed training example xn forward through the network,
storing all node activations ai

• Calculating derivatives for weights connected to output
nodes is easy.

• like logistic regression with input “features” ai

• For output node j with activation aj = g(inj) = g(
∑

i wijai):

∂En

∂wij
=

∂

∂wij

1
2

(yj − aj)
2 = −aj × g′(inj)× (yj − aj)

• 0 if no error, or if input ai from node i is 0.
• Modified Error: ∆[j] ≡ g′(inj)(yj − aj).
• Gradient Descent Weight Update:

wij ← wij + α× ai ×∆[j]

Feed-forward Networks Network Training Error Backpropagation Applications

Error at the output nodes

• First, feed training example xn forward through the network,
storing all node activations ai

• Calculating derivatives for weights connected to output
nodes is easy.

• like logistic regression with input “features” ai

• For output node j with activation aj = g(inj) = g(
∑

i wijai):

∂En

∂wij
=

∂

∂wij

1
2

(yj − aj)
2 = −aj × g′(inj)× (yj − aj)

• 0 if no error, or if input ai from node i is 0.
• Modified Error: ∆[j] ≡ g′(inj)(yj − aj).
• Gradient Descent Weight Update:

wij ← wij + α× ai ×∆[j]

Feed-forward Networks Network Training Error Backpropagation Applications

Error at the hidden nodes

• Consider a hidden node i connected to downstream nodes
in the next layer.

• The modified error signal ∆[i] is node activation
derivative, times the weighted sum of contributions to the
connected errors.

• In symbols,
∆[i] = g′(ini)

∑
j

wij∆[j].

Feed-forward Networks Network Training Error Backpropagation Applications

Backpropagation Picturebackprop	with	new	nota/on	

wkj

ω1

... ...

ω2 ω3 ωk ωc

output

hidden

input

wij

δ1 δ2 δ3 δk δc

δj

FIGURE 6.5. The sensitivity at a hidden unit is proportional to the weighted sum of the
sensitivities at the output units: δj = f ′(netj)

∑c
k=1 wkjδk . The output unit sensitivities are

thus propagated “back” to the hidden units. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons, Inc.

wj3	

The error signal at a hidden unit is proportional to the error
signals at the units it influences:

∆[j] = g′(inj)
∑

k

wjk∆[k].

Feed-forward Networks Network Training Error Backpropagation Applications

The Backpropagation Algorithm

1. Apply input vector xn and forward propagate to find all
inputs ini and activation output levels ai.

2. Evaluate the error signals ∆[j] for all output nodes.
3. Backpropagate the ∆[j] to obtain error signals ∆[i] for each

hidden node i.
4. Update each weight vector wij using

wij := wij + α× ai ×∆[j].

Demo AIspace http://aispace.org/neural/.

http://aispace.org/neural/

Feed-forward Networks Network Training Error Backpropagation Applications

Other Learning Topics

• Regularization: L2-regularizer (weight decay).
• Prune Weights: the Optimal Brain Method.
• Experimenting with Network Architectures is often key.

Feed-forward Networks Network Training Error Backpropagation Applications

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Applications

Feed-forward Networks Network Training Error Backpropagation Applications

Applications of Neural Networks

• Many success stories for neural networks
• Credit card fraud detection
• Hand-written digit recognition
• Face detection
• Autonomous driving (CMU ALVINN)

Feed-forward Networks Network Training Error Backpropagation Applications

Hand-written Digit Recognition

• MNIST - standard dataset for hand-written digit recognition
• 60000 training, 10000 test images

Feed-forward Networks Network Training Error Backpropagation Applications

LeNet-5

INPUT

32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT

 10

• LeNet developed by Yann LeCun et al.
• Convolutional neural network

• Local receptive fields (5x5 connectivity)
• Subsampling (2x2)
• Shared weights (reuse same 5x5 “filter”)
• Breaking symmetry

• See
http://www.codeproject.com/KB/library/NeuralNetRecognition.aspx

Feed-forward Networks Network Training Error Backpropagation Applications

4!>6 3!>5 8!>2 2!>1 5!>3 4!>8 2!>8 3!>5 6!>5 7!>3

9!>4 8!>0 7!>8 5!>3 8!>7 0!>6 3!>7 2!>7 8!>3 9!>4

8!>2 5!>3 4!>8 3!>9 6!>0 9!>8 4!>9 6!>1 9!>4 9!>1

9!>4 2!>0 6!>1 3!>5 3!>2 9!>5 6!>0 6!>0 6!>0 6!>8

4!>6 7!>3 9!>4 4!>6 2!>7 9!>7 4!>3 9!>4 9!>4 9!>4

8!>7 4!>2 8!>4 3!>5 8!>4 6!>5 8!>5 3!>8 3!>8 9!>8

1!>5 9!>8 6!>3 0!>2 6!>5 9!>5 0!>7 1!>6 4!>9 2!>1

2!>8 8!>5 4!>9 7!>2 7!>2 6!>5 9!>7 6!>1 5!>6 5!>0

4!>9 2!>8

• The 82 errors made by LeNet5 (0.82% test error rate)

Feed-forward Networks Network Training Error Backpropagation Applications

Conclusion

• Feed-forward networks can be used for regression or
classification

• Learning is more difficult, error function not convex
• Use stochastic gradient descent, obtain (good?) local

minimum

• Backpropagation for efficient gradient computation

	Feed-forward Networks
	Network Training
	Error Backpropagation
	Applications

