a)
$$d(x,w) = 2$$
 $d(x,y) = 4$ $d(x,u) = 7$

b) Shortest path: d(xwu) = 2+5 Other path: d(xyu) = 4+6

For x to inform new minimum path to u, either $c(xw) \ge 6$ or $c(xy) \le 1$

Note that shortest path from x to y goes through route xw, so if we were to change c(xw), d(xyu) will also change accordingly until c(xw)+c(wy) is greater than c(xy). In case where the costs are the same, it's up to topology to decide which route to take, and even a new path is not established, the new cost will still be informed.

c) For x to not inform new minimum path to u, either c(xw) < 6 or c(xy) > 1

P8.

			cost to			cost to				
Node x table			х	У	z			х	У	z
	from	Х	0	3	4		Χ	0	3	4
		У	∞	∞	∞	from	у	3	0	6
		Z	8	∞	∞		Z	4	6	0
Node y table	cost to					cost to				
			Х	У	Z			х	У	z
	From	Х	∞	∞	∞	from	X	0	3	4
		У	3	0	6		у	3	0	6
		Z	∞	∞	∞		Z	4	6	0
		cost to						cc	st	to
Node z table			X	У	z			х	У	z
	from	Х	8	∞	∞	from	Х	0	3	4
		У	8	∞	∞		У	3	0	6
		Z	4	6	0		Z	4	6	0
			-	-	•			-	-	•

```
P14.
```

a) eBGP 3c learns from 4cb) iBGP 3a learns from 3cc) eBGP 1c learns from 3ad) iBGP 1d learns from 1c

P5.

```
G = 1001 D = 11000111010
                                     G = 10011 D = 1010101010
         11011100110
                                                 1011011100
                                     10011 | 10101010100000
1001 | 11000111010000
                                             10011
      1001
       1010
                                               11001
       1001
                                               10011
         1111
                                                10100
         1001
                                                10011
          1101
                                                  11110
          1001
                                                  10011
           1000
                                                   11010
           1001
                                                   <u>10011</u>
              1100
                                                    10010
              1001
                                                    10011
               1010
                                                       0100
               1001
                  110
                                     R = 0100
R = 110
```

G = 10011

a) D = 1001010101	b) D = 0101101010	c) D = 1010100000
100010000	01010101	1011010111
1000100000	0101010101	1011010111
10011 1001010101 0000	10011 0101101010 0000	10011 10101000000000
<u>10011</u>	<u>10011</u>	<u>10011</u>
11010	10110	11000
<u>10011</u>	<u>10011</u>	<u>10011</u>
10011	10110	10110
<u>10011</u>	<u>10011</u>	<u>10011</u>
0000	10100	10100
	<u>10011</u>	<u>10011</u>
R = 0000	11100	11100
	<u>10011</u>	<u>10011</u>
	1111	11110
		<u>10011</u>
	R = 1111	11010
		<u>10011</u>
		1001
		R = 1001

G = 1001

a) D = 01101010101	b) D = 11111010101	c) D = 10001100001		
'		,		
<u>01100110011</u>	<u> 11100110011</u>	<u> 10011111110</u>		
1001 01101010101 000	1001 11111010101 000	1001 10001100001 000		
1001	1001	1001		
	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
1000	1101	1110		
<u>1001</u>	<u>1001</u>	<u>1001</u>		
1101	1000	1110		
1001	1001	1001		
1000	1101	1110		
<u>1001</u>	<u>1001</u>	<u>1001</u>		
1100	1000	1110		
1001	1001	<u>1001</u>		
1010	1100	1111		
<u>1001</u>	<u>1001</u>	<u>1001</u>		
011	1010	1100		
	<u>1001</u>	<u>1001</u>		
R = 011	011	1010		
. 011	011			
	D 011	1001		
	R = 011	110		
		R = 110		

P7.

a)

If we divide (D append R) by G, the result will be zero if there's no errors, so a linear relation. If a single bit error occurred, then the result of (D append R) divided by G won't be zero; therefore, we know that there's an error.

The degree of G is 3, which means consecutive bit errors of 3 and fewer bits will be detected.

b)

G = 1001 has even number of 1s and the smallest even number of 1s is $(11)_2$ excluding 0. Odd number bits errors are not divisible to $(11)_2$. As a result, all odd number bits errors are detected.

P8.

a)

Take the derivative and set it to 0

$$f'(p) = N(1-p)^{N-1} - Np(N-1)(1-p)^{N-2} = 0$$

$$(1-p)^{N-1} = p(N-1)(1-p)^{N-2}$$

$$1 - p = p(N-1)$$

$$1 = p((N-1) + 1)$$

p = 1/N

b)

$$f(p) = N(1/N)(1-1/N)^{N-1} = (1-1/N)^{N-1} = (1-1/N)^{N} / (1-1/N)$$

As N approaches infinity:

$$(1-1/N)^N = 1/e$$
 and $(1-1/N) = 1$

Therefore, the efficiency of slotted ALOHA = 1/e as N approaches infinity.

P15.

a)

No, E knows F is in the same LAN from IP address.

Source IP: E's IP Destination IP: F's IP

Source MAC: E's MAC Destination MAC: F's MAC

b)

No, E knows B is not in the same LAN from IP address.

Source IP: E's IP Destination IP: B's IP

Source MAC: E's MAC Destination MAC: R1's MAC facing subnet 3

c)

S1 will also broadcast the message because of the broadcast address in destination address, and learns that A is in subnet 1.

R1 also receives the message, but it doesn't forwards it to subnet 3.

B doesn't ask for A's MAC address because it's already included in A's message.

S1 will add B into forwarding table and then drop the message because A and B are in the same LAN.